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Abstract. An unsupervised image-to-image translation (UI2I) task deals
with learning a mapping between two domains without paired images.
While existing UI2I methods usually require numerous unpaired images
from different domains for training, there are many scenarios where train-
ing data is quite limited. In this paper, we argue that even if each domain
contains a single image, UI2I can still be achieved. To this end, we pro-
pose TuiGAN, a generative model that is trained on only two unpaired
images and amounts to one-shot unsupervised learning. With TuiGAN,
an image is translated in a coarse-to-fine manner where the generated
image is gradually refined from global structures to local details. We
conduct extensive experiments to verify that our versatile method can
outperform strong baselines on a wide variety of UI2I tasks. Moreover,
TuiGAN is capable of achieving comparable performance with the state-
of-the-art UI2I models trained with sufficient data.

Keywords: Image-to-Image Translation. Generative Adversarial Net-
work. One-Shot Unsupervised Learning.

1 Introduction

Unsupervised image-to-image translation (UI2I) tasks aim to map images from
a source domain to a target domain with the main source content preserved
and the target style transferred, while no paired data is available to train the
models. Recent UI2I methods have achieved remarkable successes [26, 22, 38, 3].
Among them, conditional UI2I gets much attention, where two images are given:
an image from the source domain used to provide the main content, and the
other one from the target domain used to specify which style the main content
should be converted to. To achieve UI2I, typically one needs to collect numerous
unpaired images from both the source and target domains.

However, we often come across cases for which there might not be enough
unpaired data to train the image translator. An extreme case resembles one-
shot unsupervised learning, where only one image in the source domain and one
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Fig. 1. Several results of our proposed method on various tasks ranging from image
style transfer (Figures (a), (b)) to object transformation (Figures (c), (d)) and appear-
ance transformation (Figures (e), (f)). In each sub-figure, the three pictures from left
to right refer to the source image (providing the main content), target image (providing
the style and high-level semantic information), and translated image.

image in the target domain are given but unpaired. Such a scenario has a wide
range of real-world applications, e.g., taking a photo and then converting it to
a specific style of a given picture, or replacing objects in an image with target
objects for image manipulation. In this paper, we take the first step towards this
direction and study UI2I given only two unpaired images.

Note that the above problem subsumes the conventional image style transfer
task. Both problems require one source image and one target image, which serve
as the content and style images, respectively. In image style transfer, the fea-
tures used to describe the styles (such as the Gram matrix of pre-trained deep
features [7]) of the translated image and the style image should match (e.g.,
Fig. 1(a)). In our generalized problem, not only the style but the higher-level
semantic information should also match. As shown in Fig. 1(c), on the zebra-
to-horse translation, not only the background style (e.g., prairie) is transferred,
but the high-level semantics (i.e., the profile of the zebra) is also changed.

Achieving UI2I requires the models to effectively capture the variations of
domain distributions between two domains, which is the biggest challenge for
our problem since there are only two images available. To realize such one-
shot translation, we propose a new conditional generative adversarial network,
TuiGAN, which is able to transfer the domain distribution of input image to
the target domain by progressively translating image from coarse to fine. The
progressive translation enables the model to extract the underlying relationship



TuiGAN 3

between two images by continuously varying the receptive fields at different
scales. Specifically, we use two pyramids of generators and discriminators to
refines the generated result progressively from global structures to local details.
For each pair of generators at the same scale, they are responsible for producing
images that look like the target domain ones. For each pair of discriminators
at the same scale, they are responsible for capturing the domain distributions
of the two domains at the current scale. The “one-shot” term in our paper is
different from the ones in [1, 4], which use a single image from the source domain
and a set of images from the target domain for UI2I. In contrast, we only use
two unpaired images from two domains in our work.

We conduct extensive experimental validation with comparisons to various
baseline approaches using various UI2I tasks, including horse ↔ zebra, facade
↔ labels, aerial maps ↔ maps, apple ↔ orange, and so on. The experimental
results show that the versatile approach effectively addresses the problem of
one-shot image translation. We show that our model can not only outperform
existing UI2I models in the one-shot scenario, but more remarkably, also achieve
comparable performance with UI2I models trained with sufficient data.

