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Abstract. Existing Multiple-Object Tracking (MOT) methods either
follow the tracking-by-detection paradigm to conduct object detection,
feature extraction and data association separately, or have two of the
three subtasks integrated to form a partially end-to-end solution. Go-
ing beyond these sub-optimal frameworks, we propose a simple online
model named Chained-Tracker (CTracker), which naturally integrates
all the three subtasks into an end-to-end solution (the first as far as we
know). It chains paired bounding boxes regression results estimated from
overlapping nodes, of which each node covers two adjacent frames. The
paired regression is made attentive by object-attention (brought by a
detection module) and identity-attention (ensured by an ID verification
module). The two major novelties: chained structure and paired attentive
regression, make CTracker simple, fast and effective, setting new MOTA
records on MOT16 and MOT17 challenge datasets (67.6 and 66.6, re-
spectively), without relying on any extra training data. The source code
of CTracker can be found at: github.com/pjl1995/CTracker.

Keywords: Multiple-Object Tracking, Chained-Tracker, End-to-end so-
lution, Joint detection and tracking

1 Introduction

Video-based scene understanding and human behavior analysis are important
high-level tasks in computer vision with many valuable real applications. They
rely on many other tasks, within which Multiple-Object Tracking (MOT) is a
significant one. However, MOT remains challenging due to occlusions, object
trajectory overlap, challenging background, etc., especially for crowded scenes.

Despite the great efforts and encouraging progress in the past years, there
are two major problems of existing MOT solutions. One is that most methods
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Fig. 1. Comparison of our CTracker (Bottom) with other typical MOT
methods (Top), which are either isolated models or partially integrated models.
Our CTracker significantly differs from other methods in two aspects: 1) It is a to-
tally end-to-end model using adjacent frame pair as input and generating the box pair
representing the same target. 2) We convert the challenging cross-frame association
problem into pair-wise object detection problem.

are based on the tracking-by-detection paradigm [1], which is plausible but sub-
optimal due to the infeasibility of global (end-to-end) optimization. It usually
contains three sequential subtasks: object detection, feature extraction and data
association. However, splitting the whole task into isolated subtasks may lead to
local optima and more computation cost than end-to-end solutions. Moreover,
data association heavily relies on the quality of object detection, which by itself
is hard to generate reliable and stable results across frames as it discards the
temporal relationships of adjacent frames.

The other problem is that recent MOT methods get more and more com-
plex as they try to gain better performances. Re-identification and attention are
two major points found to be helpful for improving the performance of MOT.
Re-identification (or ID verification) is used to extract more robust features for
data association. Attention helps the model to be more focused, avoiding the dis-
traction by irrelevant yet confusing information (e.g. the complex background).
Despite their effectiveness, the involvement of them in existing solutions greatly
increases the model complexity and computational cost.

In order to solve the above problems, we propose a novel online tracking
method named Chained-Tracker (CTracker), which unifies object detection, fea-
ture extraction and data association into a single end-to-end model. As can be
seen in Fig. 1, our novel CTracker model is cleaner and simpler than the classical
tracking-by-detection or partially end-to-end MOT methods. It takes adjacent
frame pairs as input to perform joint detection and tracking in a single regres-
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sion model that simultaneously regress the paired bounding boxes for the targets
that appear in both of the two adjacent frames.

Furthermore, we introduce a joint attention module using predicted confi-
dence maps to further improve the performance of our CTracker. It guides the
paired boxes regression branch to focus on informative spatial regions with two
other branches. One is the object classification branch, which predicts the confi-
dence scores for the first box in the detected box pairs, and such scores are used
to guide the regression branch to focus on the foreground regions. The other one
is the ID verification branch whose prediction facilitates the regression branch
to focus on regions corresponding to the same target. Finally, the bounding box
pairs are filtered according to the classification confidence. Then, the generated
box pairs belonging to the adjacent frame pairs could be associated using sim-
ple methods like IoU (Intersection over Union) matching [2] according to their
boxes in the common frame. In this way, the tracking process could be achieved
by chaining all the adjacent frame pairs (i.e. chain nodes) sequentially.

Benefiting from the end-to-end optimization of joint detection and tracking
network, our model shows significant superiority over strong competitors while
remaining simple. With the temporal information of the combined features from
adjacent frames, the detector becomes more robust, which in turn makes data
association easier, and finally results in better tracking performance.

