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Abstract. Current multilingual vision-language models either require
a large number of additional parameters for each supported language,
or suffer performance degradation as languages are added. In this pa-
per, we propose a Scalable Multilingual Aligned Language Representa-
tion (SMALR) that supports many languages with few model param-
eters without sacrificing downstream task performance. SMALR learns
a fixed size language-agnostic representation for most words in a multi-
lingual vocabulary, keeping language-specific features for just a few. We
use a masked cross-language modeling loss to align features with context
from other languages. Additionally, we propose a cross-lingual consis-
tency module that ensures predictions made for a query and its machine
translation are comparable. The effectiveness of SMALR is demonstrated
with ten diverse languages, over twice the number supported in vision-
language tasks to date. We evaluate on multilingual image-sentence re-
trieval and outperform prior work by 3-4% with less than 1/5th the
training parameters compared to other word embedding methods.

Keywords: Scalable Vision-Language Models, Multilingual Word Em-
beddings, Image-Sentence Retrieval

1 Introduction

Learning a good language representation is a fundamental component of address-
ing a vision-language task, such as phrase grounding [22,34] or visual question
answering [3,17]. Many recent methods have demonstrated that learning text
representations aligned to images can boost performance across many vision-
language tasks over traditional text-only trained representations [8,19,29,37,38].
This is often accomplished by using auxiliary vision-language tasks when learn-
ing the language representation (such as image-sentence retrieval, as shown in
Figure 1(a)). However, these methods often only support a single language. Al-
though some work has addressed a multilingual scenario (e.g ., [16,23,41]), these
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(a) Multilingual image-sentence retrieval (b) MSCOCO multilingual retrieval

Fig. 1: (a) presents multilingual bidirectional retrieval. We embed sentences in
ten languages with SMALR, which is used to compute the highest scoring image.
(b) shows the effect of the number of training languages on performance for prior
work MULE [23] and LIWE [41]. LIWE is the original model, hereafter referred
to as S-LIWE. The plot contains two points: L-LIWE, [41] trained with a larger
embedding (120-D vs. 24-D) for fair comparison, in orange, and SMALR, in
yellow. The points are scaled to the number of parameters, P; specifically, their
area is ( P

106 )
3
2 . SMALR is able to outperform all prior work with few parameters

methods do not scale well to support many languages in terms of memory or
performance (see Figure 1(b)). As the number of languages grows, methods like
LIWE [41] that use character-based recognition systems can save memory but
suffer from performance degradation. In contrast, methods that learn to align
word embeddings across languages can maintain (or even improve) performance
as languages are added (e.g ., [16,23]), but require additional parameters for the
word embeddings that represent each new language’s vocabulary. This becomes
a challenge when scaling to support many languages, as an increasing majority
of trainable parameters are required for representing each language (e.g . ∼93%
of parameters of [23] with ten languages). While pretrained word embeddings
could be used without fine-tuning, e.g . Multilingual BERT [13] or MUSE [11],
this comes at a significant cost in downstream task performance [8,23].

To address this trade-off between multilingual capacity and performance,
we propose a Scalable Multilingual Aligned Language Representation (SMALR)
model, which we demonstrate achieves strong task performance while also being
highly compact compared to state-of-the-art word embedding methods [13,24,26].
As seen in Figure 1, LIWE drops over 10% in performance going from supporting
one to ten languages. MULE slightly increases performance with more languages,
but requires 6x more parameters compared to its single language model. Our ap-
proach, SMALR, outperforms both with only 1/5th the parameters of MULE.
We learn to efficiently represent each language by separating our language em-
bedding into language-specific and language-agnostic token representations. As
language follows a long-tailed distribution, only a few words occur often, with
large portions of tokens occurring very rarely. For example, in the MSCOCO
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dataset [28] there are 25,126 unique tokens, but 61% of them occur less than 4
times. This suggests that having unique representations for every token in the
vocabulary is unnecessary, as only a subset would affect downstream task per-
formance significantly. Thus, we use a Hybrid Embedding Model (HEM) that
contains language-specific embeddings for the common tokens, thereby provid-
ing a good representation for each language, and a compact language-agnostic
representation for rare and uncommon words. This results in a model that needs
far fewer unique embeddings than prior work without sacrificing performance.

