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Abstract. 3D hand pose estimation is an important task for a wide
range of real-world applications. Existing works in this domain mainly
focus on designing advanced algorithms to achieve high pose estimation
accuracy. However, besides accuracy, the computation efficiency that af-
fects the computation speed and power consumption is also crucial for
real-world applications. In this paper, we investigate the problem of re-
ducing the overall computation cost yet maintaining the high accuracy
for 3D hand pose estimation from video sequences. A novel model, called
Adaptive Computationally Efficient (ACE) network, is proposed, which
takes advantage of a Gaussian kernel based Gate Module to dynamically
switch the computation between a light model and a heavy network
for feature extraction. Our model employs the light model to compute
efficient features for most of the frames and invokes the heavy model
only when necessary. Combined with the temporal context, the proposed
model accurately estimates the 3D hand pose. We evaluate our model
on two publicly available datasets, and achieve state-of-the-art perfor-
mance at 22% of the computation cost compared to traditional temporal
models.

Keywords: 3D Hand Pose Estimation, Computation Efficiency, Dy-
namic Adaption, Gaussian Gate

1 Introduction

Understanding human hand poses is a long lasting problem in computer vision
community, due to the great amount of potential applications in action recog-
nition, AR/VR [28], robotics and human computer interactions (HCI) [11]. The
problem of inferring 3D configurations of human hands from images and videos
is inherently challenging because of the frequent self-occlusion and the large
variance of hand poses. A large body of existing works address the problem of
hand pose estimation from depth data [7, 37], as it reduces ambiguities in the
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Fig. 1: Illustration of our Adaptive Computationally Efficient (ACE) network.
In most of the time, the LSTM takes features from the coarse pose encoder and
refines the predicted pose. Occasionally, when the pose varies a lot or severely
occluded, the Gaussian Kernel Gate opts to compute fine features with the
computationally heavy model to inject more accurate features to the LSTM.

depth dimension and makes it easier to acquire the 3D poses of the correspond-
ing hand. However, depth cameras, such as Kinect, are not always available and
are prone to measurement errors if deployed in outdoor settings. Therefore, in
this work we address the problem of 3D hand pose estimation with a monocular
RGB commercial camera.

Recent successes in 3D hand pose estimation [2, 3, 22, 26, 46] mainly focus
on employing the same computation framework for all video frames, without
considering the redundancy that exists across adjacent frames and the variation
of the pose estimation difficulties over frames. The moving speed and occlusion
status of the human hands vary when performing different actions, which inspires
us to design a new scheme to dynamically allocate the computation resources
based on the ambiguity determined by the current input frame and temporal
context status. This kind of adaption mechanism is useful for both online and
offline applications. For offline pose estimation from videos, being able to use
a simpler computation module in most of the frames saves the amount of the
resource usage and reduces the total inference time for the entire video. For
online pose estimation applications (e.g. HCI and robots), multiple tasks often
run concurrently under a total computation resource constraint, thus the saved
resources at most of the frames could be released for other important tasks at
those time steps, which meanwhile also reduces the amount of energy consumed
by the pose estimation task.
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Motivated by our idea of reducing computation consumption, and given the
fact that the information among video frames could be redundant and the pose
estimation difficulty varies over frames, we propose a novel Adaptive Compu-
tationally Efficient (ACE) network using a recurrent 3D hand pose estimator
with adaptive input. In our method, we design two base pose encoders based on
the hourglass(HG) [27] architecture with different computational costs. A Long
Short-Term Memory (LSTM) [14] model was introduced to refine the predicted
pose and features from the single-frame base pose encoder, by considering the
temporal consistency. We propose a new Gaussian Gate Module to auto-
matically determine whether the low complexity coarse encoder output alone
is sufficient for the LSTM, or the high complexity fine encoder is needed. The
fine encoder is only invoked when necessary and its output is combined with
the output of the coarse encoder to generate the input for the LSTM. The pro-
posed network architecture is illustrated in Fig. 1. To facilitate the training of
our switch module, which is naturally a discrete operation, an effective Gumbel-
SoftMax strategy, as an approximation of sampling from discrete distributions,
is introduced.

