
TIDE: A General Toolbox for Identifying Object
Detection Errors

Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman

Georgia Institute of Technology

Abstract. We introduce TIDE, a framework and associated toolbox1 for
analyzing the sources of error in object detection and instance segmenta-
tion algorithms. Importantly, our framework is applicable across datasets
and can be applied directly to output prediction files without required
knowledge of the underlying prediction system. Thus, our framework can
be used as a drop-in replacement for the standard mAP computation
while providing a comprehensive analysis of each model’s strengths and
weaknesses. We segment errors into six types and, crucially, are the first
to introduce a technique for measuring the contribution of each error in a
way that isolates its effect on overall performance. We show that such a
representation is critical for drawing accurate, comprehensive conclusions
through in-depth analysis across 4 datasets and 7 recognition models.

Keywords: Error Diagnosis, Object Detection, Instance Segmentation

1 Introduction

Object detection and instance segmentation are fundamental tasks in computer
vision, with applications ranging from self-driving cars [6] to tumor detection [9].
Recently, the field of object detection has rapidly progressed, thanks in part to
competition on challenging benchmarks, such as CalTech Pedestrians [8], Pascal
[10], COCO [20], Cityscapes [6], and LVIS [12]. Typically, performance on these
benchmarks is summarized by one number: mean Average Precision (mAP ).

However, mAP suffers from several shortcomings, not the least of which is its
complexity. It is defined as the area under the precision-recall curve for detections
at a specific intersection-over-union (IoU) threshold with a correctly classified
ground truth (GT), averaged over all classes. Starting with COCO [20], it became
standard to average mAP over 10 IoU thresholds (interval of 0.05) to get a final
mAP 0.5:0.95. The complexity of this metric poses a particular challenge when
we wish to analyze errors in our detectors, as error types become intertwined,
making it difficult to gauge how much each error type affects mAP .

Moreover, by optimizing for mAP alone, we may be inadvertently leaving
out the relative importance of error types that can vary between applications.
For instance, in tumor detection, correct classification arguably matters more
than box localization; the existence of the tumor is essential, but the precise

1 https://dbolya.github.io/tide/



2 D. Bolya et al.

Table 1: Comparison to Other Toolkits. We compare our desired features
between existing toolkits and ours. 4 indicates a toolkit has the feature, Q
indicates that it partially does, and 7 indicates that it doesn’t.

Feature Hoiem [14] COCO [1] UAP [4] TIDE (Ours)

Compact Summary of Error Types Q 7 4 4

Isolates Error Contribution Q 7 7 4

Dataset Agnostic 7 7 4 4

Uses All Detections 7 4 4 4

Allows for deeper analysis 4 4 4 4

location may be manually corrected. In contrast, precise localization may be
critical for robotic grasping where even slight mislocalizations can lead to faulty
manipulation. Understanding how these sources of error relate to overall mAP is
crucial to designing new models and choosing the proper model for a given task.

Thus we introduce TIDE, a general Toolkit for Identifying Detection and
segmentation Errors, in order to address these concerns. We argue that a complete
toolkit should: 1.) compactly summarize error types, so comparisons can be made
at a glance; 2.) fully isolate the contribution of each error type, such that there
are no confounding variables that can affect conclusions; 3.) not require dataset-
specific annotations, to allow for comparisons across datasets; 4.) incorporate all
the predictions of a model, since considering only a subset hides information; 5.)
allow for finer analysis as desired, so that the sources of errors can be isolated.

Why we need a new analysis toolkit. Many works exist to analyze the
errors in object detection and instance segmentation [15, 24, 7, 17, 22], but only
a few provide a useful summary of all the errors in a model [14, 1, 4], and none
have all the desirable properties listed above.

Hoiem et al. introduced the foundational work for summarizing errors in
object detection [14], however their summary only explains false positives (with
false negatives requiring separate analysis), and it depends on a hyperparameter
N to control how many errors to consider, thus not fulfilling (4). Moreover, to use
this summary effectively, this N needs to be swept over which creates 2d plots
that are difficult to interpret (see error analysis in [11, 21]), and thus in practice
only partially addresses (1). Their approach also doesn’t fulfill (3) because their
error types require manually defined superclasses which are not only subjective,
but difficult to meaningfully define for datasets like LVIS [12] with over 1200
classes. Finally, it only partially fulfills (2) since the classification errors are
defined such that if the detection is both mislocalized and misclassified it will be
considered as misclassified, limiting the effectiveness of conclusions drawn from
classification and localization error.

