
DSA: More Efficient Budgeted Pruning via
Differentiable Sparsity Allocation

Xuefei Ning1?[0000−0003−2209−8312], Tianchen Zhao2∗[0000−0002−2071−7514],
Wenshuo Li1[0000−0001−5638−2114], Peng Lei2[0000−0001−7422−0258], Yu

Wang1[0000−0001−6108−5157], and Huazhong Yang1[0000−0003−2421−353X]

1 Department of Electronic Engineering, Tsinghua University
2 Department of Electronic Engineering, Beihang University

foxdoraame@gmail.com, ztc16@buaa.edu.cn, yu-wang@tsinghua.edu.cn

Abstract. Budgeted pruning is the problem of pruning under resource
constraints. In budgeted pruning, how to distribute the resources across
layers (i.e., sparsity allocation) is the key problem. Traditional methods
solve it by discretely searching for the layer-wise pruning ratios, which
lacks efficiency. In this paper, we propose Differentiable Sparsity Allo-
cation (DSA), an efficient end-to-end budgeted pruning flow. Utilizing
a novel differentiable pruning process, DSA finds the layer-wise pruning
ratios with gradient-based optimization. It allocates sparsity in continu-
ous space, which is more efficient than methods based on discrete evalua-
tion and search. Furthermore, DSA could work in a pruning-from-scratch
manner, whereas traditional budgeted pruning methods are applied to
pre-trained models. Experimental results on CIFAR-10 and ImageNet
show that DSA could achieve superior performance than current itera-
tive budgeted pruning methods, and shorten the time cost of the overall
pruning process by at least 1.5× in the meantime.
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1 Introduction

Convolutional Neural Networks (CNNs) have demonstrated superior performances
in computer vision tasks. However, CNNs are computational and storage inten-
sive, which poses significant challenges on the NN deployments under resource
constrained scenarios. Model compression techniques [20, 16] are proposed to
reduce the computational cost of CNNs. Moreover, there are situations (e.g., de-
ploying the model onto certain hardware, meeting real-time constraints) under
which the resources (e.g., latency, energy) of the compressed models must be
restricted under certain budgets. Budgeted pruning is introduced for handling
these situations.

As shown in Fig. 1, the budgeted pruning problem could be divided into
two sub-tasks: to decide how many channels to keep for each layer (i.e., sparsity
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Fig. 1. Workflow comparison of the iterative pruning methods [22, 7, 14, 15] and DSA

allocation) and to acquire proper weights (i.e., weight optimization). Recent
work [17] observes that once the pruned structure is acquired, the compressed
model can achieve similar accuracies no matter it is trained from scratch or fine-
tuned from the weights inherited from the original model. Therefore, sparsity
allocation is the key problem for budgeted pruning.

To solve the sparsity allocation problem, the majority of methods [22, 7, 14,
15] adopt an “iterative pruning flow” scheme. The workflow of these methods in-
volves three stages: pre-training, sparsity allocation, and finetuning, as shown in
Fig. 1. These methods conduct the sparsity allocation through a discrete search,
which contains hundreds of search-evaluation iterations. For each candidate al-
location, a time-consuming approximate evaluation is needed. Also, the discrete
search in the large search space lacks sample efficiency. Moreover, these meth-
ods need to be applied to the pre-trained models, and model pre-training costs
much computational effort. As a result, the overall iterative pruning flow is not
efficient.

In order to improve the efficiency of budgeted pruning, we propose DSA,
an end-to-end pruning flow. Firstly, DSA can work in a “pruning-from-scratch”
manner, thus eliminating the cumbersome pre-training process (see Sec. 5.3).
Secondly, DSA optimizes the sparsity allocation in continuous space with a
gradient-based method, which is more efficient than methods based on discrete
evaluation and search.