To summarize, a novel end-to-end ACE network is proposed for 3D hand pose
estimation from monocular video. It dynamically switches between using coarse
v.s. fine features at each time step, which eliminates the computational cost of the
fine encoder when the prediction from the coarse encoder is deemed sufficient. We
evaluate our network on two broadly used datasets, First-Person Hand Action
(FPHA) and Stereo Tracking Benchmark (STB), and obtain state-of-the-art pose
estimation accuracy, while greatly reducing the overall computation cost (around
78% on STB dataset), compared to baseline models that constantly use the fine
encoder for all time steps.

2 Related Work

Most of the existing works focus on the accuracy of 3D hand pose estimation
without explicitly considering the important computation cost issue. We will
briefly review the recent works in both the 3D hand pose estimation domain as
well as the recent endeavor in designing computationally efficient architectures
for image and video understanding.

3D hand pose estimation. 3D hand pose estimation is a long-standing
problem in computer vision domain, and various methods have been proposed.
We restrict ourselves to the more recent deep learning based approaches since
they are more related to our work.

A large body of the works on hand pose estimation operate on the depth in-
put, which greatly reduces the depth ambiguity of the task. Deephand proposes
a ConvNet model with an additional matrix completion algorithm to retrieve the
actual poses [34]. Volumetric representation was adopted to better encode the
depth image recently [7,8]. The volumetric representation is projected to multi-
ple views and then processed by several 2D ConvNets followed by fusion in [7].
Rather than tedious projections to multiple views, a 3D ConvNet is directly in-
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troduced to infer the 3D position from the volumetric representations [8]. This
line of work is further summarized in [9], in which the completeness of the 3D
hand surface is leveraged as additional supervision. Rather than volumetric rep-
resentations, the skeleton annotation could be represented as dense pixel-wise
labels [37]. The predicted dense estimations are then converted back to 3D co-
ordinates with a vote casting mechanism. Recently, self-supervised methods are
also explored on a mixture of synthetic and unlabelled dataset by exploring the
approximate depth and the kinematic feasibility as the weak supervision [36].

Rather than performing pose estimation on depth data, we lay more focus on
the works with RGB inputs, which are often less restricted in real-world applica-
tions. Zimmermann and Brox proposed a multi-stage network, which performs
hand segmentation, localization, 2D and 3D pose estimations one by one [46].
Similar to the depth based method, depth regularization was employed to enable
weakly supervised learning [2]. Instead of regressing the joint positions indepen-
dently, kinematic model could be naturally integrated into the model to yield
anatomically plausible results [26] . A latent 2.5D representation is introduced
in [16], where the ConvNet also learns the implicit depth map of the entire
palm. Numerous graphic models are also proposed to better handle the joint
relationships [3, 22]. Spatial dependencies and temporal consistencies could be
modeled explicitly with graph neural net [3] and could further boost the quality
of estimated features [22] from hourglass models [27]. Another line of works re-
construct the shape and the pose of hands at the same time [1,10,25,42,45], in
which either a hand mesh model [25, 33] or a generative GNN [45] is leveraged
to map the low-dimensional hand pose & shape manifold to the full 3D meshes.

Despite all the success in accurate hand pose estimation, we argue that the
efficiency problem is also of vital importance, especially for AR/VR [28] and mo-
bile devices [11], where resources are often limited. To harvest the redundancy
present in the consecutive frames, we propose an adaptive dynamic gate to ef-
ficiently switch between an efficient light pose estimator and a computationally
heavy pose estimator for 3D hand pose estimation from sequences of frames.