We learn how to assign tokens to the language-agnostic representation in
a pretraining step, which uses monolingual FastText embeddings [7] to map
similar words to the same token, e.g . mapping “double-decker” in English and
“impériale” in French to the same shared token. Once we obtain our language
embeddings, our goal is to align them so that semantically similar words, even
those from other languages, are embedded nearby. To accomplish this, we use
a multilingual masked language model, where we randomly mask words and
then predict them based on context. Unlike similar masking approaches used
to train models such as BERT [13], we mask words of sentences from any two
languages, say German and Chinese, which are semantically similar sentences
referring to the same image, and use the context from each to predict both
masked tokens. To further encourage cross-language alignment, we also use an
adversarial language classifier and neighborhood constraints that have been used
in prior work [23]. These universal language embeddings are provided as input to
a multimodal model that learns to relate them to images. Finally, we use a cross-
lingual consistency module that uses machine translations to reason about the
image-sentence similarity across multiple languages, which we show significantly
boosts performance. Figure 2 contains an overview of our model.

We use bidirectional image-sentence retrieval as the primary evaluation of
our multilingual language representation. In this task, the goal is to retrieve a
relevant sentence from a database given an image or to retrieve a relevant image
from a database given a sentence. We augment current multilingual datasets
Multi30K [6,14,15,43] and MSCOCO [27,28,31] using machine translations so
that every image has at least five sentences across ten diverse languages: En-
glish (En), German (De), French (Fr), Czech (Cs), Chinese (Cn), Japanese (Ja),
Arabic (Ar), Afrikaans (Af), Korean (Ko), and Russian (Ru). See the supple-
mentary for details on our data augmentation procedure. This constitutes the
highest number of languages used in multilingual learning for vision-language
tasks to date, supporting more than double the number of visually-semantically
aligned languages compared to prior work [5,11,16,23,36,41].

We list the contributions of our work below:

– SMALR, a scalable multilingual model for training visually-semantically
aligned word embeddings that outperforms the state-of-the-art on multi-
lingual image-sentence retrieval while also requiring few model parameters.

– A comparison to four types of vocabulary reduction methods that serve as
baselines to complement our evaluation against prior work.
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Fig. 2: The contributions of SMALR are in blue: a Hybrid Embedding Model
(HEM), a Masked Cross-Language Model (MCLM), and a Cross-Lingual Con-
sistency stage (CLC). HEM embeds input sentences as a mixture of language-
specific and language-agnostic representations using a hard attention mecha-
nism. The MCLM component provides an additional loss to enforce language
alignment, while also augmenting the original dataset with masked sentences

– A Masked Cross-Language Modeling (MCLM) procedure that further aligns
the multilingual embedding, stabilizing variance in performance over all lan-
guages, and serves as an additional data augmentation technique.

– A Cross-Lingual Consistency (CLC) module, the first of its kind, that learns
how to aggregate an ensemble of predictions across languages made with
machine translations, which, combined with our SMALR architecture, results
in a total improvement over the state-of-the-art by 3-4%.

2 Related Work

Transformer [39] based representation learning models have become increasingly
popular since the release of BERT [13]. BERT transfers surprisingly well to other
languages, despite having no multilingual training data or explicit multilingual
loss [42]. However, [33] demonstrates that there is an unequal transfer between
different language pairs, notably those with typological differences to English.
Both BERT and M-BERT, its multilingual extension, have been shown to be
dependent on the number of parameters in the model, which reaches 110M pa-
rameters for the smaller base model [21]. Thus, as also shown in [1], a large
number of additional parameters is needed to counter the performance degrada-
tion caused by training with many languages. Using the better performing large
BERT model is impractical for many vision-language tasks as it contains 340M
parameters, leaving little room in many GPUs memory for anything else.

Along with language-only BERT variants, a burst of multimodal BERT-like
models have been designed specifically for vision-language tasks [26,29,37,38].
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More traditional word embedding models have also been designed for multimodal
tasks with the use of either visual-word co-occurrence frequencies [19], multi-task
training [32], or both [8], and require significantly less training data to reach
similar performance. While these efforts evaluate on many multimodal tasks such
as Visual Question Answering [3], Visual Commonsense Reasoning [44], Phrase
Grounding [34], and more, they only train and evaluate on a single language.