The COCO evaluation toolkit [1] attempts to update Hoiem et al.’s work by
representing errors in terms of their effect on the precision-recall curve (thus tying
them closer to mAP ). This allows them to use all detections at once (4), since
the precision recall curve implicitly weights each error based on its confidence.



TIDE: A General Toolbox for Identifying Object Detection Errors 3

However, the COCO toolkit generates 372 2d plots, each with 7 precision-recall
curves, which requires a significant amount of time to digest and thus makes
it difficult to compactly compare models (1). Yet, perhaps the most critical
issue is that the COCO eval toolkit computes errors progressively which we
show drastically misrepresents the contribution of each error (2), potentially
leading to incorrect conclusions (see Sec. 2.3). Finally, the toolkit requires manual
annotations that exist for COCO but not necessarily for other datasets (3).

As concurrent work, [4] attempts to find an upper bound for AP on these
datasets and in the process addresses certain issues with the COCO toolkit.
However, this work still bases their error reporting on the same progressive
scheme that the COCO toolkit uses, which leads them to the dubious conclusion
that background error is significantly more important all other types (see Fig. 2).
As will be described in detail later, to draw reliable conclusions, it is essential
that our toolkit work towards isolating the contribution of each error type (2).

Contributions In our work, we address all 5 goals and provide a compact, yet
detailed summary of the errors in object detection and instance segmentation.
Each error type can be represented as a single meaningful number (1), making it
compact enough to fit in ablation tables (see Tab. 2), incorporates all detections
(4), and doesn’t require any extra annotations (3). We also weight our errors based
on their effect on overall performance while carefully avoiding the confounding
factors present in mAP (2). And while we prioritize ease of interpretation, our
approach is modular enough that the same set of errors can be used for more
fine-grained analysis (5). The end result is a compact, meaningful, and expressive
set of errors that is applicable across models, datasets, and even tasks.

We demonstrate the value of our approach by comparing several recent
CNN-based object detectors and instance segmenters across several datasets. We
explain how to incorporate the summary into ablation studies to quantitatively
justify design choices. We also provide an example of how to use the summary of
errors to guide more fine-grained analysis in order to identify specific strengths
or weaknesses of a model.

We hope that this toolkit can form the basis of analysis for future work, lead
model designers to better understand weaknesses in their current approach, and
allow future authors to quantitatively and compactly justify their design choices.
To this end, full toolkit code is released at https://dbolya.github.io/tide/ and
opened to the community for future development.

2 The Tools

Object detection and instance segmentation primarily use one metric to judge
performance: mean Average Precision (mAP ). While mAP succinctly summarizes
the performance of a model in one number, disentangling errors in object detection
and instance segmentation from mAP is difficult: a false positive can be a
duplicate detection, misclassification, mislocalization, confusion with background,
or even both a misclassification and mislocalization. Likewise, a false negative
could be a completely missed ground truth, or the potentially correct prediction



4 D. Bolya et al.

could have just been misclassified or mislocalized. These error types can have
hugely varying effects on mAP , making it tricky to diagnose problems with a
model off of mAP alone.

We could categorize all these types of errors, but it’s not entirely clear how
to weight their relative importance. Hoiem et al. [14] weight false positives by
their prevalence in the top N most confident errors and consider false negatives
separately. However, this ignores the effect many low scoring detections could have
(so effective use of it requires a sweep over N), and it doesn’t allow comparison
between false positives and false negatives.

There is one easy way to determine the importance of a given error to overall
mAP , however: simply fix that error and observe the resulting change in mAP .
Hoiem et al. briefly explored this method for certain false positives but didn’t
base their analysis off of it. This is also similar to how the COCO eval toolkit
[1] plots errors, with one key difference: the COCO implementation computes
the errors progressively. That is, it observes the change in mAP after fixing one
error, but keep those errors fixed for the next error. This is nice because at the
end result is trivially 100 mAP , but we find that fixing errors progressively in
this manner is misleading and may lead to false conclusions (see Sec. 2.3).

So instead, we define errors in such a way that fixing all errors will still result
in 100 mAP , but we weight each error individually starting from the original
model’s performance. This retains the nice property of including confidence and
false negatives in the calculation, while keeping the magnitudes of each error
type comparable.

2.1 Computing mAP

Before defining error types, we focus our attention on the definition of mAP to
understand what may cause it to degrade. To compute mAP , we are first given
a list of predictions for each image by the detector. Each ground truth in the
image is then matched to at most one detection. To qualify as a positive match,
the detection must have the same class as the ground truth and an IoU overlap
greater than some threshold, tf , which we will consider as 0.5 unless otherwise
specified. If multiple detections are eligible, the one with the highest overlap is
chosen to be true positive while all remaining are considered false positives.

