
Learning Gradient Fields for Shape Generation
– Supplementary Material –

Contents
1 Method Details 1
2 Implementation Details 5
3 Additional Quantitative Results 7
4 Additional Ablation Studies 10
5 Additional Qualitative Results 10

1 Method Details
In this section, we provide extensive details of our method. We provide detailed explana-
tions for training and inference in Section 1.1. More details about surface extraction are
provided in Section 1.2. Finally, a mathematical proof about our objective function is
shown in Section 1.3.

1.1 Training and inference
We provide algorithm blocks to better illustrate the training and inference procedures.
See Algorithm 1 and Algorithm 2 for training and inference, respectively. Please refer to
Section 2 for hyper-parameters and neural network architectures.

1.2 Surface extraction
We use a modified version of the volumetric ray casting algorithm [12] to render the iso-
surface produced by the learned gradient field. Algorithm 3 below shows the rendering
process of a single pixel. For each pixel in the rendered image, we cast a ray 〈o0, u〉
towards the gradient field according to the camera model. We advance the ray for a
fixed number of steps kmax. For reasonable choices of the step rate γ, the ray will either
converge to the iso-surface, or miss the iso-surface and march towards infinity. If the
ray does reach the iso-surface, we calculate the RGB values for that pixel based on its
3D location and surface normal. If the ray misses the surface, we assign the pixel with
background color ybg. In this paper, we use γ = 1.0, kmax = 64 and δ = 0.005.

1

Algorithm 1 Training.
Require: Noise levels {σi}ki=1; Weight for noise levels’ loss λ(σi); Point cloud encoder

fφ; A neural network sθ; Total number of training iterations T ; Point cloud Xt

1: for t← 1 to T do
2: z ← fφ(Xt)
3: for σ ∈ {σi}ki=1 do
4: for xi ∈ Xt do
5: x̃i ← xi +N(0, σ2I)
6: end for
7: `(σ,Xt)← 1

|Xt|
∑
xi∈Xt ‖gθ(x̃i, σ, z)−

xi−x̃i
σ2 ‖22

8: end for
9: L({σi}ki=1, Xt)←

∑k
i=1 λ(σi)`(σi, Xt)

10: φ, θ ← Adam(L, φ, θ)
11: end for
12: return fφ, sθ

Algorithm 2 Annealed Langevin dynamics.
Require: Noise levels {σi}ki=1; Step size α; Number of steps T

1: Initialize x0
2: for i← 1 to k do
3: for t← 0 to T − 1 do
4: εt ∼ N (0, I)

5: x′t+1 ← xt +
√
ασiεt
σk

6: xt+1 ← x′t+1 +
ασ2

i

2σ2
k
gθ(x

′
t+1, σi)

7: end for
8: x0 ← xT
9: end for

10: return xT

2

Algorithm 3 Ray Casting for Rendering the Iso-surface.
Require: Neural network sθ; Minimum noise level σk; Initial ray origin o0; Ray

direction u; Maximum ray travel dmax; Step rate γ; Number of steps kmax; Iso-
surface level δ; Background color ybg

1: d = 0
2: for k ← 1 to kmax do
3: x← o0 + du
4: d← d+ γ(‖sθ(x, σk)‖ − δ)
5: end for
6: if d < dmax then
7: n← − sθ(x,σk)

‖sθ(x,σk)‖
8: y ← Shading(x, n)
9: else

10: y ← ybg
11: end if
12: return y

1.3 Objective Function
Here, we provide a proof to show that optimizing `direct(σ, S) (Equation 4 in the main
paper) is equivalent to optimizing `denoising(σ, S) (Equation 5 in the main paper). The
proof is largely similar to the one in the Appendix in Vincent 2010 [15]. We will re-visit
the prove here using the notation from our paper for convenience of the readers.

Theorem Let θ∗direct = argminθ`direct(σ, S), and let θ∗denoise = argminθ`denoising(σ, S),
then θ∗direct = θ∗denoise. In other words, optimizing `denoise(σ, S) leads to the same θ as
optimizing `denoise(σ, S).

