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Abstract. Arguably one of the top success stories of deep learning is
transfer learning. The finding that pre-training a network on a rich source
set (e.g., ImageNet) can help boost performance once fine-tuned on a usu-
ally much smaller target set, has been instrumental to many applications
in language and vision. Yet, very little is known about its usefulness in
3D point cloud understanding. We see this as an opportunity considering
the effort required for annotating data in 3D. In this work, we aim at
facilitating research on 3D representation learning. Different from previ-
ous works, we focus on high-level scene understanding tasks. To this end,
we select a suit of diverse datasets and tasks to measure the effect of un-
supervised pre-training on a large source set of 3D scenes. Our findings
are extremely encouraging: using a unified triplet of architecture, source
dataset, and contrastive loss for pre-training, we achieve improvement
over recent best results in segmentation and detection across 6 different
benchmarks for indoor and outdoor, real and synthetic datasets – demon-
strating that the learned representation can generalize across domains.
Furthermore, the improvement was similar to supervised pre-training,
suggesting that future efforts should favor scaling data collection over
more detailed annotation. We hope these findings will encourage more
research on unsupervised pretext task design for 3D deep learning.
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1 Introduction

Representation learning is one of the main driving forces of deep learning re-
search. In 2D vision, the finding that pre-training a network on a rich source
set (e.g. ImageNet classification) can help boost performance once fine-tuned
on the usually much smaller target set, has been key to the success of many
applications. A particularly important setting, is when the pre-training stage
is unsupervised, as this opens up the possibility to utilize a practically infinite
train set size. Unsupervised pre-training has been remarkably successful in nat-
ural language processing [47, 13], and has recently attracted increasing attention
in 2D vision [40, 3, 26, 8, 40, 3, 38, 26, 64, 27, 81, 8].
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In the past few years, the field of 3D deep learning has witnessed much
progress with an ever-increasing number of 3D representation learning schemes
[1, 16, 69, 21, 34, 62, 22, 15, 75, 12, 9]. However, it still falls behind compared to its
2D counterpart as evidently, in all 3D scene understanding tasks, ad-hoc train-
ing from scratch on the target data is still the dominant approach. Notably, all
existing representation learning schemes are tested either on single objects or
low-level tasks (e.g. registration). This status quo can be attributed to multiple
reasons: 1) Lack of large-scale and high-quality data: compared to 2D images,
3D data is harder to collect, more expensive to label, and the variety of sens-
ing devices may introduce drastic domain gaps; 2) Lack of unified backbone
architectures: in contrast to 2D vision where architectures such as ResNets were
proven successful as backbone networks for pre-training and fine-tuning, point
cloud network architecture designs are still evolving; 3) Lack of a comprehensive
set of datasets and high-level tasks for evaluation.

The purpose of this work is to move the needle by initiating research on
unsupervised pre-training with supervised fine-tuning in deep learning for 3D
scene understanding. To do so, we cover four important ingredients: 1) Selecting
a large dataset to be used at pre-training; 2) identifying a backbone architecture
that can be shared across many different tasks; 3) evaluating two unsupervied
objectives for pre-training the backbone network; and 4) defining an evaluation
protocol on a set of diverse downstream datasets and tasks.

Specifically, we choose ScanNet [11] as our source set on which the pre-
training takes place, and utilize a sparse residual U-Net [49, 9] as the backbone
architecture in all our experiments and focus on the point cloud representation
of 3D data. For the pre-training objective, we evaluate two different contrastive
losses: Hardest-contrastive loss [10], and PointInfoNCE – an extension of In-
foNCE loss [40] used for pre-training in 2D vision. Next, we choose a broad set
of target datasets and downstream tasks that includes: semantic segmentation
on S3DIS [2], ScanNetV2 [11], ShapeNetPart [71] and Synthia 4D [50]; and ob-
ject detection on SUN RGB-D [55, 53, 31, 65] and ScanNetV2. Remarkably, our
results indicate improved performance across all datasets and tasks (See Table 1
for a summary of the results). In addition, we found a relatively small advantage
to pre-training with supervision. This implies that future efforts in collecting
data for pre-training should favor scale over precise annotations.