Our contributions can be summarized as follows:

– We propose a TuiGAN to realize image-to-image translation with only two
unpaired images.

– We leverage two pyramids of conditional GANs to progressively translate
image from coarse to fine.

– We demonstrate that the a wide range of UI2I tasks can be tackled using
our versatile model.

2 Related Works

2.1 Image-to-Image Translation

The earliest concept of image-to-image translation (I2I) may be raised in [11]
which supports a wide variety of “image filter” effects. Rosales et al. [31] propose
to infer correspondences between a source image and another target image using
Bayesian framework. With the development of deep neural networks, the advent
of Generative Adversarial Networks (GAN) [8] really inspires many works in I2I.
Isola et al. [15] propose a conditional GAN called “pix2pix” model for a wide
range of supervised I2I tasks. However, paired data may be difficult or even im-
possible to obtain in many cases. DiscoGAN [20], CycleGAN [38] and DualGAN
[35] are proposed to tackle the unsupervised image-to-image translation (UI2I)
problem by constraining two cross-domain translation models to maintain cycle-
consistency. Liu et al. [27] propose a FUNIT model for few-shot UI2I. However,
FUNIT requires not only a large amount of training data and computation re-
sources to infer unseen domains, but also the training data and unseen domains
to share similar attributes. Our work does not require any pre-training and spe-
cific form of data. Related to our work, Benaim et al. [1] and Cohen et al. [4]
propose to solve the one-shot cross-domain translation problem, which aims to
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learn an unidirectional mapping function given a single image from the source
domain and a set of images from the target domain. Moreover, their methods
cannot translate images in the opposite direction as they claim that one seen
sample in the target domain is difficult for capturing domain distribution. How-
ever, in this work, we focus on solving UI2I given only two unpaired image from
two domains and realizing I2I in both directions.

2.2 Image Style Transfer

Image style transfer can be traced back to Hertzmann et al.’s work [10]. More
recent approaches use neural networks to learn the style statistics. Gatys et
al. [7] first model image style transfer by minimizing the Gram matrix of pre-
trained deep features. Luan et al. [28] further propose to realize photorealistic
style transfer which can preserve the photorealism of the content image. To avoid
inconsistent stylizations in semantically uniform regions, Li et al. [24] introduce
a two-step framework in which both steps have a closed-form solution. However,
it is difficult for these models to transfer higher-level semantic structures, such
as object transformation. We demonstrate that our model can outperform Li et
al. [24] in various UI2I tasks.

2.3 Single Image Generative Models

Single image generative models aim to capture the internal distribution of an
image. Conditional GAN based models have been proposed for texture expan-
sion [37] and image retargeting [33]. InGAN [33] is trained with a single natural
input and learns its internal patch-distribution by an image-specific GAN. Un-
conditional GAN based models also have been proposed for texture synthesis [2,
23, 16] and image manipulation [32]. In particular, SinGAN [32] employs an un-
conditional pyramidal generative model to learn the patch distribution based on
images of different scales. However, these single image generative models usually
take one image into consideration and do not capture the relationship between
two images. In contrast, our model aims to capture the distribution variations
between two unpaired images. In this way, our model can transfer an image
from a source distribution to a target distribution while maintaining its internal
content consistency.

3 Method

Given two images IA ∈ A and IB ∈ B, where A and B are two image domains,
our goal is to convert IA to IAB ∈ B and IB to IBA ∈ A without any other data
accessible. Since we have only two unpaired images, the translated result (e.g.,
IAB) should inherit the domain-invariant features of the source image (e.g., IA)
and replace the domain-specific features with the ones of the target image (e.g.,
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Fig. 2. TuiGAN network architecture: TuiGAN consists of two symmetric pyra-
mids of generators (GnABs and GnBAs) and discriminators (Dn

Bs and Dn
As), 0 ≤ n ≤ N .

At each scale, the generators take the downsampled source image and previously trans-
lated image to generate the new translated image. The discriminators learn the domain
distribution by progressively narrowing the receptive fields. The whole framework is
learned in a scale-to-scale fashion and the final result is obtained at the finest scale.

