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Abstract. High-quality and complete 4D reconstruction of human ac-
tivities is critical for immersive VR/AR experience, but it suffers from
inherent self-scanning constraint and consequent fragile tracking under
the monocular setting. In this paper, inspired by the huge potential of
learning-based human modeling, we propose RobustFusion, a robust hu-
man performance capture system combined with various data-driven vi-
sual cues using a single RGBD camera. To break the orchestrated self-
scanning constraint, we propose a data-driven model completion scheme
to generate a complete and fine-detailed initial model using only the
front-view input. To enable robust tracking, we embrace both the ini-
tial model and the various visual cues into a novel performance capture
scheme with hybrid motion optimization and semantic volumetric fusion,
which can successfully capture challenging human motions under the
monocular setting without pre-scanned detailed template and owns the
reinitialization ability to recover from tracking failures and the disappear-
reoccur scenarios. Extensive experiments demonstrate the robustness of
our approach to achieve high-quality 4D reconstruction for challenging
human motions, liberating the cumbersome self-scanning constraint.

Keywords: Dynamic Reconstruction; Volumetric Capture; Robust; RGBD
camera

1 Introduction

With the recent popularity of virtual and augmented reality (VR and AR) to
present information in an innovative and immersive way, the 4D (3D spatial plus
1D time) content generation evolves as a cutting-edge yet bottleneck technique.
Reconstructing the 4D models of challenging human activities conveniently for
better VR/AR experience has recently attracted substantive attention of both
the computer vision and computer graphics communities.

Early solutions [53, 34, 27, 28, 52] requires pre-scanned templates or two to
four orders of magnitude more time than is available for daily usages such as
immersive tele-presence. Recent volumetric approaches have eliminated the re-
liance of a pre-scanned template model and led to a profound progress in terms of
both effectiveness and efficiency, by leveraging the RGBD sensors and high-end
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GPUs. The high-end solutions [7, 10, 9, 24, 61] rely on multi-view studio setup
to achieve high-fidelity reconstruction but are expensive and difficult to be de-
ployed, leading to the high restriction of the wide applications for daily usage.
Besides, a number of approaches [35, 22, 45, 60, 16, 65–67] adopt the most com-
mon single RGBD camera setup with a temporal fusion pipeline to achieve com-
plete reconstruction. However, these single-view approaches suffer from careful
and orchestrated motions, especially when the performer needs to turn around
carefully to obtain complete reconstruction. When the captured model is in-
complete, the non-rigid tracking in those newly fused regions is fragile, leading
to inferior results and impractical usage for VR/AR applications. On the other
hand, the learning-based techniques have achieved significant progress recently
for human attribute prediction using only the RGB input. This overcomes inher-
ent constraint of existing monocular volumetric capture approaches, since such
data-driven visual cues encode various prior information of human models such
as motion [6, 32, 25] or geometry [42, 2, 68]. However, researchers did not explore
these solutions to strengthen the volumetric performance capture.

In this paper, we attack the above challenges and propose RobustFusion – the
first human volumetric capture system combined with various data-driven visual
cues using only a single RGBD sensor, which does not require a pre-scanned
template and outperforms existing state-of-the-art approaches significantly. Our
novel pipeline not only eliminates the tedious self-scanning constraint but also
captures challenging human motions robustly with the re-initialization ability
to handle the severe tracking failures or disappear-reoccur scenarios, whilst still
maintaining light-weight computation and monocular setup.