Once each detection has matched with a ground truth (true positive) or not
(false positive), all detections are collected from every image in the dataset and
are sorted by descending confidence. Then the cumulative precision and recall
over all detections is computed as:

Pc =
TPc

TPc + FPc
Rc =

TPc

NGT
(1)

where for all detections with confidence � c, Pc denotes the precision, Rc recall,
TPc the number of true positives, and FPc the number of false positives. NGT

denotes the number of GT examples in the current class.
Then, precision is interpolated such that Pc decreases monotonically, and

AP is computed as a integral under the precision recall curve (approximated by



TIDE: A General Toolbox for Identifying Object Detection Errors 5

Cls Loc Cls+Loc Duplicate Bkgd Missed

tftb0 1 tftb0 1 tftb0 1 tftb0 1 tftb0 1
N/A

Fig. 1: Error Type De�nitions. We define 6 error types, illustrated in the top
row, where box colors are defined as: = false positive detection; = ground
truth; = true positive detection. The IoU with ground truth for each error
type is indicated by an orange highlight and shown in the bottom row.

a fixed-length Riemann sum). Finally, mAP is defined as the average AP over
all classes. In the case of COCO [20], mAP is averaged over all IoU thresholds
between 0.50 and 0.95 with a step size of 0.05 to obtain mAP 0.5:0.95.

2.2 De�ning Error Types

Examining this computation, there are 3 places our detector can affect mAP :
outputting false positives during the matching step, not outputting true positives
(i.e., false negatives) for computing recall, and having incorrect calibration (i.e.,
outputting a higher confidence for a false positive then a true positive).

Main Error Types In order to create a meaningful distribution of errors that
captures the components of mAP , we bin all false positives and false negatives
in the model into one of 6 types (see Fig. 1). Note that for some error types
(classification and localization), a false positive can be paired with a false negative.
We will use IoUmax to denote a false positive’s maximum IoU overlap with a
ground truth of the given category. The foreground IoU threshold is denoted as
tf and the background threshold is denoted as tb, which are set to 0.5 and 0.1
(as in [14]) unless otherwise noted.

1. Classi�cation Error: IoUmax � tf for GT of the incorrect class (i.e., local-
ized correctly but classified incorrectly).

2. Localization Error: tb � IoUmax � tf for GT of the correct class (i.e.,
classified correctly but localized incorrectly).

3. Both Cls and Loc Error: tb � IoUmax � tf for GT of the incorrect class
(i.e., classified incorrectly and localized incorrectly).

4. Duplicate Detection Error: IoUmax � tf for GT of the correct class but
another higher-scoring detection already matched that GT (i.e., would be
correct if not for a higher scoring detection).



6 D. Bolya et al.

5. Background Error: IoUmax � tb for all GT (i.e., detected background as
foreground).

6. Missed GT Error: All undetected ground truth (false negatives) not already
covered by classification or localization error.

This differs from [14] in a few important ways. First, we combine both sim

and other errors into one classification error, since Hoiem et al.’s sim and
other require manual annotations that not all datasets have and analysis of the
distinction can be done separately. Then, both classification errors in [14] are
defined for all detections with IoUmax � tb, even if IoUmax < tf . This confounds
localization and classification errors, since using that definition, detections that
are both mislocalized and misclassified are considered class errors. Thus, we
separate these detections into their own category.

Weighting the Errors Just counting the number of errors in each bin is not
enough to be able to make direct comparisons between error types, since a false
positive with a lower score has less effect on overall performance than one with a
higher score. Hoiem et al. [14] attempt to address this by considering the top N
highest scoring errors, but in practice N needed to be swept over to get the full
picture, creating 2d plots that are hard to interpret (see the analysis in [11, 21]).

Ideally, we’d like one comprehensive number that represents how each error
type affects overall performance of the model. In other words, for each error type
we’d like to ask the question, how much is this category of errors holding back
the performance of my model? In order to answer that question, we can consider
what performance of the model would be if it didn’t make that error and use
how that changed mAP .

To do this, for each error we need to define a corresponding “oracle” that fixes
that error. For instance, if an oracle o 2 O described how to change some false
positives into true positives, we could call the AP computed after applying the
oracle as APo and then compare that to the vanilla AP to obtain that oracle’s
(and corresponding error’s) effect on performance:

∆APo = APo �AP (2)

We know that we’ve covered all errors in the model if applying all the oracles
together results in 100 mAP . In other words, given oracles O = fo1, . . . , ong:

APo1,...,on
= 100 AP +∆APo1,...,on

= 100 (3)

Referring back to the definition of AP in Sec. 2.1, to satisfy Eq. 3 the oracles
used together must fix all false positives and false negatives.