IB) [25, 22, 13]. To realize such image translation, we need to obtain a pair of
mapping functions GAB : A 7→ B and GBA : B 7→ A, such that

IAB = GAB(IA), IBA = GBA(IB). (1)

Our formulation aims to learn the internal domain distribution variation between
IA and IB . Considering that the training data is quite limited, GAB and GBA are
implemented as two multi-scale conditional GANs that progressively translate
images from coarse to fine. In this way, the training data can be fully leveraged
at different resolution scales. We downsample IA and IB to N different scales,
and then obtain IA = {InA|n = 0, 1, · · · , N} and IB = {InB |n = 0, 1, · · · , N},
where InA and InB are downsampled from IA and IB , respectively, by a scale
factor (1/s)n (s ∈ R).

In previous literature, multi-scale architectures have been explored for uncon-
ditional image generation with multiple training images [18, 19, 5, 12], conditional
image generation with multiple paired training images [34] and image genera-
tion with a single training image [32]. In this paper, we leverage the benefit of
multi-scale architecture for one-shot unsupervised learning, in which only two
unpaired images are used to learn UI2I.
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Fig. 3. Architecture of the generator GnAB , which achieves the InA → InAB translation.
There are two modules, Φ and Ψ . The input InA is first transformerd via Φ to obtain
InAB,Φ. Then, the transformed InAB,Φ, original input InA and the output of previous

scale In+1↑
AB are fused by model Ψ to generated a mask An. Finally, InAB,Φ and In+1↑

AB

are linearly combined through An to obtain the final output.

3.1 Network Architecture

The network architecture of the proposed TuiGAN is shown in Fig. 2. The entire
framework consists of two symmetric translation models: GAB for IA → IAB (the
top part in Fig.2) and GBA for IB → IBA (the bottom part in Fig. 2). GAB and
GBA are made up of a series of generators, {GnAB}Nn=0 and {GnBA}Nn=0, which
can achieve image translation at the corresponding scales. At each image scale,
we also need discriminators Dn

A and Dn
B (n ∈ {0, 1, · · · , N}), which is used to

verify whether the input image is a natural one in the corresponding domain.
Progressive Translation The translation starts from images with the lowest
resolution and gradually moves to the higher resolutions. GNAB and GNBA first
map INA and INB to the corresponding target domains:

INAB = GNAB(INA ); INBA = GNBA(INB ). (2)

For images with scales n < N , the generator GnAB has two inputs, InA and
the previously generated In+1

AB . Similarly, GnBA takes InB and In+1
BA as inputs.

Mathematically,

InAB = GnAB(InA, I
n+1↑
AB ), InBA = GnBA(InB , I

n+1↑
BA ), (3)

where ↑ means to use bicubic upsampling to resize image by a scale factor s.
Leveraging In+1

AB , GnAB could refine the previous output with more details, and
In+1
AB also provides the global structure of the target image for current resolution.

Eqn.(3) is iteratively applied until the eventual output I0AB and I0BA are obtained.
Scale-aware Generator The network architecture of GnAB is shown in Fig. 3.
Note that GnAB and GnBA shares the same architecture but have different weights.
GnAB consists of two fully convolutional networks. Mathematically, GnAB works
as follows:

InAB,Φ = Φ(InA), An = Ψ(InAB,Φ, I
n
A, I

n+1↑
AB ),

InAB = An ⊗ InAB,Φ + (1−An)⊗ In+1↑
AB ,

(4)
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where ⊗ represents pixel-wise multiplication. As shown in Eqn.(4), we first use Φ
to preprocess InA into InAB,Φ as the initial translation. Then, we use an attention
model Ψ to generate a mask An, which models long term and multi-scale depen-
dencies across image regions [36, 30]. Ψ takes InAB,Φ, In+1↑

AB and InA as inputs and

outputs An considering to balance two scales’ results. Finally, InAB,Φ and In+1↑
AB

are linearly combined through the generated An to get the output InAB .
Similarly, the translation IB → IBA at n-th scale is implemented as follows:

InBA,Φ = Φ(InB); An = Ψ(InBA,Φ, I
n
B , I

n+1↑
BA ),

InBA = An ⊗ InBA,Φ + (1−An)⊗ In+1↑
BA .