To maintain the fast running performance for the wide daily usages, we utilize
those light-weight data-driven visual cues including implicit occupancy represen-
tation, human pose, shape and body part parsing. Combining such light-weight
data-driven priors with the non-rigid fusion pipeline to achieve more robust and
superior human volumetric capture is non-trivial. More specifically, to eliminate
the inherent orchestrated self-scanning constraint of single-view capture, we first
combine the data-driven implicit occupancy representation and the volumetric
fusion within a completion optimization pipeline to generate an initial complete
human model with fine geometric details. Such complete model is utilized to
initialize both the performance capture parameters and the associated human
priors. To enable robust tracking, based on both the initial complete model and
the various visual cues, a novel performance capture scheme is proposed to com-
bine the non-rigid tracking pipeline with human pose, shape and parsing priors,
through a hybrid and flip-flop motion optimization and an effective semantic vol-
umetric fusion strategy. Our hybrid optimization handles challenging fast human
motions and recovers from tracking failures and the disappear-reoccur scenarios,
while the volumetric fusion strategy estimates semantic motion tracking behav-
ior to achieve robust and precise geometry update and avoid deteriorated fusion
model caused by challenging fast motion and self-occulusion. To summarize, the
main contributions of RobustFusion include:
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– We propose a robust human volumetric capture method, which is the first to
embrace various data-driven visual cues under the monocular setting without
pre-scanned template, achieving significant superiority to state-of-the-arts.

– To eliminate the tedious self-scanning constraint, we propose a novel op-
timization pipeline to combine data-driven occupancy representation with
volumetric fusion only using the front-view input.

– We propose an effective robust performance capture scheme with human
pose, shape and parsing priors, which can handle challenging human motions
with reinitialization ability.

2 Related Work

Human Performance Capture. Marker-based performance capture systems
are widely used [55, 59, 56] but they are costly and quite intrusive to wear the
marker suites. Thus, markerless performance capture [5, 1, 54] technologies have
been widely investigated. The multi-view markerless approaches require studio-
setup with a controlled imaging environment [11, 48, 29, 23, 7, 24, 15], while recent
work [40, 38, 44] even demonstrates robust out-of-studio capture but synchroniz-
ing and calibrating multi-camera systems are still cumbersome. Some recent
work only relies on a light-weight single-view setup [64, 19, 63] and even en-
ables hand-held capture [20, 57, 37, 58] or drone-based capture [62, 60] for more
practical application of performance capture. However, these methods require
pre-scanned template model or can only reconstruct naked human model.

Recently, free-form dynamic reconstruction methods combine the volumetric
fusion [8] and the nonrigid tracking [49, 27, 71, 17]. The high-end solutions [10, 9,
61] rely on multi-view studio to achieve high-fidelity reconstruction but are diffi-
cult to be deployed for daily usage, while some work [35, 22, 18, 45–47] adopt the
most common single RGBD camera setting. Yu et al. [65, 66, 51] constrain the
motion to be articulated to increase tracking robustness, while HybridFusion [67]
utilizes extra IMU sensors for more reliable reconstruction. Xu et al. [60] fur-
ther model the mutual gains between capture view selection and reconstruction.
Besides, some recent work [36, 31] combine the neural rendering techniques to
provide more visually pleasant results. However, these methods still suffer from
careful and orchestrated motions, especially for a tedious self-scanning process
where the performer need to turn around carefully to obtain complete recon-
struction. Comparably, our approach is more robust for capturing challenging
motions with reinitialization ability, and eliminates the self-scanning constraint.
Data-driven Human Modeling Early human modeling techniques [43, 12]
are related to the discriminative approaches of performance capture, which take
advantage of data driven machine learning strategies to convert the capture prob-
lem into a regression or pose classification problem. With the advent of deep neu-
ral networks, recent approaches obtain various attributes of human successfully
from only the RGB input, which encodes rich prior information of human models.
Some recent work [6, 41, 32, 25, 26] learns the skeletal pose and even human shape
prior by using human parametric models [3, 30]. Various approaches [69, 50, 39,
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Fig. 1. The pipeline of RobustFusion. Assuming monocular RGBD input with various
data-driven human visual priors, our approach consists of a model completion stage
(Sec. 4) and a robust performance capture stage (Sec. 5) to generate live 4D results.

