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A Overview

This supplementary material contains:

– implementation details of our network modules (Sec. B);
– details of the competing methods, which consists of the baseline methods

and variants of our method (Sec. C).
– the data processing details of the three datasets used in the evaluation

(Sec. D).
– details of the quantitative measures for the evaluation (Sec. E).
– more visual results of our multimodal shape completion (Sec. F).

B Details of network modules

Table 1 shows the detailed architecture of our point set autoencoder(EAE, DAE)
and latent conditional GAN(G and F ). Note that we fuse the latent code of the
input partial shape and a Gaussian-sampled condition z by direct channel-wise
concatenation.

The variational autoencoder(EVAE, DVAE) shares the same architecture as
the plain autoencoder (EAE, DAE), while having an extra FC layer at the
bottleneck to squeeze the latent code to length |z| = 64 and enabling the re-
parameterization trick.

C Details of competing methods

In this section, we describe in detail the design of baseline methods and variants
of our method (namely KNN-latent, ours-im-l2z and ours-im-pc2z) in the
comparison experimetns.

KNN-latent. Given an input partial shape, we encode it into the latent space
formed by our point set encoder EAE and find its k-nearest neighbors based on
cosine similarity.

? Equal contribution



2 Rundi Wu, Xuelin Chen, Yixin Zhuang, and Baoquan Chen

Pointnet Encoder EAE

Layer Output Shape

Input point set (3, K)

Conv1D+BN+ReLU (64, K)

Conv1D+BN+ReLU (128, K)

Conv1D+BN+ReLU (128, K)

Conv1D+BN+ReLU (256, K)

Conv1D+BN+ReLU (128, K)

Global Max Pooling (128,)

Decoder DAE

Layer Output Shape

Latent code (128, )

FC+ReLU (256, )

FC+ReLU (256, )

FC+ReLU (2048×3, )

Reshape (3, 2048)

Generator G

Layer Output Shape

Concat(Latent code, z) (128+64,)

FC+lReLU (256,)

FC+lReLU (512,)

FC (128,)

Discriminator F

Layer Output Shape

Latent code (128,)

FC+lReLU (256,)

FC+lReLU (512,)

FC (1,)

Table 1. Left: the architecture of our point set autoencoder. Right: the architecture of
our latent conditional GAN. Conv1D: 1D convolution, BN: batch normalization, FC:
fully connected layer, Concat: channel-wise concatenation. K is the number of points.

ours-im-l2z. As a variant of our method, ours-im-l2z jointly trains the Ez

to implicitly model the multimodality by mapping the complete latent code xc

into a low-dimensional space. Hence, the latent space reconstruction loss Llatent
G,Ez

becomes:
Llatent
G,Ez

= EP∼p(P),z∼p(z)[‖z, Ez(G(EAE(P), z))‖1].

In addition to the loss terms of Eq. 6 in the main paper, to allow stochastic
sampling at test time, an additional Kullback-Leibler (KL) loss on the z space
is introduced to force Ez(xc) to be close to a Gaussian distribution:

LKL
Ez

= Exc∼Xc [DKL(Ez(xc)||N (0, 1))]

where DKL stands for Kullback-Leibler divergence. Hence the full training ob-
jective function becomes:

argmin
(G,Ez)

argmax
F

LGAN
F + LGAN

G + αLrecon
G + βLlatent

G,Ez
+ γLKL

Ez
(1)

The weight factors α and β are set to 6.0 and 7.5, same as those of our main
model, and γ is set to 1.0.

ours-im-pc2z. As stated in the main paper, ours-im-pc2z takes complete
point clouds as input to implicitly encode the multimodality. The full training
objective function is the same as that (Eq. 1) of ours-im-l2z, while the KL loss
term changes to:

LKL
Ez

= Exc∼Xc
[DKL(Ez(C)||N (0, 1))],

The architectures for ours-im-l2z and ours-im-pc2z are shown in Fig. 1.
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Fig. 1. Illustration for the two variants of our method: ours-im-l2z (top) and
ours-im-pc2z (bottom).

D Details of data processing

In this section, we provide data processing details for our three datasets, espe-
cially the acquisition of the complete and partial point clouds in each dataset.

PartNet. Original PartNet dataset[3] provides point clouds sampled from
shape mesh surface, along with semantic label for each point. The provided
point clouds of the complete shape serves directly as our complete shape data.
To create the partial shape data, for a shape with k parts, we randomly remove
j(1 ≤ j ≤ k − 1) parts by checking the semantic labels for all of its points.

PartNet-Scan. To resemble the scenario where the partial scan suffers from
part-level incompleteness, both the complete and partial point sets in PartNet-Scan

are obtained from virtual scan. Complete point sets are acquired by virtually
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scanning the complete shape mesh from 27 uniform views on the unit sphere.
Partial point sets are acquired by virtually scanning the partial shape mesh from
a single view that is randomly sampled. For each complete shape mesh in the
original PartNet dataset[3], we create 4 partial shape meshes using the same
principle as in PartNet. And for each partial shape mesh, we run the single-view
scan to get 4 partial point sets from different views.

3D-EPN. The provided point cloud representation directly serves as the partial
shape data. The complete shape data comes from the virtual scan of ShapeNet[2]
objects from 36 uniformly sampled views.

E Evaluation measures

Here we explain in detail the quantitative measures that we adopt for evalu-
ation, i.e. , Minimal Matching Distance (MMD), Total Mutal Difference (TMD),
and Unidirectional Haudorff Distance (UHD). Given a test set of partial shapes
Tp and a test set of complete shapes Tc. For each shape pi in Tp, we generate k
completed shapes cij , j = 1...k, resulting in a generated set Gc = {cij}. We set
k = 10 in all our quantitative evaluations.

MMD [1]. For each shape si in Tc, we find its nearest neighbor N(si) in Gc by
using Chamfer distance as the distance measure. MMD is then defined as

MMD =
1

|Tc|
∑
si∈Tc

dCD(si,N(si)),

where dCD stands for Chamfer distance. In practice, we sample 2048 points for
each shape for calculation.

TMD. For each of the k generated shapes cij(1 ≤ j ≤ k) from the same partial
shape pi ∈ Tp, we calculate its average Chamfer distance to the other k − 1
shapes and sum up the resulting k distances. TMD is then defined as the average
value over different input partial shapes in Tp:

TMD =
1

|Tp|

|Tp|∑
i=1

(

k∑
j=1

1

k − 1

∑
1≤l≤k,l 6=j

dCD(cij , cil))

=
1

|Tp|

|Tp|∑
i=1

(
2

k − 1

k∑
j=1

k∑
l=j+1

dCD(cij)).

UMD. We calculate the average unidirectional Hausdorff distance from the
partial shape pi ∈ Tp to each of its k completed shapes cij(1 ≤ j ≤ k):

UMD =
1

|Tp|

|Tp|∑
i=1

(
1

k

k∑
j=1

dHL(pi, cij)),

where dHL stands for unidirectional Hausdorff distance.
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F More results

We show more results of our multimodal shape completion method.

Fig. 2. More results of our multimodal shape completion. The input partial shape is
colored in grey, following by five different completions colored in yellow. From top to
bottom: PartNet (rows 1-3), PartNet-Scan (rows 4-6), and 3D-EPN (rows 7-9).
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