Proof: We want to show that `direct(σ, S) = `denoise(σ, S) + C for some constant C
that doesn’t depend on θ. Note that `denoise can be decomposed as follows:

`denoise(σ, S) = Ex∼PS ,x̃∼qσ(x̃|x)
[
1

2
‖gθ(x̃, σ)‖2

]
− Ex∼PS ,x̃∼qσ(x̃|x)

[
gθ(x̃, σ)

T∇x̃ log qσ(x̃|x)
]
+ C1, (1)

where C1 = Ex∼PS ,x̃∼qσ(x̃|s)
[
1
2 ‖∇x̃ log qσ(x̃|x)‖

2
]
. Similarly, we can decompose

`direct as follows:

`direct(σ, S) = Ex∼Qσ,S
[
1

2
‖gθ(x, σ)‖2

]
− Ex∼Qσ,S

[
gθ(x, σ)

T∇x logQσ,S(x)
]
+ C2, (2)

where C2 = Ex∼Qσ,S
[
1
2‖∇x logQσ,S(x)‖2

]
. Now we will compare the first two terms

3

of Equation 1 and Equation 2 to show they are the same. Looking at the first terms:

Es∼PS ,x̃∼qσ(x̃|s)
[
1

2
‖gθ(x̃, σ)‖2

]
=

1

2

∫
x

PS(x)

∫
x̃

qσ(x̃|x)‖gθ(x̃, σ)‖2dx̃dx

=
1

2

∫
x̃

∫
x

PS(x)qσ(x̃|x)‖gθ(x̃, σ)‖2dxdx̃

=
1

2

∫
x̃

‖gθ(x̃, σ)‖2
∫
x

PS(x)qσ(x̃|x)dxdx̃

=
1

2

∫
x̃

‖gθ(x̃, σ)‖2Qσ,S(x̃)dx̃
(

since Qσ,S(x) =
∫
y

PS(y)qσ(x|y)dy
)

= Ex∼Qσ,S
[
1

2
‖gθ(x, σ)‖2

]
.

Looking at the second terms:

Ex∼PS ,x̃∼qσ(x̃|x)
[
gθ(x̃, σ)

T∇x̃ log qσ(x̃|x)
]

=

∫
x

PS(x)

∫
x̃

qσ(x̃|x)gθ(x̃, σ)T∇x̃ log qσ(x̃|x)dx̃dx

=

∫
x̃

∫
x

PS(x)qσ(x̃|x)gθ(x̃, σ)T∇x̃ log qσ(x̃|x)dxdx̃

=

∫
x̃

gθ(x̃, σ)
T

∫
x

PS(x)qσ(x̃|x)∇x̃ log qσ(x̃|x)dxdx̃

=

∫
x̃

gθ(x̃, σ)
T

∫
x

PS(x)qσ(x̃|x)
∇x̃qσ(x̃|x)
qσ(x̃|x)

dxdx̃

=

∫
x̃

gθ(x̃, σ)
T

∫
x

PS(x)∇x̃qσ(x̃|x)dxdx̃

=

∫
x̃

gθ(x̃, σ)
T

∫
x

PS(x)∇x̃qσ(x̃|x)dxdx̃.

Since qσ(x̃|x) = N (x̃;x, σ2I), it is bounded by qσ(x̃|x) ≤ N (x;x, σ2I). As a result,

4

we can take the derivative outside of the integral
∫
x
PS(x)∇x̃qσ(x̃|x)dx:

Ex∼PS ,x̃∼qσ(x̃|x)
[
gθ(x̃, σ)

T∇x̃ log qσ(x̃|x)
]

=

∫
x̃

gθ(x̃, σ)
T∇x̃

(∫
x

PS(x)qσ(x̃|x)dx
)
dx̃

=

∫
x̃

gθ(x̃, σ)
TQσ,S(x̃)