Our contributions can be summarized as follows:

{ We evaluate, for the first time, the transferability of learned representation
in 3D point clouds to high-level scene understanding.

{ Our results indicate that unsupervised pre-training improves performance
across downstream tasks and datasets, while using a single unified architec-
ture, source set and objective function.

{ Powered by unsupervised pre-training, we achieve a new state-of-the-art per-
formance on 6 different benchmarks.

{ We believe these findings would encourage a change of paradigm on how we
tackle 3D recognition and drive more research on 3D representation learning.
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2 Related work

Representation learning in 3D Deep neural networks are notoriously data
hungry. This renders the ability to transfer learned representations between
datasets and tasks extremely powerful. In 2D vision it has led to a surge of
interest in finding optimal pretext unsupervised tasks [41, 77, 78, 14, 39, 18, 5, 40,
3, 38, 26, 64, 27, 81, 8, 10]. We note that while many of these tasks are low-level
(e.g. pixel or patch level reconstruction), they are evaluated based on their trans-
ferability to high-level tasks such as object detection. Being much harder to an-
notate, 3D tasks are potentially the biggest beneficiaries of unsupervised- and
transfer-learning. This was shown in several works on single object tasks like
reconstruction, classification and part segmentation [1, 16, 69, 21, 34, 62, 22, 51].
Yet, generally much less attention has been devoted to representation learning
in 3D that extends beyond the single-object level. Further, in the few cases that
did study it, the focus was on low-level tasks like registration [15, 75, 12]. In con-
trast, here we wish to push forward research in 3D representation learning by
focusing on transferability to more high-level tasks on more complex scenes.

Deep architectures for point cloud processing In this work we focus on
learning useful representation for point cloud data. Inspired by the success in 2D
domain, we conjecture that an important ingredient in enabling such progress
is the evident standardization of neural architectures. Canonical examples in-
clude VGGNet [54] and ResNet/ResNeXt [25, 66]. In contrast, point cloud neu-
ral network design is much less mature, as is apparent by the abundance of
new architectures that have been recently proposed. This has multiple reasons.
First, is the challenge of processing unordered sets [45, 48, 74, 37]. Second, is the
choice of neighborhood aggregation mechanism which could either be hierarchi-
cal [46, 32, 76, 16, 33], spatial CNN-like [29, 68, 35, 79, 57], spectral [72, 58, 60] or
graph-based [67, 59, 63, 52]. Finally, since the points are discrete samples of an
underlying surface, continuous convolutions have also been considered [61, 4, 70].
Recently Choy et al. proposed the Minkowski Engine [9], an extension of sub-
manifold sparse convolutional networks [20] to higher dimensions. In particular,
sparse convolutional networks facilitate the adoption of common deep architec-
tures from 2D vision, which in turn can help standardize deep learning for point
cloud. In this work, we use a unified UNet [49] architecture built with Minkowski
Engine as the backbone network in all experiments and show it can gracefully
transfer between tasks and datasets.

3 PointContrast Pre-training

In this section, we introduce our unsupervised pre-training pipeline. First, to
motivate the necessity of a new pre-training scheme, we conduct a pilot study to
understand the limitations of existing practice (pre-training on ShapeNet) in 3D
deep learning (Section 3.1). After briefly reviewing an inspirational local feature
learning work Fully Convolutional Geometric Features (FCGF) (Section 3.2),
we introduce our unsupervised pre-training solution, PointContrast, in terms
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Fig. 1: Training from scratch vs. fine-tuning with ShapeNet pretrained weights.

of pretext task (Section 3.3), loss function (Section 3.4), network architecture
(Section 3.5) and pre-training dataset (Section 3.6).

