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1 Proofs for the properties of PointMixup interpolation

We provide detailed proofs for the shortest path property, the assignment in-
variance property and the linearity, stated in Section 3.4.

Proof for the shortest path property We denote xi ∈ S1 and yj ∈ S2

are the points in S1 and S2, then the generated S
(λ)
OA = {ui}Ni=1 and ui =

(1− λ) · xi + λ · yφ∗(i), where φ∗ is the optimal assignment from S1 to S2.
Then we suppose an identical one-to-one mapping φI such that φI(i) = i.

Then by definition of the EMD as the minimum transportation distance, so

dEMD(S1, S
(λ)
OA) ≤ 1

N

∑
i

‖xi − uφI(i)‖2, (1)

where the right term of (1) is the transportation distance under identical assign-
ment φI . Since 1

N

∑
i ‖xi − uφI(i)‖2 = 1

N

∑
i ‖xi − ((1− λ) · xi + λ · yφ∗(i))‖2 =

λ 1
N

∑
i ‖xi − yφ∗(i)‖2 = λ · dEMD(S1, S2). Thus,

dEMD(S1, S
(λ)
OA) ≤ λ · dEMD(S1, S2). (2)

Similarly as in (1) and (2), the following inequality (3) can be derived by assign-

ing the correspondence from S
(λ)
OA to S2 with φ∗:

dEMD(S
(λ)
OA, S2) ≤ (1− λ) · dEMD(S1, S2). (3)

With (2) and (3),

dEMD(S1, S
(λ)
OA) + dEMD(S2, S

(λ)
OA) ≤ dEMD(S1, S2). (4)

However, as the triangle inequality holds for the EMD, i.e.

dEMD(S1, S
(λ)
OA) + dEMD(S2, S

(λ)
OA) ≥ dEMD(S1, S2), (5)

? Equal contribution.
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Then by summarizing (4) and (5), dEMD(S1, S
(λ)
OA) + dEMD(S2, S

(λ)
OA)

= dEMD(S1, S2) is proved. ut

Proof for the assignment invariance property We introduce two inter-
mediate arguments. We begin with proving the first intermediate argument: φI
is the optimal assignment from S1 to S

(λ1)
OA . Similarly as in (2) ,(3) and (5) from

the proof for Proposition 1, in order to allow all the three inequalities, the equal
signs need to be taken for all of the three inequalities. Consider that the equal
sign being taken for (2) is equivalent to the the equal sign being taken for (1),
then,

dEMD(S1, S
(λ1)
OA ) =

1

N

∑
i

‖xi − uφI(i)‖2, (6)

which in turn means that φI is the optimal assignment from S1 to S
(λ1)
OA by the

definition of the EMD. So the first intermediate argument is proved.
The second intermediate argument is that φ∗ is the optimal assignment from

S
(λ1)
OA to S2. This argument can be proved samely as the first one. Say the equal

sign being taken for (3) is equivalent to that

dEMD(S
(λ1)
OA , S2) =

1

N

∑
i

‖ui − yφ∗(i)‖2. (7)

Thus, φ∗ is the optimal assignment from S
(λ1)
OA to S2 is proved.

Then, with the two intermediate arguments, we can reformalize the setup to

regard that S
(λ2)
OA is interpolated from source pairs S

(λ1)
OA and S2 with the mix

ratio λ2−λ1

1−λ1
, because the optimal assignment from S

(λ1)
OA to S2 is the same as the

optimal assignment from S1 to S2. This argument then becomes an isomorphic
with respect to the first intermediate argument. Then we prove that φI is the