Computationally efficient architectures. Recent progresses have shown
that the computation efficiency of neural net models could be improved in var-
ious ways. Neural network pruning was first realized using second-order deriva-
tive [13, 19] and then evolved into pruning weights with relatively small magni-
tude [12]. Different from the pruning technique operated on fully trained mod-
els [12, 13, 19], recent developments reveal that pruning while training often re-
sults in better performance. This was achieved by enforcing additional loss (L1
norm [23], Group LASSO [39] or L0 norm approximations [24].) during training.
Other innovative ideas include specially designed architectures for high-efficiency
computing [15,44] and network quantization [4, 5, 20,31].

In videos, consecutive frames are often quite similar and strongly co-dependent,
which leave lots of space for efficiency optimization. Recently, various works
have been developed to improve the computation efficiency for video classifica-
tion [18,29,38,40]. Leveraging the fact that most of the computational expansive
layers (w/o activation) are linear and sparse feature updates are more efficient,
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a recurrent residual model was introduced [29] to incur minimum amount of
feature updates between consecutive frames. Hierarchical coarse-to-fine archi-
tectures are also introduced for more efficient video inference [40]. Recently, RL
frameworks are adopted to learn an efficient sampling agent to filter out salient
parts/frames from videos for fast recognition [18] [41].

In this work, we address the problem of dense hand pose estimation from
video sequences, where we need to derive corresponding poses for each individ-
ual frame. We take advantage of the fact that at most of the time, when the
motion of the hand is not extreme or the hand pose is not severely occluded,
the 3D hand pose could be safely derived from the temporal context. We thus
propose a novel Gaussian Kernel-based Adaptive Dynamic Gate module that
explicitly measures the necessity to compute fine features with a costly model,
which significantly reduces the total amount of computation in general. Our
scheme is also orthogonal to many of the aforementioned methods, such as the
pruning methods, which leaves the potential to further boost the efficiency.

3 Method

3.1 Overview

Given a sequence of video frames {It}Tt=1, our task is to infer the 3D pose
Pt = {P tk}Kk=1 of the hand at each frame t, where K denotes the number of hand
joints, and P tk denotes the 3D position of the joint k at frame t.

The overall pipeline of our proposed ACE network is illustrated in Fig. 1. In
our method, at each time step, both a less accurate yet computationally light
model and an accurate but computationally heavy model can be selected as
the pose encoder for the RGB input. The features from either models could be
fed into a LSTM to refine the inferred features and the estimated pose based
on the temporal coherence. To reduce the computation cost, inspired by the
idea that temporal context can provide sufficient information when the motion
of the target hand is slow or the pose is less challenging, we propose a novel
Gaussian Kernel-based gate module as the key component of our ACE network,
which compares the temporal context information provided by the LSTM model
with the coarse features computed by the light encoder to assess the necessity
of extracting fine features with the heavier encoder for the current time step.
Below we introduce each component in more detail.

3.2 Single Frame Hand Pose Estimator

We first introduce two base pose encoders: coarse pose encoder and fine pose en-
coder, which have significantly different computation profiles for a single frame.
Both models are constructed with the state-of-the-art hourglass (HG) network
[27]. Furthermore, as illustrated in Fig. 2a, we augment it to directly regress the
hand joint coordinates Pt via a ConvNet from the heat map of joint probabilities
Ht = {Ht

k}Kk=1, output feature map from HG as well as feature maps from early
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(a) Architecture of pose encoder (b) Schema of the Gaussian Kernel Gate.

Fig. 2: Graphical illustration of the Single frame pose encoder and the Gaussian
Kernel Based Gate.

downsampling layers. The complexity of the models is adjusted by changing the
number of convolutional layers and the size of the inputs of the hourglass mod-
ule. We denote the light-weight coarse pose encoder model as MCoarse−Enc, and
the heavy model as MFine−Enc. These encoders extract pose related features,
Ftcoarse and Ftfine, based on the input frame It, as follows:

Ftcoarse = MCoarse−Enc(It) (1)

Ftfine = MFine−Enc(It) (2)

Note that in our final ACE network with the gate mechanism, we compute
the coarse features (Ftcoarse) for each frame, while the fine features (Ftfine) are
computed for a fraction of time only, thus reducing the overall computation cost.