(5)

In this way, the generator focuses on regions of the image that are responsible
of synthesizing details in current scale and keeps the previously learned global
structure untouched in the previous scale. As shown in Fig. 3, the previous
generator has generated global structure of a zebra in In+1↑

AB , but still fails to
generate stripe details. In the n-th scale, the current generator generates an
attention map to add stripe details on the zebra and produces better result InAB .

3.2 Loss Functions

Our model is progressively trained from low resolution to high resolution. Each
scale keeps fixed after training. For any n ∈ {0, 1, · · · , N}, the overall loss func-
tion of the n-th scale is defined as follows:

LnALL = LnADV + λCYCLnCYC + λIDTLnIDT + λTVLnTV, (6)

where LnADV, LnCYC, LnIDT, LnTV refer to adversarial loss, cycle-consistency loss,
identity loss and total variation loss respectively, and λCYC, λIDT, λTV are hyper-
parameters to balance the tradeoff among each loss term. At each scale, the
generators aim to minimize LnALL while the discriminators is trained to maximize
LnALL. We will introduce details of these loss functions.
Adversarial Loss The adversarial loss builds upon that fact that the discrim-
inator tries to distinguish real images from synthetic images and generator tries
to fool the discriminator by generating realistic images. At each scale n, there
are two discriminators Dn

A and Dn
B , which take an image as input and output

the probability that the input is a natural image in the corresponding domain.
We choose WGAN-GP [9] as adversarial loss which can effectively improve the
stability of adversarial training by weight clipping and gradient penalty:

LnADV = Dn
B(InB)−Dn

B(GnAB(InA)) +Dn
A(InA)−Dn

A(GnBA(InB))

− λPEN(‖∇ÎnBD
n
B(ÎnB)‖2 − 1)2 − λPEN(‖∇ÎnAD

n
A(ÎnA)‖2 − 1)2,

(7)

where ÎnB = αInB + (1− α)InAB , ÎnA = αInA + (1− α)InBA with α ∼ U(0, 1), λPEN

is the penalty coefficient.
Cycle-Consistency Loss One of the training problems of conditional GAN is
mode collapse, i.e., a generator produces an especially plausible output whatever
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the input is. We utilize cycle-consistency loss [38] to constrain the model to retain
the inherent properties of input image after translation: ∀n ∈ {0, 1, · · · , N},

LnCYC = ‖InA − InABA‖1 + ‖InB − InBAB‖1, where

InABA = GnBA(InAB , I
n+1↑
ABA ), InBAB = GnAB(InBA, I

n+1↑
BAB ), if n < N ;

INABA = GNBA(INAB), INBAB = GNAB(INBA), if n = N.

(8)

Identity Loss We noticed that relying on the two losses mentioned above for
one-shot image translation could easily lead to color [38] and texture misaligned
results. To tackle the problem, we introduce the identity loss at each scale, which
is denoted as LnIDT. Mathematically,

LnIDT = ‖InA − InAA‖1 + ‖InB − InBB‖1, where

InAA = GnBA(InA, I
n+1↑
AA ), InBB = GnAB(InB , I

n+1↑
BB ), if n < N ;

INAA = GNBA(INA ), INBB = GNAB(INB ), if n = N.

(9)

We found that identity loss can effectively preserve the consistency of color and
texture tone between the input and the output images as shown in Section 4.4.
Total Variation Loss To avoid noisy and overly pixelated, following [29], we
introduce total variation (TV) loss to help in removing rough texture of the gen-
erated image and get more spatial continuous and smoother result. It encourages
images to consist of several patches by calculating the differences of neighboring
pixel values in the image. Let x[i, j] denote the pixel located in the i-th row and
j-th column of image x. The TV loss at the n-th scale is defined as follows:

LnTV = Ltv(I
n
AB) + Ltv(I

n
BA), (10)

Ltv(x) =
∑
i,j

√
(x[i, j + 1]− x[i, j])2 + (x[i+ 1, j]− x[i, j])2, x ∈ {InAB , InBA}.