Recently, several multilingual methods have shown better performance on
vision-language tasks than complicated transformer-based methods. LIWE [41]
is a light-weight character embedding model that can represent many languages
with few model parameters. LIWE uses a bidirectional gated recurrent unit
(GRU) [9] to aggregate 24-D character embeddings for a text query that is en-
couraged to closely embed semantically similar images and sentences in other
languages. Although LIWE represents a single language well, it suffers from
significant performance loss when co-training on multiple languages as shown
in Figure 1(b). Gella et al . [16] learns how to relate an image to language-
specific representations and also constrain semantically similar sentences across
languages to embed nearby each other. MULE [23] learns a universal language
embedding so that it can use a single language branch in the multimodal model,
significantly reducing the number of parameters required to represent each lan-
guage compared to Gella et al . In addition, MULE combined the same cross-
lingual constraints used in both Gella et al . and LIWE with an adversarial
language classifier to further encourage alignment across languages. This results
in a model that slightly improves performance as more languages are added as
shown Figure 1(b). However, MULE learns a word-level embedding that requires
significantly more parameters than LIWE (approximately 8x more with ten lan-
guages), and thus capacity concerns remain when scaling to many languages.

3 Scalable Multilingual Aligned Language Representation

In this section we describe how we train our Scalable Multilingual Aligned Lan-
guage Representation (SMALR) to bridge the gap between scalability and down-
stream vision-language task performance. To accomplish this, we assume we are
provided with an image and sentences that describe it in multiple languages.
The intuition behind our model is to first learn a universal language embedding
which represents all languages, and then learn to relate it to corresponding im-
ages using a multimodal model. In our experiments our multimodal model uses a
modified version [23] of the Embedding Network architecture [40], although our
approach can be easily adapted to use other multimodal models. After obtaining
image and sentence features, the Embedding Network uses two branches, one for
each modality, and projects them into a joint semantic space where distances are
meaningful. The image branch consists of two fully connected layers, while the
language branch obtains a sentence representation by passing the final hidden
state of a GRU through a fully connected layer.

Our approach is architecturally similar to MULE [23], but with notable
distinctions. First, MULE learned a unique word embedding for every word
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in every language (i.e., no shared tokens), whereas we learn an efficient uni-
versal embedding with our Hybrid Embedding Model (HEM) that consists of
a mix of language-agnostic and language-specific word representations (Sec-
tion 3.1). Then, we align our language representations using a novel Masked
Cross-Language Model (MCLM) (Section 3.2) on both the input of the mul-
timodal model and the final language representation of the multimodal model.
This acts to supplement the neighborhood constraints, adversarial language clas-
sifier, and image-sentence matching losses used by MULE that we briefly review
in Section 3.3. Finally, we also propose a Cross-Lingual Consistency (CLC) mod-
ule that boosts model performance in downstream vision-language tasks using
machine translation (Section 3.4). See Fig. 2 for an overview of our approach.

3.1 Efficient Multilingual Learning with a Hybrid Embedding
Model

A significant challenge in multilingual representation learning is scaling to many
languages, especially when there is a wide disparity in the available training data
of different languages. This is more apparent for vision-language tasks where an-
notations are very expensive to collect, making it more difficult to learn a good
visually-semantically aligned language representation than in monolingual set-
tings [8,26]. Inspired by work in low-resource neural machine translation [18], we
propose a Hybrid Embedding Model (HEM) which projects low-frequency words
across languages into a shared latent vocabulary, while allowing the top-K most
frequent words in each language to maintain their own unique (language-specific)
representation. The output of the HEM is the universal language embedding that
is used as input to the multimodal model in Fig. 2 and is also used in the lan-
guage alignment losses (Section 3.2 and Section 3.3). The value of K can be
determined experimentally for any targeted downstream task; we use K = 5000.

The language-specific word embeddings used for common words roughly fol-
low the implementation used in prior work [18,23]. We begin by using a monolin-
gual pretrained FastText embedding [11] that has been reduced from 300-D to
50-D using Principal Component Analysis (PCA) [30]. These reduced features
are used as input to a fully connected layer that projects them into a 512-D uni-
versal embedding space that we align across languages; the alignment is applied
with the language-agnostic representations as well (see Section 3.2 and 3.3 for
details on our language alignment procedures).