3.3 Pose Refinement Recurrent Model

In pose estimation from videos, a natural idea is to exploit the temporal context
information for more smooth and accurate estimations, i.e., instead of solely
relying on the information of the current frame, historical context can also be
incorporated to reduce the ambiguities in pose estimation [21,30,32,35]. Thus we
introduce a LSTM model to refine the estimations from the hourglass modules.
The LSTM module, denoted as MLSTM, takes the sequential features from pose
encoder as inputs, and refine these input features using the temporal context.

More formally, at the t-th time step, the LSTM takes the pose-related features
from the current frame as the input, and infer the 3D pose (Pt) for the current
step based on the hidden state, as follows:

ht, ct = MLSTM(Ftframe, (h
t−1, ct−1)) (3)

Pt = W>pose h
t + bpose (4)

where ht and ct are the hidden state and cell state of the LSTM module respec-
tively. Wpose and bpose are the parameters of the output linear layer for regressing
the final 3D hand joint coordinates. Here we denote the features from the single
frame pose estimator as Ftframe, which is controlled by our adaptive dynamic
gate model (introduced next) and could be either the coarse features Ftcoarse or
the weighted combination of the coarse features Ftcoarse and fine features FtFine.
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3.4 Adaptive Dynamic Gate Model

Recall that when humans perform activities with their hands, the motion speed
and the self-occlusion status of the hands vary across different activities and
different frames. In some of the actions like “high five”, the palm is often less
occluded and the pose pattern is relatively static and simple, while in some other
actions, like “open soda can” and “handshake”, the human hand is often under
severe occlusions and presents rich and delicate movements of the fingers.

This inspires us to rely more on the temporal context information (and only
use a brief glimpse over the current frame with the coarse pose encoder) for pose
inference when the pose pattern is simple, stable and could be safely derived
from the temporal context. However, if the temporal context is not consistent
with the current frame information, this means either the current frame could
be challenging for pose inference (i.e. pose inaccurately estimated by coarse pose
encoder but temporal context is reliable) or significantly differs from previous
frames due to large motions (i.e. temporal context becomes unstable), and thus
the network needs to take a more careful examination for the current frame by
using the fine pose encoder. Therefore, we propose an adaptive dynamic gate
model in our ACE framework to dynamically determine the granularity of the
features needed for pose estimation with our LSTM model.

Assuming the motion of the hand is smooth, the first and second-order statis-
tics of the hand’s status over different frames provide useful context information
for estimating the evolution of the hand pose over time. Accordingly, we com-
pute the first-order difference (ht

′
) and second-order difference (ht

′′
) over the

history hidden states of the LSTM to estimate the motion status information of
the hand pose as:

ht
′

= ht − ht−1 (5)

ht
′′

= (ht − ht−1)− (ht−1 − ht−2) (6)

At the time step t, we feed the hidden state of the previous frame(ht−1), as

well as its first and second-order information (ht−1′ and ht−1′′) as the history
context information, to our gate module, which then estimates the pose feature
information of current frame (t) with a sub-network, as follows:

F̃
t

= W>g [ht−1, ht−1′, ht−1′′] + bg (7)

We then measure the similarity of the predicted pose feature information

(F̃
t
) that is completely estimated from the temporal context of previous frames,

with the pose features (Ftcoarse) that are extracted with the coarse pose encoder
solely based on current frame It, via a Gaussian Kernel with a fixed spread ω
as follows:

Gtcoarse =

[
exp

(
− (F̃

t
− Ftcoarse)2

ω2

)]
Mean

(8)
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This Gaussian Kernel based gate outputs mean value (Gtcoarse) between 0
and 1, which provides an explicit measurement of the consistency and similarity

between F̃
t

and Ftcoarse, implying the pose estimation difficulty of current frame,
i.e., higher Gtcoarse value indicates simple pose and stable movements of the hand.