For applying the gradient-based optimization for allocating sparsity, we should
make the evaluation of the validation accuracy and the pruning process differen-
tiable. For the validation performance evaluation, we use the validation loss as a
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differentiable surrogate of the validation accuracy. For the pruning process, we
propose a probabilistic differentiable pruning process as a replacement. In the
differentiable pruning process, we soften the non-differentiable hard pruning by
introducing masks sampled from the probability distributions controlled by the
pruning ratio. The differentiable pruning process enables the gradients of the task
loss, w.r.t. the pruning ratios to be calculated. Utilizing the task loss’s gradients,
DSA obtains the sparsity allocation under the budget constraint following the
methodology of the Alternating Direction Method of Multipliers (ADMM) [1].

The contributions of this paper are as follows.

– DSA uses gradient-based optimization for sparsity allocation under budget
constraints, and works in a pruning-from-scratch manner. DSA is more effi-
cient than iterative pruning methods.

– We propose a novel differentiable pruning process, which enables the gradi-
ents of the task loss w.r.t. the pruning ratios to be calculated. The gradient
magnitudes align well with the layer-wise sensitivity, thus providing an effi-
cient way of measuring the sensitivity (See Sec. 5.3). Due to this property of
the gradients, DSA can attribute higher keep ratios to more sensitive layers.

– We give a topological grouping procedure to handle the topological con-
straints that are introduced by skip connections and so on, thus the resulting
model keeps the original connectivity.

– Experimental results on CIFAR-10 and ImageNet demonstrate the effective-
ness of DSA. DSA consistently outperforms other iterative budgeted pruning
methods with at least 1.5× speedup.

2 Related Work

2.1 Structured Pruning

Structured pruning intends to introduce structured sparsity into the NN mod-
els. SSL [20] removes structured subsets of weights by applying group lasso reg-
ularization and magnitude pruning. Some studies [16, 4] add regularization on
the batch normalization (BN) scaling parameters γ instead of the convolution
weights. These methods focus on seeking the trade-off between model sparsity
and performance via designing regularization terms. Since these methods allo-
cate sparsity through regularizing the weights, the results are sensitive to the
hyperparameters.

There are also studies that target at choosing which filters to prune, given
the layer-wise pruning ratios. ThiNet [18] utilizes the information from the next
layer to select filters. FPGM [6] exploits the distances to the geometric median
as the importance criterion. These methods focus on exploring intra-layer filter
importance criteria, instead of handling the inter-layer sparsity allocation.

2.2 Budgeted Pruning

To amend the regularization based methods for budgeted pruning, MorphNet [4]
alternates between training with L1 regularization and applying a channel multi-
plier. However, the uniform expansion of width neglects the different sensitivity
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of different layers and might fail to find the optimal resource allocation strategy
under budget. To explicitly control the pruning ratios, ECC [21] updates the
pruning ratios according to the energy consumption model. The pruning process
is modeled as discrete constraints tying the weights and pruning ratios, and this
constrained optimization is handled using a proximal projection. In our work,
the pruning process is relaxed into a probabilistic and differentiable process,
which enables the pruning ratios to be directly instructed by the task loss.

Other methods view the budgeted pruning problem as a discrete search prob-
lem, in which the sparsity allocation and finetuning are alternatively conducted
for multiple stages. In each stage, a search-evaluation loop is needed to decide
the pruning ratios. For the approximate evaluation, a hard pruning procedure
and a walk-through of the validation dataset are usually required. As for the
search strategy, NetAdapt [22] empirically adjusts the pruning ratios, while en-
suring a certain resource reduction is achieved; AMC [7] employs reinforcement
learning to instruct the learning of a controller, and uses the controller to sam-
ple the pruning ratios; AutoCompress [14] uses simulated annealing to explore
in the search space; MetaPruning [15] improves the sensitivity analysis by in-
troducing a meta network to generate weights for pruned networks. Apart from
these methods that search for the layer-wise pruning ratio, LeGR [2] searches for
appropriate affine transformation coefficients to calculate the global importance
scores of the filters. These methods can guarantee that the resulting models meet
the budget constraint, but the discrete search process is inefficient and requires
a pre-trained model.