2, 68] propose to predict human geometry from a single RGB image by utilizing
parametric human model as a basic estimation. Several work [21, 33, 42] further
reveals the effectiveness of learning the implicit occupancy directly for detailed
geometry modeling. However, such predicted geometry lacks fine details for face
region and clothes wrinkle, which is important for immersive human modeling.
Besides, researchers [14, 13, 70] propose to fetch the semantic information of hu-
man model. Several works [64, 19, 63] leverage learnable pose detections [6, 32]
to improve the accuracy of human motion capture, but these methods rely on
pre-scanned template models. However, even though these visual attributes yield
huge potential for human performance modeling, researchers pay less attention
surprisingly to explicitly combine such various data-driven visual priors with
the existing volumetric performance capture pipeline. In contrast, we explore to
build a robust volumetric capture algorithm on top of these visual priors and
achieve significant superiority to previous capture methods.

3 Overview

RobustFusion marries volumetric capture to various data-driven human visual
cues, which not only eliminates the tedious self-scanning constraint but also
captures challenging human motions robustly handling the severe tracking fail-
ures or disappear-reoccur scenarios. As illustrated in Fig. 1, our approach takes
a RGBD video from Kinect v2 as input and generates 4D meshes, achieving
considerably more robust results than previous methods. Similar to [66, 61], we
utilize TSDF [8] volume and ED model [49] for representation.
Model Completion. Only using the front-view input, we propose to combine
the data-driven implicit occupancy network with the non-rigid fusion to elim-
inate the orchestrated self-scanning constraint of monocular capture. A novel
completion optimization scheme is adopted to generate a high-quality water-
tight human model with fine geometric details.
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Fig. 2. Model completion pipeline. Assuming the front-view RGBD input, both a par-
tial TSDF volume and a complete mesh are generated, followed by the alignment and
blending operations to obtain a complete human model with fine geometry details.

Motion Initialization. Before the tracking stage, we further utilize the water-
tight mesh to initialize both the human motions and the visual priors. A hybrid
motion representation based on the mesh is adopted, while various human pose
and parsing priors based on the front-view input are associated to the mesh.
Robust Tracking. The core of our pipeline is to solve the hybrid motion pa-
rameters from the canonical frame to current camera view. We propose a robust
tracking scheme which utilizes the reliable visual priors to optimize both the
skeletal and non-rigid motions in an iterative flip-flop manner. Our scheme can
handle challenging motions with the reinitialization ability.
Volumetric Fusion. After estimating the motions, we fuse the depth stream
into a canonical TSDF volume to provide temporal coherent results. Based on
various visual priors, our adaptive strategy models semantic tracking behavior
to avoid deteriorated fusion caused by challenging motions. Finally, dynamic
atlas [61] is adopted to obtain 4D textured reconstruction results.

4 Model Completion

To eliminate the orchestrated self-scanning constraint and the consequent fragile
tracking of monocular capture, we propose a model completion scheme using only
the front-view RGBD input. As illustrated in Fig. 2, our completion scheme
combines the data-driven implicit representation and the non-rigid fusion to
obtain a complete human model with fine geometry details.
Pre-processing. To generate high-fidelity geometry details, we utilize the tra-
ditional ED-based non-rigid alignment method [35, 60] to fuse the depth stream
into live partial TSDF volume. Once the average accumulated TSDF weight in
the front-view voxels reaches a threshold (32 in our setting), a data-driven occu-
pancy regression network is triggered to generate a watertight mesh from only
the triggered RGBD frame. To this end, we pre-train the PIFu [42] network us-
ing 1820 scans from Twindom, which learns a pixel-aligned implicit function by
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Fig. 3. The results of our model completion pipeline.

combining an image encoder and an implicit occupancy regression. To improve
the scale and pose consistency, both the depth image and the human parsing
image are added to the input of the image encoder.
Alignment. Note that the unique human prior can serve as a reliable reference
to eliminate the misalignment between the partial TSDF and the complete mesh
caused by their different input modalities. Thus, we adopt the double-layer mo-
tion representation [66, 61], which combines the ED model and the linear human
body model SMPL [30]. For any 3D vertex vc, let ṽc = ED(vc;G) denote the
warped position after ED motion, where G is the non-rigid motion field. As
for the SMPL model [30], the body model T̄ deforms into the morphed model
T (β,θ) with the shape parameters β and pose parameters θ. For any vertex
v̄ ∈ T̄, let W (T (v̄;β,θ);β,θ) denote the corresponding posed 3D position.
Please refer to [66, 61] for details about the motion representation.