If the hand pose status at this step changes a lot and pose feature becomes
unpredictable from the temporal context, or the pose at current frame becomes
challenging, leading to the pose features (Ftcoarse) extracted by the coarse pose
encoder not reliable and therefore inconsistent with the temporal context, the

discrepancy between F̃
t

and Ftcoarse grows larger, and thus our Gaussian gate
will output a relatively small value close to 0.

With an estimation of the difficulty of current frame, we then decide if we
need to employ the more powerful fine pose encoder to carefully examine the
input frame of current time step. Specifically, we can use the Gtcoarse from our
Gaussian gate as the confidence score of staying with the coarse pose encoder
for current time step, and naturally Gtfine = 1 − Gtcoarse becomes the score that
we need to use the more powerful fine pose encoder.

A straight-forward switching mechanism would be to directly follow the one
with a larger confidence score, i.e., if Gtfine > Gtcoarse, we need to involve the fine
pose encoder for the current frame. This switching operation is however a discrete
operation that is not differentiable. To facilitate the network training, following
the recent work on reparameterization for the categorical distribution [17], we
reparameterize the Bernoulli distribution with the Gumbel-Softmax trick, which
introduces a simple yet efficient way to draw samples z from a categorical dis-
tribution parameterized by the unnormalized probability π. Specifically, we can
approximately sample from πi following:

zi = argmax
i∈M

[gi + log πi] M = {coarse,fine} (9)

where at each time step t, we set πti = − log(1 − Gti ), which is the un-
normalized version of the predict probability Gti in Bernoulli distribution Gti ∈
{Gtcoarse,Gtfine}. gi is the Gumbel noise. Here we draw samples from the Gumbel
distribution following gi = − log(− log(ui)), where ui is the i.i.d. samples drawn
from Uniform(0,1). We further relax the non-differentiable operation argmax
with softmax to facilitate back propagation. The final sampled probability is
obtained with:

zti =
exp

(
(gi + log πti)/τ

)
∑
j exp

(
(gj + log πtj)/τ

) for i, j ∈ {coarse,fine} (10)

where τ is the hyper-parameter of temperature, which controls the discreteness of
the sampling mechanism. When τ −→ ∞, the sample approximates the uniform
sampling, and when τ −→ 0, it yields the argmax operation while allows the
gradient to be back-propagated.

During training, we obtain the confidence scores of using rough glimpse for
the input frame via the coarse pose encoder or using careful derived features
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with the fine encoder, via the Gumbel-SoftMax trick following Eq. (10), and
then we combine the coarse features Ftcoarse and fine features Ftfine as:

Ftweighted = ztcoarseF
t
coarse + ztfineF

t
fine (11)

During evaluation, we omit the sampling process and directly use the coarse
features when Gtfine ≤ λ, and use the weighted average features when Gtfine > λ
with weight Gtfine and Gtcoarse. In general, λ is set to 0.5, which essentially follows
the larger probability. This threshold λ could also be tweaked to balance between
accuracy and efficiency during inference.

3.5 Training Strategy and Losses

We employ a two-step training strategy, in which we separately train the single-
frame coarse pose encoder and fine pose encoder first, and then fine-tune them
during the training of the LSTM pose refinement module and the adaptive gate
module. To train the single frame pose encoder, we use the combination of 2D
heat map regression loss and 3D coordinate regression loss:

Lsingle =
1

K

K∑
k=1

(H̃k −Hk)2 + β · Smooth L1(P̃,P) (12)

where Hk corresponds to the 2D heat map of joint k and P is the 3D joint
coordinates. We use the mean squared loss for the heat map and Smooth L1 loss
for the 3D coordinates, which has a squared term when the absolute element-wise
difference is below 1 (otherwise it is essentially a L1 term).