∇x̃
(∫
x
PS(x)qσ(x̃|x)dx

)
Qσ,S(x̃)

dx̃

=

∫
x̃

gθ(x̃, σ)
TQσ,S(x̃)

∇x̃Qσ,S(x̃)
Qσ,S(x̃)

dx̃

=

∫
x̃

gθ(x̃, σ)
TQσ,S(x̃)∇x̃ logQσ,S(x̃)dx̃

= Ex̃∼Qσ,S
[
gθ(x̃, σ)

T∇x̃ logQσ,S(x̃)
]

At this point, we can conclude that by setting C = C1−C2, we will have `direct(σ, S) =
`denoise(σ, S) + C. So optimizing either of `direct or `denoise will give the same optimal θ.
�

2 Implementation Details

2.1 Network architecture
Auto-encoding For auto-encoding, our model takes 2D or 3D shape point cloud X as
input to the encoder, which follows the architecture proposed by [11], and outputs the
128-dimensional latent code z for each shape.

For the decoder, we train several noise level σ at the same time. To condition on
different noise level, we concatenate the noise level σ at the end of latent code z. The
input point cloudX has 800 or 2048 points x in total, and each point is concatenated with
latent code z and σ yielding a 131 or 132 dimensional input for the decoder (depending
if the point cloud is in 2D or 3D).

Following the architecture used by OccNet [9], first the input is scaled with a
fully-connected layer to the hidden dimension 256. Then there are 8 pre-activation
ResNet-blocks with 256 dimensions for every hidden layer, and each Res-block consists
of two sets of Conditional Batch-Normalization (CBN), a ReLU activation layer and a
fully-connected layer. The output of these two sets is added to the input of the Res-block.
Then the output of all the Res-blocks is passed through another set of CBN, ReLU and
FC layer, and this is the final output of the model – a 3-dimensional vector describing
the gradient for the input point.

The CBN layer takes the concatenated input as the latent code z̃ = [x, z, σ]. The
input z̃ is passed through two FC layers to output the 256-dimensional vectors β(z̃) and
γ(z̃). The output of the CBN is computed according to:

fout = γ(z̃)
fin − µ√
σ′2 + ε

+ β(z̃), (3)

5

where µ and σ′ are the mean and standard deviation of the batch feature data fin. During
training, µ and σ′ are the running mean with momentum 0.1, and they are replaced with
the corresponding running mean at test time. Figure 1 describes the architecture of our
decoder sθ.

Generation For generation, based on the pretrained auto-encoder model, we use
l-GAN to train the latent code generator. Specifically, we train our GAN with WGAN-
GP [7] objective. We use Adam optimizer (β1 = 0.5, β2 = 0.9) with learning rate 10−4

for both the discriminator and the generator. The latent-code dimension is set to be
256. The generator takes a 256-dimensional noise vector sampled from N (0, 0.22I256),
and passes it through an MLP with hidden dimensions of {256, 256} before outputting
the final 256-dimensional latent code. We apply ReLU activation between layers and
there is no batch normalization. The discriminator is a three-layers MLP with hidden
dimension {512, 512}. We use LeakyReLU with slope 0.2 between the layers. We fixed
both the pretrained encoder and decoder (i.e. set into evaluation mode). The latent-GAN
is trained for 5000 epochs for each of the category.

Figure 1: The gradient decoder network sθ. For each layer, the spatial size is specified
on top. The input point x is concatenated to the latent code z and noise level σ. The
output of sθ is the gradient corresponding to the given point.

2.2 Experimental setting
For all the experiments, we use an Adam optimizer. We use ten different σ’s ranging
from 1 to 0.01. For the ShapeNet dataset, the learning rates are 1× 10−4 for decoder
and 1× 10−3 for encoder, with linear decay starting at 1000 epoch, reaching 1× 10−5

and 1× 10−4 for the encoder and the decoder, respectively. For the MNIST-CP dataset,
the learning rate starts with 1× 10−3 for both the decoder and encoder, with linear decay
starting at 1000 epoch, ending at 1 × 10−4. Each batch consists of 64 shapes (or 200
shapes for the MNIST-CP dataset). We train the model for 2000 epochs. For inference,
we set T = 10 and α = 2× 10−4.