To align the partial TSDF and the complete mesh, we jointly optimize the
unique human shape β0 and skeleton pose θ0, as well as the ED non-rigid motion
field G0 from the TSDF volume to the complete mesh as follows:

Ecomp(G0,β0,θ0) = λvdEvdata + λmdEmdata + λbindEbind + λpriorEprior. (1)

Here the volumetric data term Evdata measures the misalignment error between
the SMPL model and the reconstructed geometry in the partial TSDF volume:

Evdata(β0,θ0) =
∑
v̄∈T̄

ψ(D(W (T (v̄;β0,θ0);β0,θ0)), (2)

where D(·) takes a point in the canonical volume and returns the bilinear inter-
polated TSDF, and ψ(·) is the robust Geman-McClure penalty function.

The mutual data term Emdata further measures the fitting from both the
TSDF volume and the SMPL model to the complete mesh, which is formulated
as the sum of point-to-plane distances:

Emdata =
∑

(v̄,u)∈C
ψ(nT

u (W (T (v̄;β0,θ0))− u)) +
∑

(ṽc,u)∈P
ψ(nT

u (ṽc − u)), (3)

where C and P are the correspondence pair sets found via closest searching;
u is a corresponding 3D vertex on the complete mesh. Besides, the pose prior
term Eprior from [4] penalizes the unnatural poses while the binding term Ebind

from [66] constrains both the non-rigid and skeletal motions to be consistent. We
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Fig. 4. The pipeline of our robust performance capture scheme. We first initialize both
the motions and visual priors. Then, both skeletal and non-rigid motions are optimized
with the associated visual priors. Finally, an adaptive volumetric fusion scheme is
adopted to generated 4D textured results.

solve the resulting energy Ecomp under the Iterative Closest Point (ICP) frame-
work, where the non-linear least squares problem is solved using Levenberg-
Marquardt (LM) method with a custom designed Preconditioned Conjugate
Gradient (PCG) solver on GPU [18, 10].
TSDF Blending. After the alignment, we blend both the partial volume and
the complete mesh seamlessly in the TSDF domain. For any 3D voxel v, ṽ
denotes its warped position after applying the ED motion field; N(v) denotes
the number of non-empty neighboring voxels of v in the partial volume which
indicates the reliability of the fused geometry; D(v) and W(v) denote its TSDF
value and accumulated weight, respectively. Then, to enable smooth blending, we
calculate the corresponding projective SDF value d(v) and the updating weight
w(v) as follows:

d(v) = (u− ṽ)sgn(nT
u (u− ṽ)), w(v) = 1/(1 + N(v)). (4)

Here, recall that u is the corresponding 3D vertex of ṽ on the complete mesh and
nu is its normal; sgn(·) is the sign function to distinguish positive and negative
SDF. The voxel is further updated by the following blending operation:

D(v)← D(v)W(v) + d(v)w(v)

W(v) + w(v)
,W(v)←W(v) + w(v). (5)

Finally, as illustrated in Fig. 3, marching cubes algorithm is adopted to obtain a
complete and watertight human model with fine geometry details, which further
enables robust motion initialization and tracking in Sec. 5.

5 Robust Performance Capture

As illustrated in Fig. 4, a novel performance capture scheme is proposed to track
challenging human motions robustly with re-initialization ability with the aid of
reliable data-driven visual cues.
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Initialization. Note that the final complete model from Sec. 4 provides a reliable
initialization for both the human motion and the utilized visual priors. To this
end, before the tracking stage, we first re-sample the sparse ED nodes {xi} on
the mesh to form a non-rigid motion field, denoted as G. Besides, we rig the mesh
with the output pose parameters θ0 from its embedded SMPL model in Sec. 4
and transfer the SMPL skinning weights to the ED nodes {xi}. Then, for any
3D point vc in the capture volume, let ṽc and v̂c denote the warped positions
after the embedded deformation and skeletal motion, respectively. Note that
the skinning weights of vc for the skeletal motion are given by the weighted
average of the skinning weights of its knn-nodes. Please refer to [66, 30, 61] for
more detail about the motion formulation. To initialize the pose prior, we apply
OpenPose [6] on the RGBD image to obtain the 2D and lifted 3D joint positions,
denoted as P2D