While our language-agnostic representation is similar to Gu et al . [18], it
has some key differences. Specifically, Gu et al . project all words into a univer-
sal embedding space with learned language-specific mappings. A soft-attention
module is used over the universal embedding features (as it assumes an aligned
cross-lingual input) to obtain mixing weights; these weights are then used to
combine the language-agnostic features. While this does enable feature sharing
across languages, it does not reduce the number of trainable parameters in the
network, as a language-specific representation is still necessary for all words in
the vocabulary. Additionally, aggregating the features in the latent vocabulary
using soft-attention weights per-word is costly, especially for large vocabularies.
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Instead, we perform a pretraining step where we learn both the initial represen-
tation of the latent vocabulary as well as how to assign the infrequent words to
entries in it. We use a hard attention mechanism that is directly predicted from
FastText features, in which each vocabulary word is mapped to only a single
language-agnostic token, as opposed to an interpolation of many. This allows us
to avoid both computing a language-specific representation for the uncommon
words and aggregating the latent vocabulary features on a per-word basis.

To obtain our latent shared vocabulary in the pretraining step, we learn to
embed semantically similar sentences near each other using a triplet loss. More
formally, given a triplet of items (x, y+, y−) that can be decomposed into a
positive pair (x, y+) and a negative pair (x, y−), a triplet loss is computed as:

Ltriplet(x, y
+, y−) = max(0,m+ d(x, y+)− d(x, y−)) (1)

where d(x, y) is a distance function, and m is a scalar parameter. We use cosine
distance for all triplet losses and set m = 0.05. Following the methodology
of [23,40], we construct minibatches by providing semantically similar sentence
pairs as input and consider any non-paired sentence as a negative example. These
negatives are randomly sampled from each minibatch. We enumerate all triplets
in the minibatch and compute the loss over the top-N most violated constraints,
where N = 10 in our experiments. Note that these sentences may not come
from the same language, so sentences referring to the same image in different
languages are also used as positive pairs. To predict which latent embedding
we map a source word to, we use sentence representations obtained by feeding
FastText embeddings into a fully connected layer. With this mapping, we average
the latent embeddings of each word for use in Eq. (1) during the pretraining step,
which has been shown to be an efficient, high-performing representation [4,8].

Instead of deterministically mapping to the latent token which achieves the
best score, we randomly choose from the top M scoring tokens with probability
p, which we refer to as exploration parameters. This helps ensure that spurious
mappings are not learned, typically resulting in a 2% performance improvement
(see supplementary for a detailed comparison). While we freeze the latent token
assignments when training the full model, we allow the features themselves to
be fine-tuned. Our experiments use a latent vocabulary size of 40K tokens, with
exploration parameters p = 0.2, M = 20. In practice not all latent tokens are
used at the end of pretraining; these are dropped when training the full model.

3.2 Masked Cross-Language Modeling (MCLM)

Masked Language Modeling has proven to be useful in training language rep-
resentations by masking some tokens of an input sentence and then trying to
predict the missing tokens [13]. We present a generalization of this approach
to a multilingual scenario to encourage stronger cross-language alignment. In
MCLM, we assume we have paired sentences across different languages. These
sentences need not be direct translations of each other, but, as our experiments
will show, they simply need to be semantically related. This is important as
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vision-language datasets do not always have paired text queries that are direct
translations, but are often independently generated instead (e.g . [15,31,27]).

Traditional Masked Language Modeling makes predictions about a single
masked token using its surrounding words as context. The words immediately
surrounding a token referring to the same entity between sentences in different
languages may vary greatly due to differences in grammar. Thus, even using a
dictionary between languages to identify word correspondences may not provide
useful context. Instead, we use the intuition that semantically similar sentences
should contain comparable information across languages, so a sentence in one
language could be used as context to predict missing information in another.
Conneau et al . [10] similarly use masking for improved language alignment.
However, our approach does not require parallel data and may sample amongst
any of the languages. Lastly, unlike [10] which computes its loss on the predicted
word, our objective in Eq. (2) is computed on the fully reconstructed sentences.

More formally, for a pair of languages (i, j), we obtain sentences (Si, Sj) such
that both sentences describe the same image (i.e., they are semantically similar
to each other). Then, we randomly replace some portion of their words with
a special MASK token to obtain masked representations (Sm

i , S
m
j ). These are

concatenated together and fed into a fully connected layer that is shared across
language pairs to predict the missing information in both sentences (S

′

i , S
′

j). Our
MCLM loss then compares this to the unmasked sentences, i.e.,

Lmask = ||`2(Sm
i + S

′

i)− `2(Si)||+ ||`2(Sm
j + S

′

j)− `2(Sj)||, (2)

where `2 identifies vectors forced to have unit norm. Both average embedding
and LSTM representations are used; details can be found in the supplementary.
We compute the masking loss in Eq. (2) for all unique pairs of languages in our
experiments, and found masking 20% of the words in the sentences worked best.