6

2.3 Baselines
In this section, we provide more details on how we obtain the reported scores for
alternative methods.

PointFlow [16] To get the results for ShapeNet, we run the pre-trained checkpoint
release in the official code repository1. The auto-encoding results for MNIST is obtained
by running the released code on the pre-processed MNIST-CP dataset.

AtlasNet [6] The code we used for the AtlasNet decoder comes from the official
code repository2. To enable a fair comparison, we use the same encoder as used in the
PointFlow repository, and set the latent code dimension to be the same as our own model.
We use the suggested learning rate and optimizer setting from the AtlasNet code-base
and paper during training. We train AtlasNet for the same amount of iterations as our
method to obtain the reported performance in Table 1 in the main paper.

l-GAN and r-GAN [2] We modify the official released code repository3 to take our
pre-processed point cloud from ShapeNet version 2 [3, 4]. The auto-encoding results
(i.e. Table 1 in main paper) for l-GAN and r-GAN are obtained by running the official
code for the same number of iterations as our model. The generation results for r-GAN
in Table 3 in the main paper is obtained by running the latent-GAN in the official code
for the default amount of iterations in the configuration.

GraphCNN-GAN [14] We use the official code released in this repository to obtain
the results: https://github.com/diegovalsesia/GraphCNN-GAN.

TreeGAN [13] We use the official code released in this repository to obtain the results:
https://github.com/seowok/TreeGAN.git.

3 Additional Quantitative Results

3.1 Shape generation
We compare our method’s performance on shape generation with GraphCNN-GAN [14]
and TreeGAN [13] in Table 1 (in addition to the comparisons to r-GAN [1] and Point-
Flow [16] which we report in the main paper). As discussed in the Related Work section
(Section 2 in the main paper), both of these two baselines treat generating point clouds
with N points as predicting a fixed dimensional vector (in practice predicting a N × 3
vector but they could potentially use more upsampling layers to predict more points),
using the same discriminator as r-GAN [2]. These works report performance for models

1https://github.com/stevenygd/PointFlow
2https://github.com/ThibaultGROUEIX/AtlasNet
3https://github.com/optas/latent_3d_points

7

https://github.com/diegovalsesia/GraphCNN-GAN
https://github.com/seowok/TreeGAN.git
https://github.com/stevenygd/PointFlow
https://github.com/ThibaultGROUEIX/AtlasNet
https://github.com/optas/latent_3d_points

trained on smaller collections (i.e. the ShapeNet Benchmark dataset4) using different
splits and normalization. Therefore, in addition to comparing their publicly available
models (in the first rows), we retrain their models on the full ShapeNet collections using
the same splits and preprocessing performed on our trained models (in the rows marked
with an asterisk (∗)). For each model, the training is performed over two days with a
GeForce GTX TITAN X GPU.

Table 1: Additional shape generation results. Rows marked with an asterisk (∗) denote
retrained models. ↑ means the higher the better, ↓ means the lower the better. MMD-CD
is multiplied by 103 and MMD-EMD is multiplied by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)
Category Model CD EMD CD EMD CD EMD

Airplane

GCN [14] 2.623 15.535 9.38 5.93 95.16 99.12
GCN [14]∗ 44.93 35.52 1.98 1.23 99.99 99.99
Tree [13] 1.466 16.662 44.69 6.91 95.06 100.00
Tree [13]∗ 1.798 24.723 31.60 5.43 95.43 99.88
Ours 1.285 7.364 47.65 41.98 85.06 83.46

Train 1.288 7.036 45.43 45.43 72.10 69.38

Chair

GCN [14] 23.098 25.781 6.95 6.34 86.52 96.48
GCN [14]∗ 140.84 0.5163 1.67 1.06 100 100
Tree [13] 16.147 36.545 40.33 8.76 74.55 99.92
Tree [13]∗ 17.124 26.405 42.90 20.09 77.49 98.11
Ours 14.818 18.791 46.37 46.22 66.16 59.82

Train 15.893 18.472 50.45 52.11 53.93 54.15

We also present generation results for the car category in Table 2. Our model achieves
performance that’s un-par with the state-of-the-arts.