In contrast, DSA (Differentiable Sparsity Allocation) is an end-to-end prun-
ing flow that allocates the inter-layer sparsity with a gradient-based method,
which yields better performance and higher efficiency. Moreover, DSA works in
a “pruning from scratch” manner, saving the cost of pre-training the model.
The comparison of various properties across pruning methods is summarized in
Table. 1.

3 Problem Definition

For budgeted pruning, denoting the budget as BF , the weight as W , the opti-
mization problem of the keep ratios A = {α(k)}k=1,··· ,K (1 - pruning ratio) of K
layers can be written as:

A∗ = arg max
A

Accv(W
∗(A),A)

s.t. W ∗(A) = arg min
W

Lt(W,A)

F(A) ≤ BF , 0 ≤ A ≤ 1

(1)

where Accv is the validation accuracy, and Lt is the training loss, and F(A) is
the consumed resource corresponding to the keep ratios A.

To solve this optimization problem, existing iterative methods [22, 7, 14] con-
duct sensitive analysis in each stage, and use discrete search methods to ad-
just A. The common assumption adopted is that in each stage, Accv(Ŵ ∗(A),A)
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Table 1. Comparison of structured pruning methods. Headers: The “budget control”
column indicates whether the method could ensure the resulting model to satisfy the
budget constraint; The “from scratch” column indicates whether the method could be
applied to random initialized models rather than pre-trained ones; The “performance
instruction” column describes how the task performance instructs the sparsity allo-
cation, “indirect” means that the task performance instructs the sparsity allocation
only indirectly through weights (e.g., magnitude pruning); The “gen. perf.” column
indicates whether the generalization performance guides the pruning process

Methods
budget
control

from
scratch

end-to-end
performance
instruction

gen. perf.

SSL [20] no yes yes indirect no
NetAdapt [22] yes no no discrete evaluation yes

AMC [7] yes no no discrete evaluation yes
MetaPruning [15] yes no no discrete evaluation yes

ECC [21] yes no yes indirect no

Ours yes yes yes differentiable yes

should be correlated to Accv(W
∗(A),A), in which Ŵ ∗(A) is approximated using

the current weights (e.g., threshold-based pruning, local layer-wise least-square
fitting), instead of finding W ∗(A) by finetuning.

4 Method

Since the validation accuracy Accv in Eq. 1 is not differentiable, we use the
validation loss Lv as a differentiable surrogate of Accv. Then, the objective
function becomes A∗ = arg minA Lv(W

∗(A),A) in the differentiable relaxation
of the budgeted pruning problem in Eq. 1. As for the inner optimization of
W ∗(A), we adapt the weights to the changes of the structure by adopting similar

bi-level optimization as in DARTS [13]. The high-order gradients ∂W∗(A)
∂A are

ignored, thus ∂Lv(W
∗(A),A)
∂A ≈ ∂Lv(W,A)

∂A .
The workflow of DSA is shown in Alg. 1 and Fig. 2. First, DSA groups the

network layers according to the topological constraints (Sec. 4.2), and assigned a
keep ratio for each group of layers. The sparsity allocation problem is to decide
the proper keep ratios A for the K groups. The optimization of the keep ratios
A is conducted with gradient-based method in the continuous space. We apply
an ADMM-inspired optimization method (Sec. 4.3) to utilize the gradients of
both the task and budget loss to find a good sparsity allocation α∗ that meets
the budget constraint. Note that to enable the task loss’s gradients to flow back
to the keep ratios α, we design a novel differentiable pruning process (Sec. 4.1).