3.3 Implementation Details

Network Architecture As mentioned before, all generators share the same
architecture and they are all fully convolutional networks. In detail, Φ is con-
structed by 5 blocks of the form 3x3 Conv-BatchNorm-LeakyReLU [14] with
stride 1. Ψ is constructed by 4 blocks of the form 3x3 Conv-BatchNorm-LeakyReLU.
For each discriminator, we use the Markovian discriminator (PatchGANs) [15]
which has the same 11x11 patch-size as Φ to keep the same receptive field as
generator.
Training Settings We train our networks using Adam [21] with initial learning
rate 0.0005, and we decay the learning rate after every 1600 iterations. We set
our scale factor s = 4/3 and train 4000 iterations for each scale. The number
of scale N is set to 4. For all experiments, we set weight parameters λCYC = 1,
λIDT = 1, λTV = 0.1 and λPEN = 0.1. Our model requires 3-4 Hrs on a single
2080-Ti GPU with the images of 250×250 size.
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4 Experiments

We conduct experiments on several tasks of unsupervised image-to-image trans-
lation, including the general UI2I tasks∗, image style transfer, animal face trans-
lation and paint-to-image translation, to verify our versatile TuiGAN. To con-
struct datasets of one-shot image translation, given a specific task (like horse↔zebra
translation [38]), we randomly sample an image from the source domain and the
other one from the target domain, respectively, and train models on the selected
data.

4.1 Baselines

We compare TuiGAN with two types of baselines. The first type leverages the full
training data without subsampling. We choose CycleGAN [38] and DRIT [22]
algorithms for image synthesis. The second type leverages partial data, even one
or two images only. We choose the following baselines:
(1) OST [1], where one image from the source domain and a set of images in the
target domain are given;
(2) SinGAN [32], which is a pyramidal unconditional generative model trained
on only one image from the target domain, and injects an image from the source
domain to the trained model for image translation.
(3) PhotoWCT [24], which can be considered as a special kind of image-to-image
translation model, where a content photo is transferred to the reference photo’s
style while remaining photorealistic.
(4) FUNIT [27], which targets few-shot UI2I and requires lots of data for pre-
training. We test the one-shot translation of FUNIT.
(5) ArtStyle [6], which is a classical art style transfer model.

For all the above baselines, we use their official released code to produce the
results.

4.2 Evaluation Metrics

(1) Single Image Fréchet Inception Distance (SIFID) [32]: SIFID cap-
tures the difference of internal distributions between two images, which is imple-
mented by computing the Fréchet Inception Distance (FID) between deep fea-
tures of two images. A lower SIFID score indicates that the style of two images is
more similar. We compute SIFID between translated image and corresponding
target image.
(2) Perceptual Distance (PD) [17]: PD computes the perceptual distance
between images. A lower PD score indicates that the content of two images
is more similar. We compute PD between translated image and corresponding
source image.
(3) User Preference (UP): We conduct user preference studies for perfor-
mance evaluation since the qualitative assessment is highly subjective.

∗In this paper, we refer to general UI2I as tasks where there are multiple images in
the source and target domains, i.e., the translation tasks studied in [38].



10 J. Lin et al.

Fig. 4. Results of general UI2I tasks using CycleGAN (trained with full training
dataset), DRIT (trained with the full training dataset), OST (trained with 1 sample
in the source domain and full data in the target domain), SinGAN (trained with one
target image), PhotoWCT (trained with two unpaired images), FUNIT (pre-trained)
and our TuiGAN (trained with two unpaired images).

4.3 Results

General UI2I Tasks Following [38], we first conduct general experiments on
Facade↔Labels, Apple↔Orange, Horse↔Zebra and Map↔Aerial Photo trans-
lation tasks to verify the effectiveness of our algorithm. The visual results of our
proposed TuiGAN and the baselines are shown in Fig. 4.

