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1 Architectures in detail

This section gives the architectural details of the MemDPC components, including
the encoder f(.) and temporal aggregator g(.).

Architecture of encoder f(.). The detailed architecture of the encoder func-
tion f(.) is shown in Table S1. The size of the convolutional kernel is denoted by
[temporal × spatial2, channel]. The strides are denoted by [temporal, spatial2].
We assume the input is 8 video blocks, 5 frames per video block, and the frame
has a resolution of 128 × 128. The column of ‘output size’ shows the tensor di-
mension after the current stage. Some pooling layers are omitted for clarity. We
will release all the source code after the paper decision.

Architecture of temporal aggregator g(.). The detailed architecture of the
temporal aggregation function g(.) is shown in Table S2. It aggregates the feature
maps over the past T time steps. Table S2 shows the case where g(.) aggregates
the feature maps over the past 5 steps. We use the same convention as above
to denote convolutional kernel size. The temporal aggregator is an one-layer
ConvGRU that returns context feature with same number of channels as its
input.
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Table S1. The 2D+3D ResNet18 structure of the encoding function f(.). The 2D+3D
ResNet34 structure replaces the depth of res2 to res5 from 2,2,2,2 to 3,4,6,3.

stage detail
output size

T ×HW × C

input data - 5× 1282 × 3

conv1
1× 72, 64

stride 1, 22 5× 642 × 64

pool1
1× 32, 64

stride 1, 22 5× 322 × 64

res2

[
1× 32, 64
1× 32, 64

]
× 2 5× 322 × 64

res3

[
1× 32, 128
1× 32, 128

]
× 2 5× 162 × 128

res4

[
3× 32, 256
3× 32, 256

]
× 2 3× 82 × 256

res5

[
3× 32, 256
3× 32, 256

]
× 2 2× 42 × 256

pool2
2× 12, 256
stride 1, 12 1× 42 × 256

Table S2. The structure of aggregation function g(.).

stage detail
output sizes

T × t× d2 × C

input data - 5× 1× 42 × 256

ConvGRU [12, 256]× 1 layer 1× 1× 42 × 256
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2 Details of unintentional action classification

Figure S1 shows the architecture of the unintentional action classification task.
In detail, at each time step t, the single-directional MemDPC framework produces a
feature zt from the current input xt, and also a predicted feature ẑt from the past
input x1, ..., xt−1. For each time step, two features zt and ẑt are concatenated and
passed to a linear classifier ξ(.) to classify into one of three categories (intentional,
transitioning or unintentional actions).

Fig. S1. Architecture of the unintentional action classification framework.

Naturally in the Oops dataset the distribution of the three classes is very
unbalanced, e.g. transitioning actions are very rare comparing with the other two
categories. To handle this we oversample transitioning actions during training.
For testing, we take the same sequence length as training from the video with a
temporal moving window, and summarize the prediction.

The classifier is trained with cross entropy loss and optimized by the Adam
optimizer with a 10−3 learning rate. The learning rate is decayed once to 10−4

when the validation loss plateaus.
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3 Video retrieval results

Query Top3 nearest neighbours

Fig. S2. More nearest neighbour retrieval results with MemDPC representations. The left
side is the query video from the UCF101 testing set, and the right side are the top
3 nearest neighbours from the UCF101 training set. The MemDPC is trained only on
UCF101 with optical flow input and we visualize their raw RGB frames for clarity.
The action label for each video is shown in the upper right corner.
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4 Pseudocode of MemDPC

In this section, we give the core implementation of MemDPC in PyTorch-like style,
including the compressive memory bank and the computation of the contrastive
loss. We will release all the source code.

Algorithm 1 Pseudocode for MemDPC in PyTorch-like style.

# f: feature extractor, 2d3d-ResNet
# g: aggregator, ConvGRU
# phi: future prediction function, MLP
# x: video input, size = [BatchSize,NumBlock,BlockSize,Channel,Height,Width],

# e.g. [16,8,5,3,128,128]
# pred_step: prediction step, e.g. predict 3 steps into the future
# MB: the compressive memory bank, has size [k,C], e.g. [1024, 256]

z_hat_all = []
feature_z = f(x) # extract feature,

# size=[B,N,C,H,W], e.g. [16,8,256,4,4]

for i in range(pred_step): # sequentially predict into the future
if i == 0:

feature_z_tmp = feature_z[:,0:(N-pred_step),:] # get past features
hidden = g(feature_z_tmp) # temporal aggregation, hidden state == context,

# size=[B,C,H,W], e.g. [16,256,4,4]
else:

hidden = g(feature_z_hat, hidden) # aggregate one more step,
# size=[B,C,H,W]

prob = Softmax(phi(hidden), dim=1) # probability over MB,
# size=[B,k,H,W], e.g. [16,1024,4,4]

feature_z_hat = torch.einsum(’bkhw,kc->bchw’, prob, MB) # weighted sum over MB,
# size=[B,C,H,W]

z_hat_all.append(feature_z_hat)

z_hat = torch.stack(z_hat_all, dim=1) # predicted feature, size=[B,pred_step,C,H,W],
# e.g. [16,3,256,4,4]

z = feature_z[:,-pred_step::,:] # desired feature, size=[B,pred_step,C,H,W]

# dot product over ’C’, and flatten as 2D matrix, size=[B*pred_step*H*W, B*pred_step*H*W]
similarity = torch.einsum(’abcde,fgchi->abdefghi’, z_hat, z)\

.view(B*pred_step*H*W, B*pred_step*H*W)
target = torch.arange(B*pred_step*H*W) # diagonal of similarity matrix is positive

loss = CrossEntropyLoss(similarity, target)
loss.backward()
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5 Visualization of learned memory

Top3 nearest neighbours

Fig. S3. Nearest-neighbour retrieval for {24, 37, 213, 238, 414}-th memory entries with
UCF101 training videos. The left shows the magnitude of memory bank, ‖M‖ ∈ R1024,
with the chosen memory entry highlighted in orange. The right shows the top-3 nearest
neighbour in the UCF101 training set retrieved by the corresponding memory entry.

Fig. S4. t-SNE visualization of pt+1 from paper Eq. 3 at different training stages. For
clarity, 10 action classes are randomly chosen from UCF101 training set and visualized.

This section visualizes the memory learned by MemDPC. In Figure S3, we use
single memory entry as the query to retrieve videos in the feature space. It
shows the memory may have captured certain features in the video like repeti-
tive textures or wide background. Figure S4 shows the t-SNE clustering results
of the memory addressing probability pt+1 from Equation 3. It shows that as
the training progresses, the network attends to different memory entries to pre-
dict futures for different action categories, although category information is not
involved during training.