Table 2: Shape generation results. ↑ means the higher the better, ↓ means the lower the
better. MMD-CD is multiplied by 103 and MMD-EMD is multiplied by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)
Category Model CD EMD CD EMD CD EMD

Car

rGAN [2] 6.233 18.561 8.24 5.11 99.29 99.86
PF [16] 4.207 10.631 39.20 44.89 68.75 62.64
Ours 4.085 10.610 44.60 46.88 65.48 62.93

Train 4.207 10.631 48.30 54.26 52.98 49.57

In Figure 2, we show convergence curves for our method and for PointFlow [16]

4https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_
segmentation_benchmark_v0.zip

8

https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_segmentation_benchmark_v0.zip
https://shapenet.cs.stanford.edu/ericyi/shapenetcore_partanno_segmentation_benchmark_v0.zip

on the auto-encoding task (over the Airplane category). As the figure illustrates, our
method converges much faster and to a better result.

0 10 20 30 40 50
Training time (Hour)

0

1

2

3

4

C
D

(⇥
10

4
)

Ours

PointFlow

Oracle

0 10 20 30 40 50
Training time (Hour)

1.5

2.0

2.5

3.0

3.5

4.0

E
M

D
(⇥

10
2
)

Ours

PointFlow

Oracle

Figure 2: Convergence curves for PointFlow [16] and our method on the auto-encoding
task. As illustrated above, our method converges much faster to a better result.

3.2 Implicit surface

Table 3: Implicit surface results on Airplane category. CD is multiplied by 104 and EMD
is multiplied by 102.

Metrics AtlasNet-Sph. AtlasNet-25 DeepSDF Ours

CD 1.88 2.16 1.43 1.022
CD (median) 0.79 0.65 0.36 0.442
EMD 3.8 4.1 3.3 5.545
Mesh acc 0.013 0.013 0.004 0.008

In this section, we demonstrate that one can use MISE [9], an octree-based march-
ing cue algorithm, to extract a ground truth mesh that from the learned gradient field.
We compute ground truth meshes for the test set of the airplane category following
DeepSDF’s set-up. As mentioned in Section 1 of main paper, prior implicit repre-
sentations [5][9][10] require knowing the ground truth meshes in order to provide a
supervision signal during training, while our model can be trained solely from sparse
point clouds. We conducted a preliminary quantitative comparison between our implicit
surface and that of DeepSDF[10]. We follow DeepSDF’s experiment set-up to report
results on the airplane category in Table3. Our implicif surfaces outperforms AtlasNet in
both CD and Mesh accuracy metrics and are competitive with DeepSDF (which uses
more supervision) in CD. Failure cases for our extracted meshes usually comes from the
bifurcation area (i.e. the local minimums and saddle points) where gradients are close to
zero. Another problem with our extracted surface is that marching cue tend to create a
double surface around the shape, As our focus is generating point clouds, we will leave
the improvement of surface extraction to future work.

9

Table 4: Architecture ablation study, comparing auto-encoding performance on the
Airplane category. CD is multiplied by 104 and EMD is multiplied by 102. The ablated
models are detailed in the text.

Metrics (a) (ab) (abc) (bd) (abcd)

CD 1.234±0.007 0.992±0.002 0.998±0.003 1.011±0.008 0.987±0.001
EMD 2.718±0.039 2.513±0.019 2.493±0.010 2.462±0.042 2.524±0.001

4 Additional Ablation Studies
Next we report results of additional ablation studies to evaluating several design consid-
erations and our choice in modeling the distribution of shapes.

Network architecture We evaluate different architectures considering the following:

(a) Replacing BN with CBN.

(b) Adding shortcuts.