The contribution of this paper can be summarized into the following aspects:
1. We propose an end-to-end online Multiple-Object Tracking model, to op-

timize object detection, feature extraction and data association simultaneously.
Our proposed CTracker is the first method that converts the challenging data
association problem to a pair-wise object detection problem.

2. We design a joint attention module to highlight informative regions for
box pair regression and the performance of our CTracker is further improved.

3. Our online CTracker achieves state-of-the-art performance on the tracking
result list with private detection of MOT16 and MOT17.

2 Related Work

2.1 Detection-based MOT Methods

Yu et. al [3] proposed the POI algorithm, which conducted a high-performance
detector based on Faster R-CNN [4] by adding several extra pedestrian detection
datasets. Chen et. al [5] incorporated an enhanced detection model by simulta-
neously modeling the detection-scene relation and detection-detection relation,
called EDMT. Furthermore, Henschel et. al [6] added a head detection model to
support MOT in addition to original pedestrian detection, which also needed ex-
tra training data and annotations. Bergmann et. al [7] proposed the Tracktor by
exploiting the bounding box regression to predict the position of the pedestrian
in the next frame, which was equal to modifying the detection box. However,
the detection model and the tracking model in these detection-based methods
are completely independent, which is complex and time-consuming. While our
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CTracker algorithm only needs one integrated model to perform detection and
tracking, which is simple and efficient.

2.2 Partially End-to-end MOT Methods

Lu et. al [8] proposed RetinaTrack, which combined detection and feature ex-
traction in the network and used greedy bipartite matching for data association.
Sun et. al [9] harnessed the power of deep learning for data association in track-
ing by jointly modeling object appearances and their affinities between different
frames. Similarly, Chu et. al [10] designed the FAMNet to jointly optimize the
feature extraction, affinity estimation and multi-dimensional assignment. Li et.
al [11] proposed TrackNet by using frame tubes as input to do joint detection
and tracking, however the links among tubes are not modeled which limits the
trajectory lengths. Moreover, the model is designed and tested only for rigid
object (vehicle) tracking, leaving its generalization ability questionable. Despite
their differences, all these methods are just partially end-to-end MOT methods,
because they just integrated some parts of the whole model, i.e. [8] combined
the detection and feature extraction module in a network, [9, 10] combined the
feature extraction and data association module. Differently, our CTracker is a
totally end-to-end joint detection and tracking methods, unifying the object
detection, feature extraction and data association in a single model.

2.3 Attention-assistant MOT Methods

Chu et. al [12] introduced a Spatial-Temporal Attention Mechanism (STAM)
to handle the tracking drift caused by the occlusion and interaction among tar-
gets. Similarly, Zhu et. al [13] proposed a Dual Matching Attention Networks
(DMAN) with both spatial and temporal attention mechanisms to perform the
tracklet data association. Gao et. al [14] also utilized an attention-based appear-
ance model to solve the inter-object occlusion. All these attention-assistant MOT
methods used a complex attention model to optimize data association in the lo-
cal bounding box level. While our CTracker can improve both the detection and
tracking performance through the simple object-attention and identity-attention
in the global image level, which is more efficient.

3 Methodology

3.1 Problem Settings

Given an image sequence {Ft}Nt=1 with totally N frames, Multiple-Object Track-
ing task aims to output all the bounding boxes {Gt}Nt=1 and identity labels
{YGTt }Nt=1 for all the objects of interest in all the frames where they appear.
Ft ∈ Rc×w×h indicates the t-th frame, Gt ⊂ R4 represents the ground-truth
bounding boxes of the Kt number of targets in t-th frame and YGTt ⊂ Z de-
notes their identities. Most of the recent MOT algorithms divide the MOT task
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Fig. 2. Illustration of the node chaining. After generating bounding box pairs
{Dt−1, D̂t} by CTracker for two arbitrary adjacent nodes (Ft−1, Ft) and (Ft, Ft+1), we
chain these two nodes by doing IoU matching on the shared common frame. Such a
chaining is done sequentially over all adjacent nodes to generate long trajectories for
the whole video sequence. More detailed can be found in the main text.

into three components, which are object detection, feature extraction and data
association. However, many researches and experiments demonstrate that the
association’s effectiveness relies heavily on the performance of detection. There-
fore, in order to better utilize their correlation, in this paper, we propose a
novel Chained-Tracker (abbr. CTracker), which uses a single network to simul-
taneously achieve object detection, feature extraction and data association. We
introduce the pipeline of our CTracker in the subsection 3.2. The details of the
network and loss design are described separately in the subsection 3.3 and 3.4.