3.3 Multilingual Visual-Semantic Alignment

In this section we briefly review the visual-semantic alignment constraints used
by MULE [23] that we also employ. First, we use neighborhood constraints [40]
that we shall refer to as Lnc to encourage similar sentences to embed nearby
each other using a triplet loss (i.e., Eq. (1)). Just as with the MCLM module
described in Section 3.2, these neighborhood constraints are applied to both the
universal language embedding (i.e., the output of the HEM module) as well as
the final language representation from the multimodal model as shown in Fig. 2.
The second component of the MULE alignment constraint consists of an adver-
sarial language classifier. We shall refer to this classifier loss as Ladv, using the
approach of [23], whose goal is to ensure that the representations of the differ-
ent languages in the universal embedding have similar feature distributions. The
last component of the MULE constraint is used to train the multimodal model
to embed the images and sentences near each other using a triplet loss. This
uses a bidirectional triplet loss function, i.e., for image I and paired sentences
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(Q+, Q−) representing a positive and negative sentence pair, respectively, and
sentence Q and its paired images (I+, I−), this multimodal loss would be,

Lmm = Ltriplet(I,Q
+, Q−) + λ1Ltriplet(Q, I

+, I−) (3)

where λ1 is a scalar parameter, which we set to 1.5 in our experiments. In
addition to using the unmasked sentence representations for the multimodal
loss, we observe that most sentences retain their overall semantic meaning if you
remove just a few words at random. Using this intuition, we also compute Eq. (3)
using the masked sentences (Sm

i , S
m
j ) from the MCLM module, which we found

provides a small, but consistent improvement to performance. As a reminder, all
triplet losses use the implementation details (e.g . hyperparameter settings and
hard-negative mining) as described in the first part of Section 3. Our total loss
function to train SMALR is then,

LSMALR = Lmm + λ2Lmask + λ3Ladv + λ4Lnc (4)

where λ2−4 are scalar parameters that we set to (1e-4, 1e-6, 5e-2), respectively.

3.4 Cross-Lingual Consistency

Prior work on multilingual vision-language tasks has primarily focused on how to
change training procedures or architectures to support multiple languages, and
does not fully take advantage of this multilingual support at test time. In par-
ticular, we argue that semantically similar sentences in different languages may
capture complementary information, and therefore, considering the predictions
made in other languages may improve performance. We validate our intuition by
obtaining machine translations of a query in the other languages supported by
our model. More formally, suppose we have a set of languages L. Given a query
q in language li ∈ L, we translate q to all other supported languages in L \ {li}
and use this as input to our Cross-Lingual Consistency (CLC) module.

We propose two variants of CLC: CLC-A and CLC-C. CLC-A simply averages
matching scores over all languages, and does not require any additional param-
eters. CLC-C, on the other hand, uses a small Multilayer Perceptron (MLP) to
aggregate the scores of each language, which enables us to consider the relative
information present in each language’s predictions. This MLP has two layers
with input size |L| and 32 hidden layer units (i.e., it has 352 learnable parame-
ters) and all parameters are initialized with uniform weight. We train the CLC-C
module separately to SMALR using the validation set for 30 iterations. No mini-
batches are employed (i.e., it is trained with all image-sentence pairs at once)
and it is trained using the multimodal triplet loss described in Eq. (3).

4 Experimental Setup

Datasets. SMALR is evaluated on bidirectional retrieval with Multi30K [6,14,15]
and MSCOCO [27,28,31]. The Multi30K dataset is built off of Flickr30K [43],
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which originally contained 31,783 images and five English descriptions per im-
age. [6,14,15] obtained annotations in German, French, and Czech, resulting in a
four-language dataset. Multi30K contains five descriptions per image in English
and German, but only one per image in French and Czech; the latter two were
collected as human-generated translations of the English annotations. We use
the 29K/1K/1K train/test/val splits from the original dataset [43].

MSCOCO is approximately four times the size of Multi30K, with 123,287
images. There are five human-generated captions per image in English, but sig-
nificantly fewer in Chinese and Japanese. YJ Captions [31] introduced Japanese
annotations for MSCOCO, but only provides five captions per image for a subset
of about 26K images. [27] extended MSCOCO with a total of 22,218 Chinese
captions for 20,341 images. We use train/test/validation splits as defined in [23].