l and P3D
l , respectively, with a detection confidence Cl.Then, we

find the closest vertex from the watertight mesh to P3D
l , denoted as Jl, which is

the associated marker position for the l-th joint. To utilize the semantic visual
prior, we apply the light-weight human parsing method [70] to the triggered RGB
image to obtain a human parsing image L. Then, we project each ED node xi

into L to obtain its initial semantic label li. After the initialization, inspired by
[64, 19], we propose to optimize the motion parameters G and θ in an iterative
flip-flop manner, so as to fully utilize the rich motion prior information of the
visual cues to capture challenging motions.
Skeletal Pose Estimation. During each ICP iteration, we first optimize the
skeletal pose θ of the watertight mesh, which is formulated as follows:

Esmot(θ) = λsdEsdata + λposeEpose + λpriorEprior + λtempEtemp. (6)

Here, the dense data term Esdata measures the point-to-plane misalignment error
between the warped geometry in the TSDF volume and the depth input:

Esdata =
∑

(vc,u)∈P

ψ(nT
u (v̂c − u)), (7)

where P is the corresponding set found via a projective searching; u is a sampled
point on the depth map while vc is the closet vertex on the fused surface. The
pose term Epose encourages the skeleton to match the detections obtained by

CNN from the RGB image, including the 2D position P2D
l , lifted 3D position

P3D
l and the pose parameters θd from OpenPose [6] and HMR [25]:

Epose = ψ(ΦT (θ − θd)) +

NJ∑
l=1

φ(l)(‖π(Ĵl)−P2D
l ‖22 + ‖Ĵl −P3D

l ‖22), (8)

where ψ(·) is the robust Geman-McClure penalty function; Ĵl is the warped
associated 3D position and π(·) is the projection operator. The indicator φ(l)
equals to 1 if the confidence Cl for the l-th joint is larger than 0.5, while Φ is
the vectorized representation of {φ(l)}. The prior term Eprior from [4] penalizes
the unnatural poses, while the temporal term Etemp encourages coherent defor-
mations by constraining the skeletal motion to be consistent to the previous ED
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motion:
Etemp =

∑
xi

‖x̂i − x̃i‖22, (9)

where x̃i is the warped ED node using non-rigid motion from previous iteration.
Non-rigid Estimation. To capture realistic non-rigid deformation, on top of
the pose estimation result, we solve the surface tracking energy as follows:

Eemot(G) = λedEedata + λregEreg + λtempEtemp. (10)

Here the dense data term Eedata jointly measures the dense point-to-plane mis-
alignment and the sparse landmark-based projected error:

Eedata =
∑

(vc,u)∈P

ψ(nT
u (ṽc − u)) +

NJ∑
l=1

φ(l)‖π(J̃l)−P2D
l ‖22, (11)

where J̃l is the warped associated 3D joint of the l-th joint in the fused surface.
The regularity term Ereg from [66] produces locally as-rigid-as-possible (ARAP)
motions to prevent over-fitting to depth inputs. Besides, the x̂i after the skeletal
motion in the temporal term Etemp is fixed during current optimization.

Both the pose and non-rigid optimizations in Eqn. 6 and Eqn. 10 are solved
using LM method with the same PCG solver on GPU [18, 10]. Once the confi-
dence Cl reaches 0.9 and the projective error ‖π(J̃l)−P2D

l ‖22 is larger than 5.0
for the l-th joint, the associated 3D position Jl on the fused surface is updated
via the same closest searching strategy of the initialization stage. When there is
no human detected in the image, our whole pipeline will be suspended until the
number of detected joints reaches a threshold (10 in our setting).
Volumetric Fusion. To temporally update the geometric details, after above
optimization, we fuse the depth into the TSDF volume and discard the vox-
els which are collided or warped into invalid input to achieve robust geometry
update. To avoid deteriorated fusion caused by challenging motion or reinitializa-
tion, an effective adaptive fusion strategy is proposed to model semantic motion
tracking behavior. To this end, we apply the human parsing method [70] to cur-
rent RGB image to obtain a human parsing image L. For each ED node xi,
recall that li is its associated semantic label during initialization while L(π(x̃i)
is current corresponding projected label. Then, for any voxel v, we formulate its
updating weight w(v) as follows:

w(v) = exp(
−‖ΦT (θ∗ − θd)‖22

2π
)