3.2 Chained-Tracker Pipeline

Framework. Different from other MOT models that only takes a single frame
as input, our CTracker model requires two adjacent frames as input, which is
called a chain node. The first chain node is (F1, F2) and the last (i.e., the N -th)
is (FN , FN+1). Note that FN is the last frame, so we just take the copy version of
FN as FN+1. Given the node (Ft−1, Ft) as input, CTracker can generate bounding
box pairs {(Di

t−1, D̂
i
t)}

nt−1

i=1 of the same targets appearing in both frames, where

nt−1 is the total pair number, Di
t−1 ∈ Dt−1 ⊂ R4 and D̂i

t ∈ Dt ⊂ R4 denote the
two bounding boxes of the same target. Similarly, we can also get the box pairs
{(Dj

t , D̂
j
t+1)}nt

j=1 in the next node (Ft, Ft+1). As can be seen in Fig. 2, assume

that D̂i
t and Dj

t represent detected boxes of the same target located in the
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common frame of the adjacent nodes, there shall be only slight difference between
the two boxes. We can further use an extremely simple matching strategy (as
detailed below) to chain the two boxes, instead of using complicated appearance
features as in canonical MOT methods. By chaining nodes sequentially over the
given sequence, we can obtain long trajectories of all the detected targets.

Node chaining. We use {Dt−1, D̂t} to represent {(Di
t−1, D̂

i
t)}

nt−1

i=1 for conve-
nience. The node chaining is done as follows. Firstly, in the node, every detected
bounding box Di

1 ∈ D1 is initialized as a tracklet with a randomly assigned iden-
tity. Secondly, for any another node t, we chain the adjacent nodes (Ft−1, Ft) and
(Ft, Ft+1) by calculating the IoU (Intersection over Union) between the boxes in
D̂t and Dt as shown in Fig. 2, where D̂t is the last boxes set of {Dt−1, D̂t} and
Dt is the former boxes set of {Dt, D̂t+1}. Getting the IoU affinity, the detected
boxes in D̂t and Dt are matched by applying the Kuhn-Munkres (KM) algo-
rithm [15]. For each matched box pair D̂i

t and Dj
t , the tracklet that D̂i

t belongs
to is updated by appending Dj

t . Any unmatched box Dk
t is initialized as a new

tracklet with a new identity. The chaining is done sequentially over all adjacent
nodes and it builds long trajectories for individual targets.

Robustness enhancement (esp. against occlusions). To enhance the model’s
robustness to serious occlusions (which can make detection fail in certain frames)
and short-term disappearing (followed by quick reappearing), we retain the ter-
minated tracklets and their identities for up to σ frames and continue finding
matches for them in these frames, with the simple constant velocity prediction
model [16, 17] for motion estimation. In greater details, suppose target (Dl

t−1, D̂
l
t)

cannot find its match is node t, we apply the constant velocity model to pre-
dict its bounding box P lt+τ in frame t + τ (1 <= τ <= σ) according to Dl

t−1

(not the less reliable D̂l
t). When we chain node t + τ − 1 and node t + τ with

{Dt+τ−1, D̂t+τ} and {Dt+τ , D̂t+τ+1}, the current set of all the predicted bound-
ing boxes of retained targets denoted by Pt+τ , is appended to D̂t+τ for matching
with Dt+τ . If P it+τ gets a match, its tracklet will be extended by linking to the
new bounding boxes.