Overall, the images generated by TuiGAN exhibit better translation quality
than OST, SinGAN, PhotoWCT and FUNIT. While both SinGAN and Pho-
toWCT change global colors of the source image, they fail to transfer the high-
level semantic structures as our model (e.g., in Facade↔Labels and Horse↔Zebra).
Although OST is trained with the full training set of the target domain and
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Table 1. Average SIFID, PD and UP across different general UI2I tasks.

Metrics CycleGAN DRIT OST SinGAN PhotoWCT FUNIT Ours

SIFID (×10−2) 0.091 0.142 0.123 0.384 717.622 1510.494 0.080
PD 5.56 8.24 10.26 7.55 3.27 7.55 7.28
UP 61.45% 52.08% 26.04% 6.25% 25.00% 2.08% -

transfers high-level semantic structures in some cases, the generated results con-
tain many noticeable artifacts, e.g., the irregular noises on apples and oranges.
Compared with CycleGAN and DRIT trained on full datasets, TuiGAN achieves
comparable results to them. There are some cases that TuiGAN produces better
results than these two models in Labels→Facade, Zebra→Horse tasks, which
further verifies that our model can actually capture domain distributions with
only two unpaired images.

The results of average SIFID, PD and UP are reported in Table 1. For user
preference study, we randomly select 8 unpaired images, and generate 8 trans-
lated images for each general UI2I task. In total, we collect 32 translated images
for each subject to evaluate. We display the source image, target image and two
translated images from our model and another baseline method respectively on
a webpage in random order. We ask each subject to select the better translated
image at each page. We finally collect the feedback from 18 subjects of total
576 votes and 96 votes for each comparison. We compute the percentage from a
method is selected as the User Preference (UP) score.

We can see that TuiGAN obtains the best SIFID score among all the base-
lines, which shows that our model successfully captures the distributions of im-
ages in the target domain. In addition, our model achieves the third place in
PD score after CycleGAN and PhotoWCT. From the visual results, we can see
that PhotoWCT can only change global colors of the source image, which is the
reason why it achieves the best PD score. As for user study, we can see that
most of the users prefer the translation results generated by TuiGAN than OST,
SinGAN, PhotoWCT and FUNIT. Compared with DRIT trained on full data,
our model also achieves similar votes from subjects.

Image Style Transfer We demonstrate the effectiveness of our TuiGAN on
image style transfer: art style transfer, which is to convert image to the target
artistic style with specific strokes or textures, and photorealistic style transfer,
which is to obtain stylized photo that remains photorealistic. Results are shown
in Fig. 5. As can be seen in the first row of Fig.5, TuiGAN retains the architec-
tural contour and generates stylized result with vivid strokes, which just looks
like Van Gogh’s painting. Instead, SinGAN fails to generate clear stylized im-
age, and PhotoWCT [24] only changes the colors of real photo without capturing
the salient painting patterns. In the second row, we transfer the night image to
photorealistic day image with the key semantic information retained. Although
SinGAN and ArtStyle produce realistic style, they fail to the maintain detailed
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Fig. 5. Results of image style transfer. The first row represents the results of art style
transfer, and the second row is the results of photorealistic style transfer. We amplify
the green boxes in photorealistic style transfer results at the third row to show more
details.

Fig. 6. Results of animal face translation. Our model can accurately transfer the fur
colors, while FUNIT, a model pre-trained on animal face dataset, does not work as
well as our model.

edges and structures. The result of PhotoWCT is also not as clean as ours. Over-
all, our model achieves competitive performance on both types of image style
transfer, while other methods usually can only target on a specific task but fail
in another one.
Animal Face Translation To compare with the few-shot model FUNIT, which
is pretained on animal face dataset, we conduct the animal face translation ex-
periments as shown in Fig.6. We also include SinGAN and PhotoWCT for com-
parison. As we can see, our model can better transfer the fur colors from image
in the target domain to the that of the source domain than other baselines:
SinGAN [32] generates results with faint artifacts and blurred dog shape; Pho-
toWCT [24] can not transfer high-level style feature (e.g. spots) from the target
image although it preserves the content well; and FUNIT generates results that
are not consistent with the target dog’s appearance.
Painting-to-Image Translation This task focuses to generate photo-realistic
image with more details based on a roughly related clipart as described in Sin-
GAN [32]. We use the two samples provided by SinGAN for comparison. The
results are shown in Fig.7. Although two testing images share similar elements
(e.g., trees and road), their styles are extremely different. Therefore, PhotoWCT
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Fig. 7. Results of painting-to-image translation. TuiGAN can translate more specific
style patterns of the target image (e.g., leaves on the road in the first row) and maintain
more accurate content of the source images (e.g., mountains and clouds in the second
row).