3.1 Pilot Study: is Pre-training on ShapeNet Useful?

Previous works on unsupervised 3D representation learning [1, 16, 69, 21, 34, 62,
22] mainly focused on ShapeNet [7], a dataset of single-object CAD models. One
underlying assumption is that by adopting ShapeNet as the ImageNet counter-
part in 3D, features learned on synthetic single objects could transfer to other
real-world applications. Here we take a step back and reassess this assumption
by studying a straightforward supervised pre-training setup: we simply pre-train
an encoder network on ShapeNet with full supervision, and fine-tune it with a
U-Net on a downstream task (S3DIS semantic segmentation). Based on results
in 2D representation learning, we use full supervision here as an upper bound
to what could be gained from pre-training. We train a sparse ResNet-34 model
(details to follow in Section 3.5) for 200 epochs. The model achieves a high
validation accuracy of 85.4% on ShapeNet classification task. In Figure 1, we
show the downstream task training curves for (a) training from scratch and (b)
fine-tuning with ShapeNet pretrained weights. Critically, one can observe that
ShapeNet pre-training, even in the supervised fashion, hampers downstream task
learning. Among many potential explanations, we highlight two major concerns:

{ Domain gap between source and target data: Objects in ShapeNet are
synthetic, normalized in scale, aligned in pose, and lack scene context. This
makes pre-training and fine-tuning data distributions drastically different.

{ Point-level representation matters: In 3D deep learning, the local geo-
metric features, e.g. those encoded by a point and its neighbors, have proven
to be discriminative and critical for 3D tasks [45, 46]. Directly training on
object instances to obtain a global representation might be insufficient.

This led us to rethink the problem: if the goal of pre-training is to boost
performance across many real world tasks, exploring pre-training strategies on
single objects might offer limited potential. (1) To address the domain gap con-
cern, it might be beneficial to directly pre-train the network on complex scenes
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Fig. 2: PointContrast: Pretext task for 3D pre-training.
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PointContrast: Downstream Tasks for Fine-tuning

Datasets
Real /
Synth.

Complexity Env. Task
Rel.
gain

S3DIS Real
Entire floor,

office
Indoor Segmentation (+2:7%) mIoU

SUN RGB-D Real
Medium-sized

cluttered rooms
Indoor Detection (+3:1%) mAP0.5

ScanNetV2 Real Large rooms Indoor
Segmentation (+1:9%) mIoU

Detection (+2:6%) mAP0.5

ShapeNet Synth. Single objects
Indoor &
outdoor

Classification (+4:0%) Acc.�

ShapeNetPart Synth. Object parts
Indoor &
outdoor

Segmentation (+2:2%) mIoU�

Synthia 4D Synth.
Street scenes,
driving envs.

Outdoor Segmentation (+3:3%) mIoU

Table 1: Summary of downstream fine-tuning tasks. Compared to the baseline
learning paradigm of training from scratch, which is dominant in 3D deep learning,
our unsupervised pre-training method PointContrast boosts the performance across
the board when finetuning on a diverse set of high-level 3D understanding tasks.
� indicates results trained using only 1% of the training data.

with multiple objects, to better match the target distributions; (2) to capture
point-level information, we need to design a pretext task and corresponding net-
work architecture that is not only based on instance-level/global representations,
but instead can capture dense/local features at the point level.

3.2 Revisiting Fully Convolutional Geometric Features (FCGF)

Here we revisit a previous approach FCGF [10] designed to learn geometric fea-
tures for low-level tasks (e.g. registration) as our work is mainly inspired by
FCGF. FCGF is a deep learning based algorithm that learns local feature de-
scriptors on correspondence datasets via metric learning. FCGF has two major
ingredients that help it stand out and achieve impressive results in registration
recall: (1) a fully-convolutional design and (2) point-level metric learn-
ing. With a fully-convolutional network (FCN) [36] design, FCGF operates on