Considering this, we define the following oracles for each of the main error
types described above:

1. Classi�cation Oracle: Correct the class of the detection (thereby making
it a true positive). If a duplicate detection would be made this way, suppress
the lower scoring detection.



TIDE: A General Toolbox for Identifying Object Detection Errors 7

2. Localization Oracle: Set the localization of the detection to the GT’s local-
ization (thereby making it a true positive). Again, if a duplicated detection
would be made this way, suppress the lower scoring detection.

3. Both Cls and Loc Oracle: Since we cannot be sure of which GT the
detector was attempting to match to, just suppress the false positive detection.

4. Duplicate Detection Oracle: Suppress the duplicate detection.
5. Background Oracle: Suppress the hallucinated background detection.
6. Missed GT Oracle: Reduce the number of GT (NGT ) in the mAP calcula-

tion by the number of missed ground truth. This has the effect of stretching
the precision-recall curve over a higher recall, essentially acting as if the
detector was equally as precise on the missing GT. The alternative to this
would be to add new detections, but it’s not clear what the score should be
for that new detection such that it doesn’t introduce confounding variables.
We discuss this choice further in the Appendix.

Other Error Types While the previously defined types fully account for all
error in the model, how the errors are defined doesn’t clearly delineate false
positive and negative errors (since cls, loc, and missed errors can all capture false
negatives). There are cases where a clear split would be useful, so for those cases
we define two separate error types by the oracle that would address each:

1. False Positive Oracle: Suppress all false positive detections.
2. False Negative Oracle: Set NGT to the number of true positive detections.

Both of these oracles together account for 100 mAP like the previous 6 oracles
do, but they bin the errors in a different way.

2.3 Limitations of Computing Errors Progressively

Note that we are careful to compute errors individually (i.e., each ∆AP starts
from the vanilla AP with no errors fixed). Other approaches [1, 4] compute their
errors progressively (i.e., each ∆AP starts with the last error fixed, such that
fixing the last error results in 100 AP ). While we ensure that applying all oracles
together also results in 100 AP , we find that a progressive ∆AP misrepresents
the weight of each error type and is strongly biased toward error types �xed last.

To make this concrete, we can define progressive error ∆APajb to be the
change in AP from applying oracle a given that you’ve already applied oracle b:

∆APajb = APa,b �APb (4)

Then, computing errors progressively amounts to setting the importance of error i
to ∆APoijo1,...,oi−1

. This is problematic for two reasons: the definition of precision
includes false positives in the denominator, meaning that if you start with fewer
false positives (as would be the case when having fixed most false positives
already), the change in precision will be much higher. Furthermore, any changes
in recall (e.g., by fixing localization or classification errors) amplifies the effect of
precision on mAP , since the integral now has more area.



8 D. Bolya et al.

(a) Default COCO eval style error
curves.

(b) Swapping the order of errors
changes magnitudes drastically.

Fig. 2: The problem with computing errors progressively. The COCO
eval analyze function [1] computes errors progressively, which we show for Mask
R-CNN [13] detections on mAP50. On the right, we swap the order of applying
the classification and background oracles. The quantity of each error remains
the same, but the perceived contribution from background error (purple region)
significantly decreases, while it increases for all other errors. Because COCO
computes background error second to last, this instills a belief that it’s more
important than other errors, which does not reflect reality (see Sec. 2.3).

We show this empirically in Fig. 2, where Fig. 2a displays the original COCO
eval style PR curves, while Fig. 2b simply swaps the order that background and
classification error are computed. Just computing background first leads to an
incredible decrease in the prevalence of its contribution (given by the area of the
shaded region), meaning that the true weight of background error is likely much
less than COCO eval reports. This makes it difficult to draw factual conclusions
from analysis done this way.

Moreover, computing errors progressively doesn’t make intuitive sense. When
using these errors, you’d be attempting to address them individually, one at a
time. There will never be an opportunity to correct all localization errors, and
then start addressing the classification errors—there will always be some amount
of error in each category left over after improving the method, so observing APajb
isn’t useful, because there is no state where you’re starting with APb.

For these reasons, we entirely avoid computing errors progressively.

3 Analysis

In this section we demonstrate the generality and usefulness of our analysis
toolbox by providing detailed analysis across various object detection and instance
segmentation models and across different data and annotation sets. We also
compare errors based on general qualities of the ground truth, such as object
size, and find a number of useful insights. To further explain complicated error
cases, we provide more granular analysis into certain error types. All modes of
analysis used in this paper are available in our toolkit.