Fig. 8. Visual results of ablation study.

and ArtStyle fail to transfer the target style in two translation cases. SinGAN
also fails to generate specific details, such as leaves on the road in the first row
of Fig.7, and maintain accurate content, such as mountains and clouds in the
second row of Fig.7. Instead, our method preserves the crucial components of
input and generates rich local details in two cases.

4.4 Ablation Study

To investigate the influences of different training losses, generator architec-
ture and multi-scale structure, we conduct several ablation studies based on
Horse↔Zebra task. Specifically,
(1) Fixing N = 4, we remove the cycle-consistent loss (TuiGAN w/o LCYC),
identity loss (TuiGAN w/o LIDT), total variation loss (TuiGAN w/o LTV) and
compare the differences.
(2) We range N from 0 to 4 to see the effect of different scales. When N = 0,
our model can be roughly viewed as the CycleGAN [38] that is trained with two
unpaired images.
(3) We remove the attention model Ψ in the generators, and combine InAB,Φ and

In+1↑
AB by simply addition (briefly denoted as TuiGAN w/o A).

The qualitative results are shown in Fig.8. Without LIDT, the generated
results suffers from inaccurate color and texture (e.g., green color on the trans-
ferred zebra). Without attention mechanism or LCYC, our model can not guar-
antee the completeness of the object shape (e.g., missed legs in the transferred
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Table 2. Quantitative comparisons between different variants of TuiGAN in terms of
SIFID and PD scores. The best scores are in bold.

TuiGAN
Metrics w/o A w/o LCYC w/o LIDT w/o LTV N = 0 N = 1 N = 2 N = 3 N = 4

SIFID (×10−4)
Horse→Zebra

1.08 3.29 2.43 2.41 2.26 2.32 2.31 2.38 1.03

SIFID (×10−4)
Zebra→Horse

2.09 5.61 5.54 10.85 3.75 3.86 3.77 6.30 1.79

PD
Horse→Zebra

8.00 6.98 8.24 6.90 6.40 6.82 6.76 6.25 6.16

PD
Zebra→Horse

10.77 7.92 8.00 6.48 7.77 7.92 8.68 6.87 5.91

horse). Without LTV, our model produces images with artifacts (e.g., colour
spots around the horse). The results from N = 0 to N = 3 either have poor
global content information contained (e.g. the horse layout) or have obvious ar-
tifacts (e.g. the zebra stripes). Our full model (TuiGAN N = 4) could capture
the salient content of the source image and transfer remarkable style patterns of
the target image.

We compute the quantitative ablations by assessing SIFID and PD scores
of different variants of TuiGAN. As shown in Table 2, our full model still ob-
tains the lowest SIFID score and PD score, which indicates that our TuiGAN
could generate more realistic and stylized outputs while preserving the content
unchanged.

5 Conclusion

In this paper, we propose TuiGAN, a versatile conditional generative model
that is trained on only two unpaired image, for image-to-image translation. Our
model is designed in a coarse-to-fine manner, in which two pyramids of condi-
tional GANs refine the result progressively from global structures to local details.
In addition, a scale-aware generator is introduced to better combine two scales’
results. We validate the capability of TuiGAN on a wide variety of unsupervised
image-to-image translation tasks by comparing with several strong baselines.
Ablation studies also demonstrate that the losses and network scales are rea-
sonably designed. Our work represents a further step toward the possibility of
unsupervised learning with extremely limited data.
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