We augment both datasets with machine translations so every image con-
tains at least five sentences for ten languages: English, German, Czech, French,
Chinese, Japanese, Arabic, Afrikaans, Korean, and Russian. All models we com-
pare to are trained using this augmented training set. For languages with no
human-generated sentences, we use machine translations at test time as well.
We found using translations at test time did not affect the relative performance
of different methods in our experiments. See the supplementary for details.

Visual Features. We use ResNet-152 [20] features trained on ImageNet [12] as
input to the Embedding Network (EmbN) [40]. As done in [23], we average visual
features over ten 448x448 image crops. This generates an image embedding of
size 2048, which is then passed through a pair of fully connected layers. The
resulting 512-D embedding can be used in the shared image-sentence embedding
space. The learning rate was set to 1e−3 for the HEM and LA models; remaining
hyperparameters are consistent with those in [23].

Note that all LIWE [41] experiments use bottom-up Faster R-CNN [35] visual
features trained on Visual Genome [25]. This represents a significant increase in
the annotation cost compared to our approach, which doesn’t use these anno-
tations. Visual Genome also contains MSCOCO [28] images, which means that
there is train/test contamination, as LIWE’s features are extracted using the
pretrained, publicly available model from [2].

Metrics. For our results, we report the mean Recall (mR) across Recall@K, with
K ∈ [1, 5, 10], for both the image-sentence and sentence-image directions per
language. All recall values can be found in the supplementary. We also provide
an average mR across all languages to serve as a global performance metric: “A”
in Tables 1 and 2. The human average, “HA,” refers to the average mR over the
languages which have human-generated annotations (i.e. English, Chinese, and
Japanese for MSCOCO, and English, German, French, and Czech for Multi30K).

Comparative Evaluation. We compare the following methods:

– Frequency Thresholding: We drop words that occur fewer than t times
in the training set. Results are reported in Figure 3.

– PCA Reduction: We use PCA [30] to reduce the size of the initial 300-D
FastText word embeddings. Results are reported in Figure 3.
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– Dictionary Mapping: We map words that occur fewer than t times in non-
English languages to English using dictionaries [11]. By mapping rare words
in other languages to English, some information may be lost, but the token
will still exist indirectly in the vocabulary. Results are reported in Figure 3.

– Language-Agnostic (LA): We compare to only using a latent vocabulary
as described in Section 3.1 with 40K tokens, i.e. not using any language
specific features. Results are in Tables 1 and 2.

– HEM: We evaluate our full hybrid embedding model (Section 3.1), which
uses a mix of language-agnostic and language-specific representations. This
baseline does not include MCLM nor CLC. Results are in Tables 1 and 2.

– SMALR: Our base SMALR is composed of the HEM (Section 3.1) and
MCLM (Section 3.2) components of our model. We compare to our complete
SMALR which makes use of CLC variants (CLC-A and CLC-C, described
in Section 3.4). Results are in Tables 1 and 2.

Note that the first line of Tables 1 and 2, Trans To En, refers to using machine
translation on non-English sentences, and then using an English-only trained
Embedding Network [40], providing a strong baseline method to compare to.

5 Multilingual Image-Sentence Retrieval Results

We provide results for MSCOCO and Multi30K in Table 1 and Table 2, respec-
tively, which contain comparisons to prior work on fewer languages (a), adap-
tations of prior work to our setting (b), and our model variants (c). SMALR
obtains consistent performance gains when evaluating on ten languages over the
state-of-the-art (S-LIWE, line 3(b)) while also being more efficient than high-
performing models like MULE (line 5(b)). SMALR outperforms S-LIWE by
11 points on MSCOCO and 5.8 points on Multi30K (line 3(c) versus 3(b)).
A parameter comparison is later shown in Figure 3. SMALR’s initial Language-
Agnostic (LA) baseline alone is able to boost performance over previous scalable
method LIWE by 2-7 points. The HEM, which combines language-agnostic and
language-specific embeddings as described in Section 3.1, consistently improves
upon the fully language-agnostic vocabulary, even though they share the same
latent vocabulary size of 40K tokens. This points to the utility of our hybrid
embedding space, which improves performance upon LA by 3.4 average mR on
MSCOCO and 2.4 average mR on Multi30K while adding only a few parameters.