4.1 Differentiable Pruning

Pruning Process Relaxation In the traditional pruning process of a partic-
ular layer, given the keep ratio α, a subset of channels are chosen according to
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Fig. 2. DSA workflow. For feasible deployment, we first group the network layers ac-
cording to the topological constraints (Sec. 4.2), and a keep ratio will be attributed
to each topological group. The budget model F is also generated for measuring the
budget loss F(A). Then, in the sparsity allocation procedure, the weights are updated
using the task loss on the training dataset. And the keep ratios decision (i.e., inter-layer
sparsity allocation) is conducted on the validation dataset using gradient-based steps
(Sec. 4.3). Note that the differentiable characteristic of the pruning process (Sec. 4.1)
enables the task loss’s gradients to flow back to the keep ratios A

the channel-wise importance criteria bi ∈ R+, i = 1, · · · , C (e.g., the L1 norm
of the convolutional weights). In contrast, we use a probabilistic relaxation of
the “hard” pruning process where channel i has the probability pi to be kept.
Then, channel-wise masks are sampled from the Bernoulli distribution of pi:
mi ∼ Bernoulli(pi), i = 1, · · · , C. The pruning process is illustrated in Fig. 3.

The channel-wise keep probability pi = f(α, bi) is computed using α. Due
to the probabilistic characteristics of the pruning process, the proportion of the
actual kept channels might deviate from α. We should make the expectation of
the actual kept channels E[

∑C
i=1mi] =

∑C
i=1 pi =

∑C
i=1 f(α, bi) equal to αC,

which we denote as the “expectation condition” requirement.

What is more, as we need a “hard” pruning scheme eventually, this prob-
abilistic pruning process should become deterministic in the end. Defining the
inexactness as E = E[|

∑
imi − αC|2] =

∑
i Var[mi] =

∑
i pi(1 − pi), a proper

control on the inexactness is desired such that the inexactness E can reach 0 at
the end of pruning.

The choice of f is important to the stability and controllability of the pruning
process. An S-shaped function family w.r.t. b, f(b;β) : R+ → (0, 1), parametrized
by at least two parameters is required, so that we can control the inexactness
and satisfy the expectation condition at the same time. We choose the sigmoid-
log function f(bi, β1, β2) = Sigmoid ◦ Log(bi) = 1

1+(
bi
β1

)−β2
, β1, β2 > 0. This
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Algorithm 1 DSA: Differentiable sparsity allocation

1: Run topological grouping, get K topological groups, and the budget model F
2: A = 1K

3: while F(A) > BF do
4: Update the keep ratios A, auxiliary and dual variables following Eq. 8 in Sec. 4.3
5: Update weights W with SGD:

WT = WT−1 − ηw ∂Lt
∂W
|WT

6: end while
7: return the pruned network, A

function family has the desired property that, β1 and β2 could be used to con-
trol the expected keep ratio E[

∑C
i=1mi] and the inexactness E in a relatively

independent manner. 1) In our work, β2 is a parameter that follows an increas-
ing schedule. As β2 approaches infinity, the inexactness E approaches 0, and β1
becomes the hard pruning threshold of this layer. 2) β1 = β1(α) is a function of
α. It has the interpretation of the soft threshold for the base importance score.
It is calculated by solving the implicit equation of expectation condition:

g(β1) =
1

C
E[

C∑
i=1

mi]− α =
1

C

C∑
i=1

f(bi, β1, β2)− α = 0 (2)

Since g(β1) is monotonically decreasing, the root β1(α) could be simply and
efficiently found (e.g., with bisection or Newton methods).

To summarize, utilizing the differentiable pruning process, the forward pro-
cess of the k-th layer can be written as

y(k)(w, y(k−1);α) = m� Conv-BN-ReLU(w, y(k−1))

s.t. mi ∼ Bernoulli(pi),

C∑
i=1

pi =

C∑
i=1

f(α, bi) = αC, i = 1, · · · , C
(3)

where y(k−1), w, y(k) denote the inputs, weights, outputs of this layer, and the
superscript k is omitted for simplicity.

Differentiable Instruction by the Task Loss The task loss L can be written
as

L(A,W ) = Ex∼D[E
m

(k)
i ∼Ber(m;p

(k)
i )

[CE(x, y;M,W )]] (4)

where D is the training dataset, W denotes the weights, M is the set of masks

{{m(k)
i }i=1,··· ,C(k)}k=1,··· ,K , A is the set of keep ratios {α(k)}k=1,··· ,K .