Effectiveness and limitations. Our model is effective for handling the cases
when targets appear or disappear (i.e., enter or leave camera view), which are
quite common for MOT. When a target is not in frame t − 1 but appears in
frame t, it is likely that no bounding box pair for it gets generated in the chain
node (Ft−1, Ft). However, as long as this target continues to appear in frame
t+1, it will be detected in the next chain node (Ft, Ft+1) and get a new tracklet
and identity there. Similarly, if a target is in the frame t−1 but disappears from
frame t, it will not be detected in node (Ft, Ft+1), resulting the termination of its
tracklet in node t−1 or even t−2. Note that the chaining operation itself cannot
be fully parameterized and therefore it cannot be optimized together with the
regressions. Since the regression model (as detailed below) does the major work
and there is no need to get feedback for it from the chaining operation, we still
use the “end-to-end” property to describe CTracker. A pure end-to-end trainable
model requires a differentiable replacement to the current IoU matching based
chaining strategy.
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Fig. 3. Network architecture of CTracker. Given two adjacent frames, we firstly
use two backbone branches with tied weights to extract the features for each frame
separately. Then we concatenate features of the two frames on channel level and the
combined features are used to predict the paired boxes. To highlight local informa-
tive regions for paired boxes regression, the combined features are multiplied with the
attention maps from the object classification branch and the ID verification branch.

3.3 Network architecture

Overview. Our proposed CTracker network uses two adjacent frames as input
and regresses the bounding box pair of the same target. To do this, we adopt
ResNet-50 [18] as the backbone to extract high-level semantic features. It then
integrates Feature Pyramid Networks (FPN) to generate multi-scale feature rep-
resentation for subsequent prediction. In order to associate targets in adjacent
frames, the scale-level feature maps from individual frames are firstly concate-
nated together, and then fed into the prediction network to regress bounding
box pairs. As can be seen in Fig. 3, the paired boxes regression branch generates
a box pair for each target, and the object classification branch predicts a score
for each pair indicating the confidence of being foreground. To help the paired
boxes regression branch to avoid the distraction by irrelevant yet confusing in-
formation, the object classification branch and the extra ID verification branch
are used for attention guidance.

Paired Boxes Regression. Inspired by predicting the offsets relative to pre-
defined (default) anchor boxes in object detection, we propose Chained-Anchors
for the paired boxes regression branch to regress two boxes simultaneously. As a
novel natural derivative of the anchors used in most object detection methods,
Chained-Anchors are densely arranged on a spatial grid, each of them allows pre-
dicting two bounding boxes of the same object instance in two adjacent frames.
In order to handle the large scale variation in real scenes, the K-means clus-
tering as used in [19] is conducted on all ground-truth bounding boxes in the
dataset for getting the scales of chained-anchors. And each cluster is assigned to
the corresponding level of FPN for later scale specific predictions. The detected
bounding box pairs are firstly post-processed with soft-NMS [20] according to
the IoU of the first box in each pair, and then filtered based on the confidence
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Fig. 4. Memory sharing mechanism in our CTracker. The extracted features of
each frame (except the first one) are firstly used in the current chain node, and then
can be saved and reused in the next chain node. Note that when making inference for
the last node, the features of the last frame N is also reused as the features of the
hypothetical frame N + 1 to avoid the repeated computation for frame N .

scores from the classification branch. Finally, the remaining box pairs are chained
into the whole tracking trajectories using the method described in Sec. 3.2. To
keep our model simple, both the paired boxes regression branch and the clas-
sification branch only stack four consecutive 3×3 Conv layers interleaved with
ReLU activations before the final convolution layer.

Joint Attention Module. We design an attention mechanism based compo-
nent called Joint Attention Module (JAM) to highlight local informative regions
in the combined features before the regression branch. As shown from the right
of Fig. 3, the ID verification branch is introduced to get confidence scores, in-
dicating whether the two boxes in the detected pair belong to the same target.
Then both the predicted confidence map of ID verification branch and object
classification branch are used as attention maps. Note that the guidance from
the two branches is complementary, the confidence maps from the classification
branch focuses on foreground regions while the prediction from the ID verifica-
tion branch is used to highlight the features of the same target.

Feature Reuse. Since the input of the network contains two adjacent frames,
the common frame of two adjacent nodes has to be used twice in the tracking
process. To avoid the nearly double cost of computation and memory in infer-
ence, we propose a Memory Sharing Mechanism (MSM) to temporarily save the
extracted features of the current frame and reuse them until the next node is
processed, as shown in Fig. 4. Besides, in order to make inference for the last
node, we make a copy of frame N as the hypothetical frame N + 1. To further
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avoid the repeated computation for the frame N + 1, we also apply the trick of
feature resue to frame N , and the feature of frame N is copied as the feature
of the hypothetical frame N + 1. We demonstrate that the proposed MSM can
reduce almost half of the overall computation and time cost.