When MCLM losses are added, referred to as SMALR in Tables 1 and 2
(line 3(c)), mR improves for nearly all languages. This is significant, because we
find more compact models like LIWE degrade with additional languages when
using the same number of parameters (S-LIWE). The LA baseline is still able
to outperform L-LIWE on MSCOCO and Multi30K, in which LIWE learns an
embedding five fold larger to try to compensate for the increased number and
diversity of languages (120-D instead of 24-D embedding). This suggests that the
masking process may help regain some semantic information that is lost when
tokens are mapped to the language-agnostic space.
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Table 1: MSCOCO multilingual bidirectional retrieval results. (a) contains re-
sults from prior work, (b) contains reproductions of two state-of-the art methods
evaluated for our scenario using their code, and (c) contains variants of our model

Model En De1 Fr1 Cs1 Cn Ja Ar1 Af1 Ko1 Ru1 HA A

(a) Trans. to En [23] 75.6 – – – 72.2 66.1 – – – – 71.3 –
EmbN [40] 76.8 – – – 73.5 73.2 – – – – 74.5 –
PAR. EmbN [16] 78.3 – – – 73.5 76.0 – – – – 75.9 –
MULE [23] 79.5 – – – 74.8 76.3 – – – – 76.9 –

(b) (1) S-LIWE [41]2 80.9 – – – – 73.6 – – – – – –
(2) S-LIWE2 77.4 – – – – 66.6 – – – – – –
(10) S-LIWE2 77.3 67.4 68.5 66.9 64.5 65.8 63.8 66.2 63.1 63.6 69.2 66.7
(10) L-LIWE2 79.1 71.2 70.3 70.1 70.0 69.6 67.5 68.9 66.2 69.6 72.9 70.3
MULE [23] 79.0 77.2 76.8 77.8 75.6 75.9 77.2 77.8 74.3 77.3 76.8 76.9

(c) Language-Agnostic 75.0 74.3 74.1 73.4 72.3 72.1 74.4 74.7 71.6 72.7 73.1 73.5
HEM 78.7 77.3 76.4 77.9 76.7 76.3 77.0 76.7 75.5 77.0 77.3 76.9
SMALR 79.3 78.4 77.8 78.6 76.7 77.2 77.9 78.2 75.1 78.0 77.7 77.7
SMALR-CLC-A 81.2 – – – 79.6 75.0 – – – – 78.6 –
SMALR-CLC-C 81.5 – – – 80.1 77.5 – – – – 79.7 –

1uses translations from English for testing
2visual features trained using outside dataset that includes some test images

We next evaluate two CLC variants that use machine translations at test
time (described in Section 3.4) on top of SMALR: an average ensemble over all
languages (CLC-A), and a weighted ensemble which makes use of a simple clas-
sifier (CLC-C). CLC-A uses no additional test-time parameters, and increases
the human average performance by 1-3 points, with a larger gain on Multi30K.
This may be because more languages can be leveraged on Multi30K (four versus
three, compared to MSCOCO). Surprisingly, English performance improves the
most amongst CLC-A metrics on Multi30K, demonstrating that certain image-
sentence pairs can be better retrieved from the queries in other languages, which
may better capture the visual semantics of the same image. CLC-C further im-
proves the human average over CLC-A by 0.9 points on MSCOCO and 0.5 points
on Multi30K, using negligible additional parameters.

Parameter reduction method comparison. We present a comparison of
baseline vocabulary reduction techniques, described in Section 4, against prior
works LIWE and MULE, in addition to our method SMALR (consisting of only
HEM and MCLM components in Figure 3). The frequency thresholding and dic-
tionary mapping labels represent the threshold with which we drop infrequent
words or map them to English (e.g . the blue 50 data point represents dropping
words that occur fewer than 50 times). PCA point labels represent the dimen-
sionality we reduce our input vectors to (e.g . 300D → 50D, 100D, or 200D).

In our comparison of vocabulary reduction methods, frequency thresholding
with t = 50 and vanilla language-agnostic vocabularies (LA) obtain better per-
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Table 2: Multi30K multilingual bidirectional retrieval results. (a) contains results
from prior work, (b) contains reproductions of two state-of-the art methods
evaluated for our scenario using their code, and (c) contains variants of our
model

Model En De Fr Cs Cn1 Ja1 Ar1 Af1 Ko1 Ru1 HA A

(a) Trans. to En [23] 71.1 48.5 46.7 46.9 – – – – – – 53.3 –
EmbN [40] 72.0 60.3 54.8 46.3 – – – – – – 58.4 –
PAR. EmbN [16] 69.0 62.6 60.6 54.1 – – – – – – 61.6 –
MULE [23] 70.3 64.1 62.3 57.7 – – – – – – 63.6 –