To enable differentiable tuning of the layer-wise keep ratios A instructed by
both the task loss and the budget constraint, the major challenge is to derive
the task loss’s gradients w.r.t. α(k): ∂L

∂α(k) . First, we can calculate the implicit
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Fig. 3. The illustration of the differentiable pruning process of one layer. Given the base
importances bi and the keep ratio α, the process outputs channel-wise keep probabilities
pi = f(bi, β1, β2), which satisfy that the expectation condition

∑C
i pi = αC. Then, the

channel-wise masks mi are sampled

gradient ∂β1(α)
∂α as:

1

C

C∑
i=1

∂f(bi, β1, β2)

∂β1

∂β1
∂α
− 1 = 0

∂β1(α)

∂α
=

C∑C
i=1 f

′(bi, β1, β2)

(5)

Then, ∂L
∂α(k) could be calculated as:

∂L

∂α(k)
=
∂β1
∂α

C∑
i=1

∂L

∂pi

∂pi
∂β1

= C

C∑
i=1

∂L

∂pi
f̂ ′i ; f̂ ′i =

f ′i∑
f ′i

(6)

where the superscript k is omitted for simplicity and ∂L
∂pi

could be approximated
using Monte-Carlo samples of the reparametrization gradients.

Eq. 6 could be interpreted as: The update of α(k) is instructed using a
weighted aggregation of the gradients of the task loss L w.r.t. the keep proba-
bilities of channels ∂L

∂p
(k)
i

, and the aggregation weights are f ′i , i = 1, · · · , C(k).

4.2 Topological Grouping and Budget Modeling

For plain CNN, we can choose the layer-wise keep ratios α(k), k = 1, · · · ,K
independently. However, for networks with shortcuts (e.g., ResNet), the naive
scheme can lead to irregular computation patterns. Our grouping procedure for
handling the topological constraints is described in Alg. 1 in the appendix. An
example of grouping convolutions in two residual blocks is also shown in the
appendix.

The F(A) function models relationship of the keep ratiosA and the resources.
Taking FLOPs as an example, F(A) could be represented as F(A) = ATFAA+
FTBA. For completeness, we summarize the calculation procedure of FA and FB
in Alg. 1 in the appendix. Under budget constraints for resources other than
FLOPs, regression models can be fitted to get the corresponding F model.
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4.3 ADMM-inspired Method For Budgeted Pruning

ADMM is an iterative algorithm framework that is widely used to solve uncon-
strained or constrained convex optimization problems. Here, we use alternative
gradient steps inspired by the methodology of ADMM to solve the constrained
non-convex optimization problem.

Substituting the variable A by Θ = Sigmoid−1(A), the 0 ≤ A ≤ 1 constraints
are satisfied naturally. By introducing auxiliary variable z and the corresponding
dual variable u2 for the equality constraint z = Θ, the augmented Lagrangian
is:

L(Θ, z, u2) = Lv(Θ) + I(F(z) ≤ BF ) + uT2 (Θ − z) +
ρ2
2
||Θ − z||2 (7)

We then minimize the dual lower bound maxu2 L(Θ, z, u2) of Lv(Θ). Eq. 8
shows the 3 alternative steps in one iteration. The variables with the superscript
“′” denote the values at the previous time step.

Θ = arg min
Θ

Lv(Θ) + uT2 (Θ − z′) +
ρ2
2
||Θ − z′||2

z = arg min
z

uT2 (Θ − z) +
ρ2
2
||Θ − z||2 s.t. F(z) ≤ BF

u2 = u′2 + ρ2(Θ − z)

(8)

The unconstrained sub-problem for Θ is hard to solve, since Lv(Θ) is a
stochastic objective and W can only be regarded as being constant in a lo-
cal region. Therefore, in each iteration, we only do one stochastic gradient step
on one validation batch for Θ.