The single frame pose estimator is then fine-tuned when training the pose
refinement LSTM and the gate module. To prevent the gate module from con-
stantly using the fine features, we set an expected activation frequency (γg) for
the gate, and optimize the mean square error between mean probability of using
fine encoder and the expected activation frequency. Specifically, we define the
loss mathematically given the expected activate rate, γg as:

Lwhole =
∑
d∈S

Smooth L1(P̃d,Pd)+δ ·Ezt∼Bernoulli(Gt|θg)(
1

T

T∑
t=1

ztfine−γg)2 (13)

where S = {coarse,fine,LSTM} and ztfine is the sample probability based on
the prediction Gt given by the adaptive dynamic gate model. θg denotes the
parameter of the gate and δ balances the accuracy and the efficiency.

4 Experiments

4.1 Datasets and Metrics

We evaluate our ACE network on two publicly available datasets, namely the
Stereo Tracking Benchmark (STB) [43] dataset and the First-Person Hand Ac-
tion (FPHA) [6] dataset.
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Stereo Tracking Benchmark (STB) provides 2D and 3D pose annota-
tions of the 21 hand keypoints for 12 stereo video sequences. Each sequence
consists of 1500 RGB frames for both the left camera and right camera. In total,
this dataset consists of 18000 frames and the resolution of the frame is 640×480.
Within the dataset, 6 set of different backgrounds are captured, with each back-
ground appears in two video sequences. Following the setting of [46], we separate
the dataset into a training set of 10 videos (15000 frames) and a evaluation set
of 2 video sequences (3000 frames).

First Person Hand Action (FPHA) contains video sequences for 45 dif-
ferent daily actions from 6 different subjects in egocentric views. In total, FPHA
contains more than 100k frames with a resolution of 1920 × 1080. The ground
truth is provided via a mo-cap system and derived with inverse kinematics. Sim-
ilar to the STB dataset, 21 keypoints on the human hand are annotated. Object
interaction with 26 different objects is involved, which introduces additional
challenges to hand pose estimation. We follow the official split of the dataset.

Metrics. We report the Percentage of Correct Keypoints (PCKs) under
20 mm and the Area Under Curve (AUC) of PCKs under the error thresholds
from 20 mm to 50 mm for STB dataset following [46], and from 0 mm to 50 mm
for FPHA dataset. We report average GFLOPs 1 per frame for speed comparison,
which does not rely on the hardware configurations and thus provides more
objective evaluations.

4.2 Implementation Details

Although the proposed ACE module is theoretically compatible with different
pose encoder architectures, we mainly evaluate it with the hourglass (HG) archi-
tecture [27] as it is widely used and works well in many existing works [22, 45].
Compared to the FPHA dataset, STB is less challenging as no hand-object
interaction is involved. Therefore, different HG architectures are employed for
different datasets. For the STB dataset, the coarse pose encoder contains one
hourglass module with 32 feature channels, while for the fine pose encoder, we
employ 64 channels. In addition to the different configurations of the module,
the input images to the coarse and fine modules are set to 64×64 and 256×256
respectively, which greatly reduce the amount of computation. For the more chal-
lenging FPHA dataset, we keep the configurations of the fine pose encoder as
STB, while for the coarse pose encoder, we double the size of input to 128×128.
Please see the supplementary materials for more details of the pose encoder.

For the LSTM refinement module, we use one layer of LSTM with hidden
state dimension of 256. The hidden states and its order statistics are first mapped
to a fixed dimension of 256 and then concatenated as the input to our adaptive
Gaussian gate. During training, we set γg = 0.05 for STB and γg = 0.01 for
FPHA and ω = 0.1.

1 Computed based on the public toolbox: PyTorch-OpCounter.
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Table 1: Results of various models (vanilla single frame coarse/fine models and
their variants considering temporal dynamics) for 3D hand pose estimation. Our
adaptive model uses much less computation with minor accuracy drops.