(b) (1) S-LIWE [41]2 76.3 72.1 – – – – – – – – – –
(2) S-LIWE2 75.6 66.1 – – – – – – – – – –
(10) S-LIWE2 75.2 65.2 51.8 50.0 54.1 56.2 62.7 62.8 54.5 63.1 60.6 59.6
(10) L-LIWE2 75.9 66.7 53.3 51.3 56.9 56.3 65.0 63.7 57.1 65.4 61.9 61.2
MULE [23] 70.7 63.6 63.4 59.4 64.2 67.3 65.8 67.3 63.6 65.4 64.3 65.1

(c) Language-Agnostic 65.5 61.3 59.9 54.0 59.4 64.7 63.9 66.5 60.3 60.3 60.2 61.6
HEM 69.2 62.8 63.3 60.0 62.4 66.3 64.5 66.8 62.3 62.6 63.8 64.0
SMALR 69.6 64.7 64.5 61.1 64.0 66.7 66.0 67.4 64.2 65.7 65.0 65.4
SMALR-CLC-A 74.1 68.9 65.2 64.5 – – – – – – 68.2 –
SMALR-CLC-C 74.5 69.8 65.9 64.8 – – – – – – 68.7 –

1uses translations from English for testing
2visual features trained using outside dataset

formance than both LIWE variants on Multi30K, without adding significantly
more parameters, as shown on the right of Figure 3. While more model parame-
ters are needed for MSCOCO, due to the increased vocabulary size, all baselines
and prior work MULE significantly outperform LIWE. This demonstrates that
more-complex character-based models do not necessarily obtain competitive per-
formance with few parameters when addressing a larger multilingual scenario.

SMALR outperforms all baselines for MSCOCO, as seen on the left of Fig-
ure 3, outperforming S-LIWE by over 10 points and using fewer parameters
than L-LIWE. We also find that average mean recall performance on MSCOCO
is more robust to vocabulary reduction, with a maximum range of about 1.5
average mR between the most extreme reduction and the least. We believe this
may be due to the size discrepancy between the two datasets, as MSCOCO is
approximately four times the size of Multi30K. PCA reduction appears to have
a more linear effect as parameters increase on both datasets. Since Multi30K
performance is more sensitive to the number of parameters, it is significant that
our SMALR model, in green, (which does not yet make use of our cross-lingual
consistency module in Figure 3) outperforms all other models while having less
than 20M parameters, 1/5th the parameter count of high performing MULE.

In addition to SMALR outperforming MULE on both datasets while using
significantly fewer trainable parameters, we find MULE even fails to outperform
simple baselines such as dictionary mapping on MSCOCO. This exposes that
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Fig. 3: We compare three types of vocabulary reduction: frequency thresholding,
PCA dimensionality reduction, and mapping rare words to English with the use
of dictionaries. The left-hand side evaluates on MSCOCO, the right on Multi30K.
We have additional standalone points for the small LIWE (S-LIWE), large LIWE
(L-LIWE), MULE, language agnostic vocabulary (LA), and our model, SMALR

the large number of parameters used in MULE are unnecessary for performance
gains. While SMALR uses more parameters during training than S-LIWE, we
have far fewer test-time parameters. We reduce the computation needed for
evaluation by using precomputed language representations from training. This
reduces the entire SMALR model to the image-sentence matching model with
our CLC add-on, totaling only 7.1M parameters, now fewer than S-LIWE.

6 Conclusion

We have presented a Scalable Multilingual Aligned Representation (SMALR),
which addresses the trade-off between multilingual model size and downstream
vision-language task performance. Our approach is modular, and thus can be
used as a drop-in language representation for any vision-language method/task.
SMALR outperforms all prior work on the task of multilingual image-sentence
retrieval on average across ten diverse languages, with the use of a hybrid embed-
ding model, masked cross-language modeling loss, and cross-lingual consistency
module. Our hybrid embedding model significantly reduces the input to a lan-
guage model by mapping most tokens to a fixed size, shared vocabulary. The
masking procedure aligns our diverse set of languages and uses the multimodal
model to provide additional alignment with visual grounding. We find that both
cross-lingual consistency modules better aggregates retrieved results, boosting
performance with minimal additional parameters. This is all accomplished with
less than 20M trainable parameters, significantly reducing oversized prior work
by 1/5th, while improving performance over the state-of-the-art by 3-4%.
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