To solve the inner problem for the auxiliary variable z with an inequality con-
straint, we use the standard trick of converting F(z) ≤ BF to [F(z)−BF ]+ = 0,
and then use gradient descent to solve the min-max optimization of the aug-
mented lagrangian L(z)(z, u1) in Eq. 9. In each iteration of the inner optimiza-
tion, one gradient descent step is applied to z: z = z′−ηz∇zL(z)(z, u1), and one
dual ascent step is applied to u1: u1 = u′1 + ρ1[F(Θ)−BF ]+. This optimization
is efficient since only z and u1 need to be updated.

L(z)(z, u1) = u1[F(z)−BF ]+
ρ1
2

[F(z)−BF ]2 + uT2 (Θ − z) +
ρ2
2
||Θ − z||2 (9)

The dual variables u1, u2 can be interpreted as the regularization coefficients,
which are dynamically adjusted according to the constraint violations.
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Table 2. Pruning results of ResNet-20 and ResNet-56 on CIFAR-10. SSL and Mor-
phNet are re-implemented with topological grouping. Accuracy drops for the referred
results are calculated based on the reported baseline in their papers. Headers: “TG”
stands for Topological Grouping; “FLOPs Budget” stands for the percentage of the
pruned models’ FLOPs compared to the full model

FLOPs
Budget

Method TG
ResNet-20 ResNet-56

FLOPs
ratio

Acc. (Acc. Drop)
FLOPs
ratio

Acc. (Acc. Drop)

Baseline Ours 100 % 92.17 % 100 % 93.12 %

75%

SSL [20] X 73.8% 91.08% (-1.09%) 69.0% 92.06% (-1.06%)
Variational∗ [23] 83.5% 91.66% (-0.41%) 79.7% 92.26% (-0.78%)

PFEC∗ [10] X - - 74.4% 91.31% (-1.75%)
MorphNet [4] X 74.9% 90.64% (-1.53%) 69.2% 91.71% (-1.41%)

DSA (Ours) X 74.0% 92.10% (-0.07%) 70.7% 93.08% (-0.04%)

50% (×2)

SSL [20] X 51.8%† 89.78 % (-2.39%) 45.5% 91.22% (-1.90%)

MorphNet [4] X 47.1% 90.1% (-2.07%) 51.9%† 91.55% (-1.57%)
AMC∗ [7] X - - 50% 91.9% (-0.9%)
CP∗ [8] - - 50% 91.8% (-1.0%)

Rethink∗ [17] 60.0% 91.07% (-1.34%) 50% 93.07% (-0.73%)
SFP∗ [5] 57.8% 90.83% (-1.37%) 47.4% 92.26% (-1.33%)

FPGM∗ [6] 57.8% 91.09% (-1.11%) 47.4% 92.93% (-0.66%)
LCCL∗ [3] 64.0% 91.68% (-1.06%) 62.1% 92.81% (-1.54%)

DSA (Ours) X 49.7% 91.38% (-0.79%) 47.8% 92.91% (-0.22%)

33.3% (×3)
SSL [20] X 34.6%† 89.06% (-3.11%) 38.1%† 91.32% (-1.80%)

MorphNet [4] X 30.5% 88.72% (-3.45%) 39.7%† 91.21% (-1.91%)

DSA (Ours) X 32.5% 90.24% (-1.93%) 32.6% 92.20% (-0.92%)

†: These pruned models’ FLOPs of SSL and MorphNet are higher than the budget
constraints, since these regularization based methods lack explicit control of the re-
source consumption and even with carefully tuned hyperparameters, the resulting
model might still violate the budget constraint.
∗: These methods’ results are directly taken from their paper, and their accuracy
drops are calculated based on their reported baseline accuracies.

5 Experiments

5.1 Setup

We conduct the experiments on CIFAR-10 and ImageNet. For CIFAR-10, the
batch size is 128, and an SGD optimizer with momentum 0.9, weight decay 4e-5
is used to train the model for 300 epochs. The learning rate is initialized to
0.05 and decayed by 10 at epochs 120, 180, and 240. The differentiable sparsity
allocation is conducted simultaneously with normal training after 20 epochs of
warmup. As for ImageNet, we use an SGD optimizer (weight decay 4e-5, batch
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size 256) to optimize the models for 120 epochs. The learning rate is 0.1 and
decayed by 10 at epochs 50, 80, 110. The first 15 epochs remains plain training
without pruning.