optimal assignment from S
(λ1)
OA to S

(λ2)
OA similarly as the proof for the first inter-

mediate argument. ut

Proof for linearity We have shown that φI is optimal assignment between

S
(λ1)
OA = {uk} = {(1 − λ1) · xk + λ1 · yφ∗(k)} and S

(λ2)
OA = {vl} = {(1 − λ2) ·

xl +λ2 · yφ∗(l)}. Thus, dEMD(S
(λ1)
OA , S

(λ2)
OA ) = 1

N

∑
k ‖((1−λ1) · xk +λ1 · yφ∗(k))−

((1− λ2) · xφI(k) + λ2 · yφ∗(φI(k)))‖2 = 1
N

∑
k ‖(λ2 − λ1)(xk − yφ∗(k))‖2 = (λ2 −

λ1) 1
N

∑
k ‖(xk − yφ∗(k))‖2 = (λ2 − λ1) · dEMD(S1, S2). ut

2 Few-shot learning with PointMixUp

We test if our PointMixup helps point cloud few-shot classification task, where a
classifier must generalize to new classes not seen in the training set, given only a
small number of examples of each new class. We take ProtoNet [3] as the baseline
method for few-shot learning, and PointNet++ [2] is the feature extractor hθ.
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Episodic learning setup ProtoNet takes the episodic training for few-shot
learning, where an episode is designed to mimic the few-shot task by subsampling
classes as well as data. A NC-way NS-shot setting is defined as that in each
episode, data from NC classes are sampled and NS examples for each class is
labelled. In the ith episode of training, the dataset Di consists of the training
example and class pairs fromNC classes sampled from all training classes. Denote
DSi ⊂ Di is the support set which consists of labelled data from NC classes with

NS examples, and DQi = Di\DSi is the query set which consists of unlabelled
examples to be predicted.

Baseline method for few-shot classification: ProtoNet [3] In each episode
Di, ProtoNet computes a prototype as the mean of embedded support examples
z̄c for each class c, from all examples from the support set DSi . The latent em-
bedding is from the network hθ (for which we use PointNet++ [2] without the

last fully-connected layer). Then each example S from the query set DQi is clas-
sified into a label distribution by a softmax over (negative) distance to the class
prototypes:

p(ŷ = c|S) =
exp(−d(S, z̄c))∑
c′ exp(−d(S, z̄c′))

,

Algorithm 1 Episodic training of ProtoNet with PointMixUp. From

line 3 to line 8 is where PointMixUp takes a role in addition to the ProtoNet baseline.

Testing stage is similar as training stage, but without line 13 and line 14 which learn

new weight from query examples.

Require: Set of sampled episodes {Di}, where Di = DSi ∪ DQi denoting the support
and query sets

Require: hθ: feature extractor network: input → latent embedding
1: randomly initialize θ
2: for episode i do
3: for class c do
4: calculate prototype z̄c from DSi , with hθ.
5: end for
6: Construct Mixup samples Dmix

i from support set DSi .
7: Predict the label distributions for mixed examples in Dmix

i , with distance to z̄c.
8: Update θ with prediction from mixed examples, as episode-specific weights θi.
9: for class c do

10: calculate new prototype z̄
(θi)
c from DSi , with hθi

11: end for
12: Predict the label distributions for query examples in DQi , with distance to z̄

(θi)
c .

13: Update θi with prediction from query examples.
14: θ ← θi
15: end for
16: return θ



4 Chen et al.

where d(·, ·) is the Eudlidean distance in the embedding space. In training stage,
the weights θ for the feature extractor hθ is updated by the cross-entropy loss
for the predicted query label distribution and the ground truth.

Few-shot point cloud classification with PointMixup We use PointMixup
to learn a better embedding space for each episode. Instead of using the hθ
directly to predict examples from query set, we learn a episode-specific weight
θi from the mixed data, and the query examples are predicted by hθi . We use
PointMixup to construct a mixed set Dmix

i from the labelled support set DSi ,
which consists of examples from

(
Nc

2

)
class pairs and for each class pairs Ns

mixed examples are constructed from randomly sampling support examples.
Then the weight θ is updated as θi from backprop the loss from the prediction
of mixed examples from Dmix

i . After that, the label of query examples from DQi
is then predicted with the updated feature extractor hθi . See Algorithm 1 for an
illustration of the learning scheme.

3 Further Discussion on Interpolation Variants

The proposed PointMixUp adopts Optimal Assignment (OA) interpolation for
point cloud because of its advantages in theory and in practice. To compare
Optimal Assignment interpolation with the two alternative strategies, Random
Assignment (RA) interpolation and Point Sampling (PS) interpolation, the pro-
posed PointMixUp with OA interpolation is the best performing strategy, fol-
lowed by PS interpolation. RA interpolation, which has a non-shortest path
definition of interpolation, does not perform well.

Here we extend the discussion on the two alternative interpolation strategies,
through which we analyze the possible advantages and limitations under certain
conditions, which in turn validates our choice of applying Optimal Assignment
interpolation for PointMixup.