(c) Replacing the latent code z with z̃ = [x, z, σ] for the CBN layer.

(d) Concatenating the latent code z and σ to x as input for the decoder.

In Table 4 we report multiple configurations, with the rightmost one (abcd) corresponding
to our full model. For each model, we perform 3 inference runs, and report the average
and the standard deviation over these runs. As the table illustrates, our full model yields
better performance as well as significantly smaller variance across different runs.

Modeling the distribution of shapes In our work, we propose a new approach of
modeling the distribution of points using the gradient of the log density field. To model
the distribution of shapes, we use a latent GAN [1]. Next, we explore a different method
to model the distribution of shapes. Specifically, we train a VAE using the same encoder
and decoder setting as the one used in Section 4.2 in the main paper. We double the output
dimension for the encoder so that it can output both µ and σ for the re-parameterization.
We add the KL-divergence loss with weight 10−3 and train for the same amount of
time (in terms of epochs and iterations) as the model reported in the main paper. The
results for the Chair and Airplane categories are reported in Table 5. We can see that
our reported model, which uses a two-stage training with a latent-GAN, outperforms
the model trained with VAE for both the Chair and the Airplane category on all metrics,
except for the 1-NNA-EMD metrics on Airplane.

5 Additional Qualitative Results
Scanned data To demonstrate that our technique can also model partial and incomplete
shapes, we use scanned point clouds captured using a hand-held 3D scanner, as detailed

10

Table 5: Modeling the distribution of shapes using different techniques. We compare our
model’s performance on the generation task against a VAE model. ↑ means the higher
the better, ↓ means the lower the better. MMD-CD is multiplied by 103 and MMD-EMD
is multiplied by 102.

MMD (↓) COV (%, ↑) 1-NNA (%, ↓)
Category Model CD EMD CD EMD CD EMD

Airplane
VAE 1.909 9.004 37.78 38.27 89.14 86.05
Ours 1.332 7.768 39.01 43.46 88.52 86.91

Train 1.288 7.036 45.43 45.43 72.10 69.38

Chair
VAE 18.032 20.903 41.99 43.81 74.17 74.92
Ours 14.818 18.791 46.37 46.22 66.16 59.82

Train 15.893 18.472 50.45 52.11 53.93 54.15

in Yifan et al.[17]. For each scanned object, we train a separate model, evaluating to
what extent we can obtain a high-fidelity point cloud reconstruction for these scanned
objects. See Figure 3 for a qualitative comparison of the input scanned objects which
contain roughly 600 points (left columns), reconstructed point clouds (middle columns)
and extracted implicit surfaces (right columns). While we cannot model the full shape
in this case (as we are only provided with a partial, single view), our technique enables
reconstructing a denser representation even in this sparse real setting.

Visualization of latent space We visualize the latent code space in Figure 4. We first
obtain all latent code z ∈ R128 by running the encoder on the validation set of Airplane,
Car, and Chair. We run T-SNE [8] on the latent code for the same category to reduce
the latent-codes’ dimensionality down to 2. These 2-dimensional latent codes are then
used to place rendered reconstructed point clouds on the figure. The figure shows that
the latent code places similar shapes nearby in the latent space, which suggests that we
learn a meaningful latent space.

Extended visualizations for 2D and 3D point clouds In Figure 5, we demonstrate
our annealed Langevin dynamic procedure for 2D point clouds from MNIST-CP. We also
show that our model is insensitive to the choice of the prior distribution in the 2D case
in Figure 6. We show more results on the ShapeNet dataset in Figure 7 (auto-encoding
shapes), Figure 8(auto-encoding point clouds), Figure 9 (shape generation), and Firgure
10 (shape interpolation).

11

Figure 3: Autoencoding scanned shapes. Above we demonstrate our technique on sparse
point clouds captured with a 3D scanner (left). We sample 10K points to obtain the point
clouds illustrated in the middle and also extract the implicit surfaces (right).