In the sparsity allocation process, 10% of the training data are used as the
validation data for updating the keep ratios, while 90% are used for tuning the
weights. For the optimization of A, the penalty parameters ρ1, ρ2 is set to 0.01,
and the scaling coefficient of Lv(Θ) is 1e+5. z is updated for 50 steps with
learning rate 1e-3 in the inner optimization. In practice, to reach the budget
faster, we project the gradients of Θ to be nonnegative. After each update of A,
the weights are tuned for 20 steps for adaption. After acquiring the budget, the
whole training set is used for updating the weights.

In the differentiable pruning process, the L1 norms of BN scales are chosen
as the base importance scores bi = |γi|. β1(α) is found by solving Eq. 2 with the
bisection method. β2(T ) follows a increasing schedule: starts at 0.05 and gets
multiplied by 1.1 every epoch. As β2 →∞, the soft pruning process becomes a
hard pruning process, and the inexactness E goes to 0.

5.2 Results on CIFAR-10 and ImageNet

On CIFAR-10, for SSL [20] and MorphNet [4], the regularization coefficients on
the convolution weights or BN scaling parameters are adjusted to meet various
budget constraints.

Table. 2 and Fig. 4 show the results of pruning ResNet-20 and ResNet-56 on
CIFAR-10. The pruned models obtained by DSA meet the budget constraints
with smaller accuracy drops than the baseline methods. Compared with the reg-
ularization based methods (e.g., SSL and MorphNet), due to the explicit bud-
get modeling, DSA guarantees that the resulting models meet different budget
constraints, without hyperparameter trials. Compared with the iterative prun-
ing methods (e.g., AMC), DSA allocates the sparsity in a gradient-based way
and is more efficient (See Sec. 5.3). We also apply DSA to compress ResNet-18
and VGG-16, and the results are included in Appendix Table. 1 and Fig. 2. It
shows that DSA outperforms the recent work based on a discrete search [14].
For ResNet-18, DSA achieves 94.19% versus 93.91% of the baseline with roughly
the same FLOPs ratio. For VGG-16, DSA achieves 90.16% with 20.4× FLOPs
reduction, which is significantly better than the baseline [14] (88.78% with 14.0×
FLOPs reduction).

Table 3 shows the results of applying DSA to prune ResNet-18 and ResNet-
50 on ImageNet. As could be seen, DSA consistently outperforms other methods
across different FLOPs ratios and network structure. For example, DSA could
achieve a small accuracy drop of 1.11% while keeping 60% FLOPs of ResNet-18,
which is significantly better than the baselines.

5.3 Analysis and Discussion

Computational Efficiency Some recent studies [17, 19] suggest that starting
with a pre-trained model might not be necessary for pruning. Unlike current
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Table 3. Pruning results on ImageNet. “TG” stands for Topological Grouping

Network TG Method
FLOPs Top-1 Top-5
Ratio Acc Drop Acc Drop

ResNet18

Baseline 100% 69.72% 89.07%

MiL [3] 65.4% -3.65% -2.30%
SFP [5] 60.0% -3.18% -1.85%

FPGM [6] 60.0% -2.47% -1.52%

X Ours 60.0% -1.11% -0.718%

ResNet50

Baseline 100% 76.02% 92.86%

APG [9] 69.0% -1.94% -1.95%
GDP [12] 60.0% -2.52% -1.25%
SFP [5] 60.0% -1.54% -0.81%

FPGM [6] 60.0% -1.12% -0.47%

X Ours 60.0% -0.92% -0.41%

ThiNet [18] 50.0% -4.13% -
CP [8] 50.0% -3.25% -1.40%

FPGM [6] 50.0% -2.02% -0.93%
PFS [19] 50.0% -1.60% -

Hinge [11] 46.55% -1.33% -

X Ours 50.0% -1.33% -0.8%

methods which rely on a pre-trained model, DSA could work in a “pruning from
scratch” manner.