STB FPHA

Method 3D PCK20 AUC(20-50) GFLOPs 3D PCK20 AUC(0-50) GFLOPs

Coarse-HG 85.1% 0.946 0.28 72.6% 0.674 1.10
Fine-HG 96.3% 0.994 6.96 79.7% 0.714 6.96

Vanilla-LSTM-Coarse-HG 92.1% 0.973 0.28 78.9% 0.707 1.10
Vanilla-LSTM-Fine-HG 98.7% 0.997 6.96 83.9% 0.740 6.96
Vanilla-LSTM-Mix-HG 98.7% 0.997 7.24 83.1% 0.734 8.06

Adaptive-LSTM-Mix-HG 97.9% 0.996 1.56 82.9% 0.731 1.37

4.3 Main Results

We conduct extensive experiments to show the advantages of our proposed ACE
framework for hand pose estimation from videos. We compare the accuracy and
computation efficiency among different models and further visualize the predic-
tion results of our model. To facilitate the understanding of the gate behaviour,
we also present the frames selected for fine feature computation.

(a) STB dataset (b) FPHA dataset

Fig. 3: Quantiatitative evaluations. We achieve state-of-the-art performance on
STB, and outperform the existing methods on FPHA by a large margin.

Quantitative comparison. We present the comparison among our adaptive
dynamic gate model and various baselines in Table 1, where Coarse-HG/fine-
HG indicates that the baseline pose encoder (hourglass structure) is employed
to predict 3D joint coordinates frame by frame. For the Vanilla-LSTM variants,
we take features from either coarse pose encoder, fine pose encoder, or average
features from coarse and fine pose encoders, and then feed them into an ordinary
LSTM model without gate module. The detailed results are in Table. 1.
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Table 2: Comparison of the computation cost with state-of-the arts on STB. Our
method achieves higher AUC yet consumes significantly less computation.

Method 3D PCK20 AUC GFLOPs

Z&B [46] 0.870 0.948 78.2
Liu et al. [22] 0.895 0.964 16.0
HAMR [45] 0.982 0.995 8.0
Cai et al. [3] 0.973 0.995 6.2

Ours 0.979 0.996 1.6

Fig. 4: Visualization of pose estimation. The top row shows input frames and the
bottom row visualizes the predicted poses (red) and ground-truth poses (green).

As shown in Table 1, our adaptive model obtains comparable performance to
our designed baseline model “Vanilla-LSTM-Fine-HG” that constantly takes the
fine features for pose estimation with less than 1/4 computation cost by com-
puting the fine features only on selected frames. Besides, our proposed method
obtains state-of-the-art performance on both benchmarks, which is presented in
Fig. 3a and 3b, where we plot the area under the curve (AUC) on the percentage
of the correct key points (PCK) with various thresholds.

In addition to the comparison in terms of the accuracy, we further evaluate
the speed of our model compared to the existing art. The detailed comparison
are illustrated in Table 2. As FPHA dataset is relatively new and fewer works
report their performance, we mainly conduct the evaluation on the STB dataset.

Visualization To verify our model works well in terms of accurately deriving
poses from the RGB images. We visualize a few predictions by our network in
Fig. 4. Our model is capable of inferring precise poses from RGB input images
even under severe occlusion and challenging lightning conditions.

We further look into the mechanism of the Gaussian kernel based gate. We
visualize a few test sequences as in Fig. 5. In (a), the fine pose encoder activates
less often for the straightforward poses while more densely used for the challeng-
ing poses close to the end of the sequence. For (b), the gate tends to invoke fine
pose encoder more often when occlusion presents (1st half v.s. 2nd half), while
in (c) and (d), when large motion presents (see the rightmost blurry frames from
both sequences), the gate chooses to examine the frame more closely with the
fine pose encoder. Those observations are in par with our motivations that to
only invoke the computationally heavy pose encoders when necessary.
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Fig. 5: Visualization of frames selected (marked with yellow boxes) to adopt the
fine pose encoder. The fine encoder activates sparsely when the pose is straight-
forward while is frequently used when the pose becomes challenging (left part v.s.
right part of (a)). When the hand pose status becomes less stable (see rightmost
part of (c) and (d)) or occlusions become more severe (see rightmost part of
(b)), our model tends to use the fine encoder more frequently. The frequency of
invoking fine pose encoder is much lower when the poses are relatively stable.