Figure 4: Visualization of the latent space.

sR
es

ul
ts

(d
iff

er
en

tp
ri

or
s)

ss
ss

sG
T

Figure 6: Reconstructing MNIST-CP shapes (illustrated on top), starting from different
prior distributions. Above we demonstrate reconstruction results obtained starting from
a uniform (second row), Gaussian (third row) or a single point (fourth row) distribution.
As the figure illustrates, our method is insensitive to the prior distribution.

12

x0 x5 x10 x15 x20 x25 x30 x35 x40 x45 x50 GT

Figure 5: Point cloud sampling on the MNIST-CP dataset. Above we illustrate our
annealed Langevin dynamics procedure for 2D shapes. Starting with points sampled
from a uniform distribution, the points gradually move along the logarithmic density
field. As illustrated on the right side, eventually these points are mostly indistinguishable
from the ground truth point clouds.

Figure 7: Examples of reconstruction results. The first row depicts reconstructed shapes
from the Airplane, Car and Chair categories. The second row is the corresponding
implicit surfaces.

13

Figure 8: Examples of reconstruction results on the Airplane, Car and Chair categories.
For each category, the first row is the input point cloud, and the second row is the
up-sampling output point cloud.

Figure 9: Examples of generation results on the Airplane, Car and Chair categories.

14

Sampled Interp Interp Interp Interp Sampled

Figure 10: Generation and interpolation results. Generated point clouds (Sampled) and
the interpolated results between two generated shapes (Interp) are illustrated.

15

References
[1] Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations

and generative models for 3d point clouds. arXiv preprint arXiv:1707.02392 (2017)
7, 10

[2] Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.: Learning representations
and generative models for 3d point clouds. In: ICML (2018) 7, 8

[3] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L., Yu, F.: ShapeNet: An Information-
Rich 3D Model Repository. Tech. Rep. arXiv:1512.03012 [cs.GR], Stanford Uni-
versity — Princeton University — Toyota Technological Institute at Chicago (2015)
7

[4] Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese,
S., Savva, M., Song, S., Su, H., et al.: Shapenet: An information-rich 3d model
repository. arXiv preprint arXiv:1512.03012 (2015) 7

[5] Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 5939–5948 (2019) 9

[6] Groueix, T., Fisher, M., Kim, V.G., Russell, B., Aubry, M.: AtlasNet: A Papier-
Mâché Approach to Learning 3D Surface Generation. In: CVPR (2018) 7

[7] Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: NeurIPS (2017) 6

[8] Maaten, L.v.d., Hinton, G.: Visualizing data using t-sne. Journal of machine
learning research 9(Nov), 2579–2605 (2008) 11

[9] Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy
networks: Learning 3d reconstruction in function space. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 4460–4470
(2019) 5, 9

[10] Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: Deepsdf: Learn-
ing continuous signed distance functions for shape representation. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 165–174
(2019) 9

[11] Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d
classification and segmentation. In: CVPR (2017) 5

[12] Roth, S.D.: Ray casting for modeling solids. Computer graphics and image pro-
cessing 18(2), 109–144 (1982) 1

[13] Shu, D.W., Park, S.W., Kwon, J.: 3d point cloud generative adversarial network
based on tree structured graph convolutions. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 3859–3868 (2019) 7, 8

16

[14] Valsesia, D., Fracastoro, G., Magli, E.: Learning localized generative models for
3d point clouds via graph convolution (2018) 7, 8

[15] Vincent, P.: A connection between score matching and denoising autoencoders.
Neural computation 23(7), 1661–1674 (2011) 3

[16] Yang, G., Huang, X., Hao, Z., Liu, M.Y., Belongie, S., Hariharan, B.: Pointflow:
3d point cloud generation with continuous normalizing flows. In: Proceedings of
the IEEE International Conference on Computer Vision. pp. 4541–4550 (2019) 7,
8, 9

[17] Yifan, W., Wu, S., Huang, H., Cohen-Or, D., Sorkine-Hornung, O.: Patch-based
progressive 3d point set upsampling. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. pp. 5958–5967 (2019) 11

17