3.4 Label Assignment and Loss Design

For an arbitrary chain node (Ft, Ft+1), let Ait = (xt,ia , y
t,i
a , w

t,i
a , h

t,i
a ) denote its

i-th chained-anchor (where xt,ia and yt,ia are the box center coordinates; wt,ia and
ht,ia are the width and height, respectively), we adopt a ground-truth bounding
box matching strategy similar to that of SSD [21]. We use a matrix M to denote
the result of such a matching. If Gjt is the corresponding ground-truth bounding
box in Ft for Ait, which is judged by the IoU ratio (higher than a threshold Tp),
then we have Mij = 1. If the IoU ratio is lower than another smaller threshold
Tn, then Mij = 0. Based on M , we can assign the ground-truth label cicls to
CTracker’s classification branch for Ait as:

cicls =

{
1, if ΣKt

j=1Mij = 1,

0, if ΣKt
j=1Mij = 0,

(1)

where Kt is the total number of ground-truth bounding boxes for frame Ft.
With Ait, suppose the predicted pair of bounding boxes are (Di

t, D̂
i
t+1) and

the corresponding ground-truth bounding boxes are (Gjt , G
k
t+1) when they exist,

the ID verification branch of CTracker shall get its ground-truth label as:

ciid =

{
1, if cicls = 1 and I[Gjt ] = I[Gkt+1],
0, otherwise,

(2)

where I[·] represents the identity of the target in the bounding box.
We follow Faster R-CNN [22] to regress offsets of (Di

t, D̂
i
t+1) w.r.t. Ait, where

Di
t = (xt,id , y

t,i
d , w

t,i
d , h

t,i
d ). Let (∆t,i

d , ∆
t+1,i

d̂
) denote these offsets and (∆t,j

g , ∆t+1,k
g )

be the offsets for the ground-truths, we list the details of∆t,i
d = (∆t,i

d,x, ∆
t,i
d,y, ∆

t,i
d,w,

∆t,i
d,h) as an example (the others are similar):

∆t,i
d,x = (xt,id − x

t,i
a )/wt,ia , ∆t,i

d,y = (yt,id − y
t,i
a )/ht,ia ,

∆t,i
d,w = log(wt,id /w

t,i
a ), ∆t,i

d,h = log(ht,id /h
t,i
a ).

(3)

The loss for the paired boxes regression branch is defined as follows:

Lreg(∆
t,i
d , ∆

t+1,i

d̂
, ∆t,j

g , ∆t+1,k
g )

=
∑

l∈{x,y,w,h}

[
smoothL1

(∆t,i
d,l −∆

t,j
g,l) + smoothL1

(∆t+1,i

d̂,l
−∆t+1,k

g,l )
]
/8, (4)

where smoothL1 is the smooth L1 loss.
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The total loss of CTracker is

Lall =
∑
t,i

[
Lreg(∆

t,i
d , ∆

t+1,i

d̂
, ∆t,j

g , ∆t+1,k
g ) + αF(picls, c

i
cls) + βF(piid, c

i
id)
]
, (5)

where F(picls, c
i
cls) and F(piid, c

i
id) are the focal losses [23] for the classification

branch and the ID verification branch (for mitigating the sample imbalance
problem), respectively, with picls and piid denoting their predictions (confidence
scores); α and β are the weighting factors.

4 Experiment

4.1 Datasets and Evaluation Metrics

We conduct the experiments on two public datasets: MOT16 [24] and MOT17.
which contain the same image sequences including 7 training sequences and 7
test sequences. However, MOT16 and MOT17 contain different detection in-
put, and different ground-truth labels (bounding boxes and identities), which
would influence the training of CTracker. In public detection, MOT16 includes
DPM [25] detector while MOT17 includes DPM, Faster R-CNN [4] and SDP
[26] detectors. For a fair comparison with other methods, we trained two models
separately using the training data from MOT16 and MOT17, and separately
applied the two models on the MOT16 test set and MOT17 test set.