Table 3: Evaluation of using different gate architectures on STB dataset. Pfine

denotes the frequency of using the fine pose encoder. Our Gaussian kernel gate
achieves highest accuracy yet at lowest computation cost.

Gate γg 3D PCK20 AUC GFLOPs Pfine

Neural Gate 0.1 0.981 0.995 2.54 0.32
Neural Temporal Gate 0.1 0.977 0.996 2.20 0.43

Gaussian Kernel Gate 0.1 0.983 0.997 2.09 0.26

4.4 Ablation study

We first study on the design choice of the Gaussian kernel based adaptive gate.
Instead of explicitly parameterize the difference with Gaussian function, one
straight forward way would be to directly predict the probability via a linear
module. The linear module takes the hidden state, 1st and 2nd order statistics
and coarse feature as the input and yields the probability of introducing the
fine module. This model is referred as Neural Gate. Going one step further,
although the coarse pose encoder is relatively light, we could still obtain perfor-
mance gains by avoiding it and derive probability solely based on the temporal
context. Therefore, we also evaluate the model that make decisions based on
the temporal context only, which is referred as Neural Temporal Gate. The
detailed results are in Table. 3.

As shown in Table. 3, different gates offer similar performance while the Gaus-
sian Kernel is slightly more accurate and more efficient. We further investigate
the impact of a few hyper parameters on the overall performance. Specifically,
we look into the γg in Table 4 and λ in Table 5, which could be tweaked to
adjust the rate of computing fine features before and after training.

When varying γg from 0.3 to 0.01, the accuracy of the models does not vary
much while the frequency of using fine features drops from 0.43 to 0.15, which
suggests the large amount redundancy in consecutive frames are exploited by
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Table 4: Evaluation of different γg values for network training on STB dataset.
As the expected usage of fine pose encoder drops, the computation cost falls
significantly, while the accuracy decreases marginally

γg 3D PCK20 AUC GFLOPs Pfine

1 0.987 0.9978 6.96 1
0.3 0.984 0.9972 3.30 0.43
0.2 0.985 0.9973 2.34 0.29
0.1 0.983 0.9970 2.09 0.26
0.05 0.979 0.9962 1.56 0.18
0.01 0.977 0.9956 1.37 0.15
0.001 0.955 0.9897 1.43 0.16

Table 5: Evaluation of different λ (γg = 0.1) during testing on the STB dataset.
For the same trained model, with higher λ, fine encoder is used less often, i.e.,
we can configure λ to balance the trade-off between the efficiency and accuracy.

λ 3D PCK20 AUC GFLOPs Pfine

0.1 0.987 0.9977 7.01 0.97
0.3 0.986 0.9976 3.31 0.43
0.5 0.983 0.9970 2.09 0.26
0.7 0.943 0.9894 0.88 0.08
0.9 0.505 0.8277 0.30 0

the ACE model. While for λ, with a larger threshold, we greatly reduce the
frequency of using fine encoders at the cost of accuracy. λ could be adjusted
during inference to balance the trade off between efficiency and accuracy.

5 Conclusion

We present the ACE framework, an adaptive dynamic model for efficient hand
pose estimation from monocular videos. At the core of the ACE model is the
Gaussian kernel based gate, which determines whether to carefully examine the
current frame using a computationally heavy pose encoder based on a quick
glimpse of the current frame with a light pose encoder and the temporal con-
text. We further introduce the Gumbel-SoftMax trick to enable the learning of
the discrete decision gate. As a result, we obtain state of the art performance on
2 widely used datasets, STB and FPHA, while with less than 1/4 of the compu-
tation compared to the baseline models. The proposed ACE model is general and
could be built upon any single frame pose encoder, which indicates the efficiency
could be further improved by harvesting more efficient structures as single frame
pose encoder.
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