∑
i∈N (vc)

ϕ(li, L(π(x̃i)))

|N (vc)|
, (12)

where θ∗ is the optimized pose; N (vc) is the collection of the knn-nodes of
v; ϕ(·, ·) denote an indicator which equals to 1 only if the two input labels
are the same. Note that such robust weighting strategy measures the tracking
performance based on human pose and semantic priors. Then, w(v) is set to
be zero if it’s less than a truncated threshold (0.2 in our setting), so as to
control the minimal integration and further avoid deteriorated fusion of severe
tracking failures. Finally, the voxel is updated using Eqn. 5 and the dynamic
atlas scheme [61] is adopted to obtain 4D textured reconstruction.
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Fig. 5. 4D reconstructed results of the proposed RobustFusion system.

6 Experiment

In this section, we evaluate our RobustFusion system on a variety of challenging
scenarios. We run our experiments on a PC with a NVIDIA GeForce GTX
TITAN X GPU and an Intel Core i7-7700K CPU. Our optimized GPU code takes
15 s for the model completion. The following robust performance capture pipeline
runs at 123 ms per frame, where the visual priors collecting takes 90 ms, the flip-
flop optimization takes around 18 ms with 4 ICP iteration, and 15 ms for all the
remaining computations. In all experiments, we use the following empirically
determined parameters: λvd = 1.0, λmd = 2.0, λbind = 1.0, λprior = 0.01,
λsdata = 4.0, λpose = 2.0, λtemp = 1.0, λedata = 4.0 and λreg = 5.0. Fig. 5
demonstrates the results of RobustFusion, where both the challenging motion
and the fine-detailed geometry are faithfully captured.

6.1 Comparison

We compare our RobustFusion against the state-of-the-art methods DoubleFu-
sion [66] and UnstructuredFusion [61]. For fair comparison, we modify [61] into
the monocular setting by removing their online calibration stage. As shown in
Fig. 6, our approach achieves significantly better tracking results especially for
challenging self-occluded and fast motions. Then, we utilize the sequence from
[61] with available ground truth captured via the OptiTrack system to compute



RobustFusion 11

Fig. 6. Qualitative comparison. Our results overlay better with the RGB images.

Fig. 7. Quantitative comparison against UnstructuredFusion [61] and DoubleFu-
sion [66]. Left: the error curves. Right: the reconstruction results.

the per-frame mean error of all the markers as well as the average mean error
of the whole sequence (AE). As illustrated in Fig. 7, our approach achieves the
highest tracking accuracy with the aid of various visual priors.

We further compare against HybridFusion [67], which uses extra IMU sensors.
We utilize the challenging sequence with ground truth from [67] and remove
their orchestrated self-scanning process before the tracking stage (the first 514
frames). As shown in Fig. 8, our approach achieves significantly better result
than DoubleFusion and even comparable performance than HybridFusion only
using the RGBD input. Note that HybridFusion still relies on the self-scanning
stage for sensor calibration and suffers from missing geometry caused by the
body-worn IMUs, while our approach eliminates such tedious self-scanning and
achieves more complete reconstruction.

6.2 Evaluation

Model Completion. As shown in Fig. 9 (a), without model completion, only
partial initial geometry with SMPL-based ED-graph leads to inferior tracking
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Fig. 8. Quantitative comparison against HybridFusion [67] and DoubleFusion [66]. Left:
the error curves. Right: the reconstruction results.