In the MOTChallenge benchmark, tracking performance is measured by the
widely used CLEAR MOT Metrics [27], including Multiple-Object Tracking Ac-
curacy (MOTA), Multiple-Object Tracking Precision (MOTP), the total number
of False Negatives (FN), False Positives (FP), Identity Switches (IDS), and the
percentage of Mostly Tracked Trajectories (MT), Mostly Lost Trajectories (ML).
ID F1 Score (IDF1) is also used to measure the trajectory identity accuracy.
Among these metrics, MOTA is the primary metric to measure the overall de-
tection and tracking performance. In addition, we use Tracker Speed in Frames
Per Seconds (Hz) to measure the tracking speed of all methods.

4.2 Implementation Details

All the experiments are done with PyTorch. During training, the ground-truth
boxes with a visible score above 0.1 are selected for training. To avoid overfitting,
we use several data augmentation strategies such as photometric distortions,
random flip and random crop. The same augmentation operation is guaranteed
to apply for each image in the same training pair. Then the augmented image
pair are resized or padded to the half of their original images’ shorter side. We
also add a novel data augmentation strategy in the temporal dimension to form
chain nodes: instead of always choosing two adjacent frames, we sample two
frames close to each other with a random temporal gap (1 to 3 frames).

As a speed-accuracy trade-off, we use the Resnet50 [18] network as the back-
bone in all the following experiments. All trainable weights except the BN pa-
rameters in Resnet50 are trained end-to-end using the Adam optimizer. We
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Table 1. Ablation study on MOT17 test dataset.

Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓
Baseline 64.4 51.6 78.2 28.5% 28.0% 16089 178704 6336

Baseline+ObjAtten 66.0 55.7 78.8 31.3% 24.5% 17724 168522 5595

Baseline+ObjAtten+IDVer 65.6 55.2 78.3 32.6% 24.7% 25815 162489 5769

Baseline+JointAtten 66.6 57.4 78.2 32.2% 24.2% 22284 160491 5529

initialize the parameters for all the newly added convolutional layers with the
Kaiming initialization method in [28] and set the initial learning rate to 5× e−5.
The model training process takes 100 epochs with the batch size of 8 (4 training
pairs). The weighting factors α and β in the loss function are both set to 1.
In the anchor matching stage, we use 0.5 for the positive threshold and 0.4 for
the negative threshold. For paired boxes post-processing, we use a threshold of
0.7 for the soft-nms, and then further filter remaining pairs with the confidence
threshold of 0.4. In the chaining stage, the IoU matching threshold is 0.5, and
the retention threshold of σ is 10.

4.3 Ablation Study

Performance analysis. We compare the following models on MOT17 dataset
to show the effectiveness of CTracker’s parts:
(1) Baseline. It only covers the classification branch and the paired boxes re-
gression branch, without guidance from any attention map. This is the simplest
implementation of our CTracker.
(2) Baseline+ObjAtten. In addition to the Baseline, the predicted confidence
map of the object classification branch is used as an attention map, which is
multiplied to the combined features before the paired boxes regression branch.
(3) Baseline+ObjAtten+IDVer. Except for the object classification branch with
attention map and the paired boxes regression branch, we add the ID verification
branch but do not use it as attention guidance.
(4) Baseline+JointAtten (CTracker). This is the full version of our approach.

Results presented in Table 1 show that:
(1) Baseline+ObjAtten performs significantly better than Baseline, which

proves the effectiveness of the object attention operation. By applying the object
classification branch as the attention map of the paired boxes regression branch,
we can get more accurate bounding boxes. There is a significant improvement of
MOTA, which increases from 64.4 to 66.0 and MOTP also increases from 78.2
to 78.8. The more accurate bounding boxes also result in better performance of
data association, with IDF1 increasing from 51.6 to 55.7.

(2) Baseline+ObjAtten+IDVer performs slightly worse than Baseline+ObjAtten.
Simply adding the independent ID verification branch is weak due to the lack of
bounding boxes information. Reliable identification needs good bounding boxes.

(3) Baseline+JointAtten further outperforms Baseline+ObjAtten, indicating
that the ID attention operation is also beneficial. By adding the ID verification
branch and using it as another guidance of the paired boxes regression branch,
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Fig. 5. Qualitative results of our CTracker on MOT17 test dataset. MOT17-
03 sequence is captured by a static camera and MOT17-07 sequence is captured by
a moving camera. The detected bounding boxes and the tracking trajectory with the
same identity are displayed by the same color.