Random Assignment interpolation From our shortest path interpolation
hypothesis for Mixup, the inferiority of RA interpolation comes from that it
does not obey the shortest path interpolation rule, so that the mixed point clouds
from different source examples can easily entangle with each other. From Fig.
3 in the main paper, the Random assignment interpolation produces chaotic
mixed examples which can hardly been recognized with the feature from the
source class point clouds. Thus, RA interpolation fails especially under heavy
Mixup (the value of λ is large).

Point Sampling interpolation: yet another shortest path interpolation
Point Sampling interpolation performs relatively well in PointNet++ and some-
times comparable with the Optimal Assignment interpolation. From Fig. 3 in
the main paper, the PS interpolation produces mixed examples which can be
recognized which classes of source data it comes from.
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Reviewing the shortest path interpolation hypothesis, We argue that when
the number of points N is large enough, or say N →∞, Point Sampling interpo-
lation also (approximately) defines a shortest path on the metric space (S, dEMD)
(Note that given the initial and the final points, the shortest path in (S, dEMD)
is not unique). This is a bit counter-intuitive, but reasonable.

We show the shortest path property. Recall that point sampling interpolation
randomly draws without replacement of points from each set are made according

to the sampling frequency λ: S
(λ)
PS = S

(1−λ)
1 ∪S(λ)

2 , where S
(λ)
2 denotes a randomly

sampled subset of S2, with bλNc elements. (b·c is the floor function.) And similar

for S
(1−λ)
1 with N − bλNc elements, such that S

(λ)
PS contains exactly N points.

Imagine that a subset S
(1−λ)
1 with a number of N − bλNc points in S

(λ)
PS are

identical with that in S1. For dEMD(S
(λ)
PS , S1), the optimal assignment will return

these identical points as matched pairs, thus they contribute zero to the overall
EMD distance. Thus,

dEMD(S
(λ)
PS , S1) =

N − bλNc
N

dEMD(S
(λ)
PS \ S

(1−λ)
1 , S1 \ S(1−λ)

1 )

=
N − bλNc

N
dEMD(S

(λ)
2 , S1 \ S(1−λ)

1 )

≈ N − bλNc
N

dEMD(S2, S1)

≈ (1− λ) · dEMD(S1, S2),

from which dEMD(S
(λ)
2 , S1 \ S(1−λ)

1 ) ≈ dEMD(S2, S1) is because that S1 and

S1 \ S(1−λ)
1 are the point clouds representing the same shape but with different

density, and the same with S2 and S
(λ)
2 .

Similarly, dEMD(S
(λ)
PS , S2) ≈ λ · dEMD(S1, S2), and thus dEMD(S

(λ)
PS , S1) +

dEMD(S
(λ)
PS , S2) = dEMD(S1, S2), which in turn proves the shortest path property.

We note that the linearity of PS interpolation w.r.t. dEMD also holds and the
proof can be derived similarly. Thus, although strictly not an ideally continuous
interpolation path, PS interpolation is (appoximately) a shortest path linear
interpolation in (S, dEMD), which explains its good performance.

Point Sampling interpolation: limitations The limitation of PS interpola-
tion is from that the mix ratio λ controls change of local density distribution,
but the underlying shape does not vary with λ. So, as shown in Table ??, PS
interpolation fails with PointNet [1], which is ideally invariant to the point den-
sity, because a max pooling operation aggregates the information from all the
points.

A question which may come with PS interpolation is that how it performs
relatively well with PointNet++, which is also designed to be density-invariant.
This is due to the sampling and grouping stage. PointNet++ takes same op-
eration as PointNet in learning features, but in order to be hierarchical, the
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Table 1: Different interpolation strategies on PointNet [1] Following the
original paper [1] we test on unaligned setting. PS interpolation fails with Point-
Net as a density-invariant model. The numbers are accuracy in percentage.

Baseline PointMixup (OA) RA PS

89.2 89.9 88.2 88.7

sampling and grouping stage, especially the farthest point sampling (fps) op-
eration is not invariant to local density changes such that it samples different
groups of farthest points, resulting in different latent point cloud feature repre-
sentations. Thus, PointNet++ is invariant to global density but not invariant to
local density differences, which makes PS interpolation as a working strategy for
PointNet++. However, we may still expect that the performance of Mixup based
on PS interpolation is limited, because it does not work well with PointNet as a
basic component in PointNet++.

By contrast, the proposed PointMixup with OA interpolation strategy is not
limited by the point density invariance. As a well established interpolation, OA
interpolation smoothly morphes the underlying shape. So we claim that OA
interpolation is a more generalizable strategy.
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