Fig. 9. Evaluation of model completion. (a-c) are the results without completion, with
completion only using skeleton optimization and SMPL-based ED-graph, with our full
model completion, respectively. Each triple includes the output mesh, corresponding
ED-graph and the overlaid tracking geometry/texture results for a following frame.

results. The result in Fig. 9 (b) is still imperfect because only the skeletal pose
is optimized during completion optimization and only SMPL-based ED-graph is
adopted for motion tracking. In contrast, our approach with model completion
in Fig. 9 (c) successfully obtains a watertight and fine-detailed human mesh to
enable both robust motion initialization and tracking.

Robust Tracking. We further evaluate our robust performance capture scheme.
In Fig. 10, we compare to the results using traditional tracking pipeline [66,
61] without data-driven visual priors in two scenarios where fast motion or
disappear-reoccurred case happens. Note that our variation without visual priors
suffers from severe accumulated error and even totally tracking lost, while our
approach achieves superior tracking results for these challenging cases. Further-
more, we compare to the baseline which jointly optimizes skeletal and non-rigid
motions without our flip-flop strategy. As shown in Fig 11, our approach with
flip-flop strategy makes full use of the visual priors, achieving more robust and
visually pleasant reconstruction especially for the challenging human motions.
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Fig. 10. Evaluation of robust tracking. Our approach with various human visual priors
achieves superior results for challenging motions and has reinitialization ability.

Fig. 11. Evaluation of robust tracking. Our approach with the flip-flop optimization
strategy achieves more visually pleasant 4D geometry for challenging motions.

Adaptive Fusion. To evaluate our adaptive fusion scheme based on the pose
and semantic cues, we compare to the variation of our pipeline using traditional
volumetric fusion [35, 61, 67]. As shown in Fig. 12, the results without adaptive
fusion suffer from severe accumulated error, especially for those regions with
high-speed motions. In contrast, our adaptive fusion successfully models seman-
tic tracking behavior and avoids deteriorated fusion.

For further analysis of the individual components of RobustFusion, we utilize
the sequence with ground truth from [61]. We compute the per-frame mean
error for the three variation of our approach without model completion, prior-
based robust tracking and adaptive fusion, respectively. Fig 13 shows our full
pipeline consistently outperforms the three baselines, yielding the lowest AE.
This not only highlights the contribution of each algorithmic component but
also illustrates that our approach can robustly capture human motion details.

7 Discussion

Limitation. First, we cannot handle surface splitting topology changes like
clothes removal, which we plan to address by incorporating the key-volume up-
date technique [10]. Our method is also restricted to human reconstruction, with-
out modeling human-object interactions. This could be alleviated in the future
by combining the static object reconstruction methods into current framework.



14 Z. Su et al.

Fig. 12. Evaluation of the adaptive fusion. (a, d) Reference color images. (b, e) The
results without adaptive fusion. (c, f) The results with adaptive fusion.

Fig. 13. Quantitative evaluation. (a) Numerical error curves. (b) RGBD input. (c)-(e)
The results of three baselines without model completion, robust tracking and adaptive
fusion, respectively. (f) The reconstruction results of our full pipeline.

As is common for learning methods, the utilized visual cue regressions fail for
extreme poses not seen in training, such as severe and extensive (self-)occlusion.
Fortunately, our approach is able to instantly recover robustly with our reinitial-
ization ability as soon as the occluded parts become visible again. Our current
pipeline turns to utilize the data-driven cues in an optimization framework. It’s
an promising direction to jointly model both visual cues and volumetric capture
in an end-to-end learning-based framework.
Conclusions. We have presented a superior approach for robust volumetric hu-
man capture combined with data-driven visual cues. Our completion optimiza-
tion alleviates the orchestrated self-scanning constraints for monocular capture,
while our robust capture scheme enables to capture challenging human motions
and reinitialize from the tracking failures and disappear-reoccur scenarios. Our
experimental results demonstrate the robustness of RobustFusion for compelling
performance capture in various challenging scenarios, which compares favorably
to the state-of-the-arts. We believe that it is a significant step to enable robust
and light-weight human volumetric capture, with many potential applications in
VR/AR, gaming, entertainment and immersive telepresence.
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