Table 2. Time cost analysis of CTracker.

Methods
Time cost (ms)

Backbone Prediction Chaining Total

CTracker-Det 80.27 38.78 - 119.05

CTracker w/o MSM 154.53 66.93 2.10 223.56

CTracker 80.29 65.71 2.10 148.10

the association of the regressed bounding boxes is more accurate. Though MOTA
is only improved by 0.6, the IDF1 is improved by 1.7, and IDF1 can better reflect
the accuracy of data association more clearly. On the other hand, by adding the
ID attention, the model pays more attention to the data association and sacrifices
slightly of the regression bounding box precision, thus the MOTP is decreased
from 78.8 to 78.2. Qualitative results of CTracker are illustrated in Fig. 5.

Time cost analysis. We analyze the inference speed for each module in CTracker,
displayed in Table 2. The time cost is measured for 1080×1920 images using sin-
gle Tesla P40 and cuDNN v7 with Intel Xeon E5-2699v4@2.20GHz. In Table 2,
CTracker-Det only predicts boxes for a single frame, which is the initial detection
network of CTracker. Since nearly 70% of the forward time is spent on the back-
bone network, our original CTracker costs about double-time to perform joint
detection and tracking compared with the initial detection network, the time
increasing from 119.05 ms to 223.56 ms. With the help of the proposed Mem-
ory Sharing Mechanism (MSM) in Sec. 3.3, we achieve a faster joint detection
and tracking model with only 29.05 ms extra cost compared with the detection
network. There is just a small increase of time from 119.05 ms to 148.10 ms. To
some extent, 29.05 ms per frame means the tracking module runs at 34.4 FPS,
demonstrating the efficiency of our online approach.
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Table 3. Comparisons of tracking results on MOT16 test dataset.

Public Detection

Process Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Hz↑

Offline

MHT-bLSTM [29] 42.1 47.8 75.9 14.9% 44.4% 11637 93172 753 1.8

Quad-CNN [30] 44.1 38.3 76.4 14.6% 44.9% 6388 94775 745 1.8

EDMT [5] 45.3 47.9 75.9 17.0% 39.9% 11122 87890 639 1.8

LMP [31] 48.8 51.3 79.0 18.2% 40.1% 6654 86245 481 0.5

Online

CDA-DDAL [32] 43.9 45.1 74.7 10.7% 44.4% 6450 95175 676 -

STAM [12] 46.0 50.0 74.9 14.6% 43.6% 6895 91117 473 -

DMAN [13] 46.1 54.8 73.8 17.4% 42.7% 7909 89874 532 -

MOTDT [33] 47.6 50.9 74.8 15.2% 38.3% 9253 85431 792 20.6

Tracktor [7] 54.4 52.5 78.2 19.0% 36.9% 3280 79149 682 -

Private Detection

Process Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Hz↑

Offline

NOMT [34] 62.2 62.6 79.6 32.5% 31.1% 5119 63352 406 11.5

MCMOT-HDM [35] 62.4 51.6 78.3 31.5% 24.2% 9855 57257 1394 34.9

KDNT [3] 68.2 60.0 79.4 41.0% 19.0% 11479 45605 933 0.7

Online

EAMTT [36] 52.5 53.3 78.8 19.0% 34.9% 4407 81223 910 12.0

DeepSORT [16] 61.4 62.2 79.1 32.8% 18.2% 12852 56668 781 20.0

CNNMTT [37] 65.2 62.2 78.4 32.4% 21.3% 6578 55896 946 11.2

POI [3] 66.1 65.1 79.5 34.0% 20.8% 5061 55914 805 9.9

CTracker (Ours) 67.6 57.2 78.4 32.9% 23.1% 8934 48305 1897 34.4

Table 4. Comparisons of tracking results on MOT17 test dataset.