As shown in Fig. 1, traditional budgeted pruning consists of 3 stages: pre-
training, sparsity allocation, and finetuning. The iterative pruning methods con-
duct hundreds of search-evaluation steps for sparsity allocation, e.g., AMC takes
about 3 GPU hours for pruning ResNet-56 on CIFAR-10 [19]. After learning the
structure, the finetuning stage takes 100˜200 epochs for CIFAR-10 (60 epochs
for ImageNet), which accounts for about 2˜3 GPU hours for ResNet-56 on
CIFAR-10 and 150 GPU hours for ResNet-18 on ImageNet. Moreover, these two
stages should be repeated for multiple rounds to achieve the maximum pruning
rates [22, 14], thus further increase the computational costs by several times.
What’s more, these methods need to be applied to the pre-trained models, and
the pre-training stage takes about 300 and 120 epochs for models on CIFAR-
10 and ImageNet. To summarize, the 3 stages can take up to 10 GPU hours
for ResNet-56 on CIFAR-10, and 450 GPU hours for ResNet-18 on ImageNet.
In contrast, the sparsity allocation in DSA is carried out in a more efficient
gradient-based way, without the need of the pre-trained models. The extra cost
of the sparsity allocation is small, since all the ADMM updates can be merged
into the optimization of weights, and are conducted only once every tens of
weight optimization steps. The whole DSA flow runs for 300 and 120 epochs on
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Fig. 4. Pruning results on CIFAR-10
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Fig. 5. The alignment between sensitivity analysis and gradient magnitudes of ResNet-
18 on CIFAR-10. The magnitudes are normalized by v̂ = softmax(v/std(v))

CIFAR-10 and ImageNet (5/300 GPU hours), thus speed up the overall pruning
process by about 1.5×.

Rationality of the Differentiable Sparsity Allocation In DSA, the task
loss’s gradient w.r.t. layer-wise pruning ratios directly guides the budget alloca-
tion. To see whether the gradient magnitudes align well with the local sensitiv-
ity, we conduct an empirical sensitivity analysis for ResNet-18 on CIFAR-10. We
prune each layer (topological group) independently with different pruning ratios
according to the L1 norm, and show the test accuracy in Fig. 5(a). Although
this sensitivity analysis is heuristic and approximate, the accuracy drop could be
interpreted as the local sensitivity for each group. Fig. 5(b) shows the normal-
ized magnitudes of the task loss’s gradients and the sensitivity of the layer-wise
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Fig. 6. The comparison between the normalized sensitivity, and the sparsity allocation
of DSA and SSL [20] for ResNet-18 on CIFAR-10

sparsity. We can see that these two entities align well, giving evidence that the
task loss’s gradient indeed encodes the relative layer-wise importance.

Fig. 6 presents the sparsity allocation (FLOPs budget 25%) for ResNet-18 on
CIFAR-10 obtained by DSA and SSL [20]. The results show that the first layer
for primary feature extraction should not be pruned too aggressively (group A),
so do shortcut layers that are responsible for information transmission across
stages (groups A, D, G, J). The strided convolutions are relatively more sensitive,
and more channels should be kept (groups E, H). In conclusion, DSA obtains
reasonable sparsity allocation that matches empirical knowledge [15, 17], with
lower computational cost than iterative pruning methods.

6 Conclusion

In this paper, we propose Differentiable Sparsity Allocation (DSA), a more effi-
cient method for budgeted pruning. Unlike traditional discrete search methods,
DSA optimizes the sparsity allocation in a gradient-based way. To enable the
gradient-based sparsity allocation, we propose a novel differentiable pruning pro-
cess. Experimental results show that DSA could achieve superior performance
than iterative pruning methods, with significantly lower training costs.
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