Public Detection

Process Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Hz↑

Offline

MHT-bLSTM [29] 47.5 51.9 77.5 18.2% 41.7% 25981 268042 2069 1.8

EDMT [5] 50.0 51.3 77.3 21.6% 36.3% 32279 247297 2264 1.8

JCC [38] 51.2 54.5 75.9 20.9% 37.0% 25937 247822 1802 -

FWT [6] 51.3 47.6 77.0 21.4% 35.2% 24101 247921 2648 -

Online

DMAN [13] 48.2 55.7 75.9 19.3% 38.3% 26218 263608 2194 -

MOTDT [33] 50.9 52.7 76.6 17.5% 35.7% 24069 250768 2474 20.6

Tracktor [7] 53.5 52.3 78.0 19.5% 36.6% 12201 248047 2072 -

Private Detection

Process Method MOTA↑ IDF1↑ MOTP↑ MT↑ ML↓ FP↓ FN↓ IDS↓ Hz↑

Online

Tracktor+CTdet [7] 54.4 56.1 78.1 25.7% 29.8% 44109 210774 2574 -

DeepSORT [16] 60.3 61.2 79.1 31.5% 20.3% 36111 185301 2442 20.0

CTracker (Ours) 66.6 57.4 78.2 32.2% 24.2% 22284 160491 5529 34.4

4.4 Benchmark Evaluation

We compare our CTracker approach with other MOT methods on both MOT16
and MOT17 test datasets. For comparison, we trained our model separately
using the MOT16 training data and MOT17 training data. Table 3 and Ta-
ble 4 compare the tracking results of all the methods separately on MOT16 and
MOT17 test dataset. From Table 3 and Table 4 we can find that:

(1) In the private detection part of both MOT16 and MOT17, our CTracker
significantly outperforms existing online MOT methods in terms of MOTA. In
MOT16, the MOTA of our approach is only 0.6 lower than the best offline
method KDNT [3], while it is 1.5 higher than its online version POI [3]. In addi-
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tion, KDNT and POI use many extra training data, including ETHZ pedestrian
dataset [39], Caltech pedestrian dataset [40] and their own collected surveillance
dataset [3]. While we only use the training data of MOT16. MOTA is the pri-
mary metric reflecting the overall detection and tracking performance, which
proves the effectiveness of our approach.

(2) In the public detection part, Tracktor [7] performs the best in terms of
MOTA. To have a comparison with Tracktor using the same detection result, we
reproduce Tracktor using its code. Tracktor+CTdet in Table 4 is the tracking
result of Tracktor using the detection result of our CTracker. Compared with
the results of public detection, the MOTA of Tracktor+CTdet increases from
53.5 to 54.4 and IDF1 increases from 52.3 to 56.1, which indicates that the
performance of our detection is better than the public detection. Besides, our
CTracker outperforms Tracktor+CTdet in terms of all the metrics except IDS,
which further proves the superior tracking performance of our CTracker.

(3) On the other hand, to keep the simplicity and efficiency of our CTracker,
we abandon using the patch-level ReID features of the detected boxes like other
MOT methods to enhance cross-frame data association. Thus, the IDF1 and IDS
of our CTracker approach are lower than several methods. We conduct an extra
experiment by adding features, introduced in the supplementary. To further
prove the efficiency of our approach, we compare the time cost of CTracker with
other state-of-the-art MOT methods on the MOT16 and MOT17 benchmark, as
shown in the Hz column of Tabel 3 and Tabel 4. From Tabel 3 and Tabel 4 we
can find that CTracker achieves the best tracking speed among all online MOT
methods, although the fastest offline method runs at a similar tracking speed as
our CTracker, but has a much lower MOTA than our CTracker, demonstrating
the effectiveness and efficiency of our approach.

5 Conclusion

We designed a novel joint multiple-object detection and tracking framework
named Chained-Tracker in this paper, which is the first totally end-to-end solu-
tion as far as we are aware. Different from existing methods, we use two adjacent
frames as the input of our network, which is called a chain node. The network re-
gresses a pair of bounding boxes for the same target in the two adjacent frames,
guided by a simple yet novel joint attention module: an interplay of detection-
driven object attention and ID verification-injected identity attention. Using the
simple IoU information, two adjacent and overlapping nodes can be chained by
their boxes in the common frame. The tracking trajectories can be generated by
alternately applying the paired boxes regression and node chaining. Extensive
experiments on widely used MOT benchmarks demonstrate the superiority of
our approach in terms of both effectiveness and efficiency.
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