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1 Controlled experiments and analysis

In this section, we perform a detailed analysis of GSDN through various controlled
experiments. For all experiments, we use the same network architecture, and
train and validate the model on the ScanNet dataset [1]. We use the same
hyperparameters for all experiments except for one control variable and train all
networks for 60k iterations. Note that the performance of the networks trained for
60k iterations is lower than that of networks trained for 120k iterations reported
on the main paper.

1.1 Balanced cross entropy loss

One of the main challenges we face during training GSDN is the heavy class
imbalance of the sparsity and anchor labels. Such class imbalance is prevalent in
object detection and we adopt the balanced cross entropy, one of the well-studied
techniques that mitigate various problems associated with class imbalance, for
sparsity and anchor prediction. In this section, we demonstrate the effectiveness
of the balanced cross entropy loss by comparing it with the network trained with
the regular cross entropy loss for sparsity and anchor prediction. We present the
object detection result on the ScanNet validation set in Table 1. The balanced
cross entropy loss improves the performance of our network, especially the sparsity
prediction. This is due to the nature of our generative sparse tensor decoder
which adds cubically growing coordinates from all surface voxels, most of which
need to be pruned except for a few points that contain target anchor boxes.

Sparsity loss Anchor loss mAP@0.25 mAP@0.5

CE CE 33.1 9.26
BCE CE 50.7 25.4

BCE BCE 57.2 29.7

Table 1: The effectiveness of balanced cross entropy (BCE) and cross entropy
(CE) losses for generative sparse object detection.
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1.2 Sparsity pruning confidence

Our proposed generative sparse detection network predicts more proposals as
we lower the sparsity pruning confidence τ and we found that the threshold
τ has a significant impact on the performance. We analyze the effect of the
pruning confidence on average recall, mAP@0.25, and decoder runtime on the
ScanNet dataset in Figure 1. In this experiment, we train three models with
τ = {0.1, 0.3, 0.5} and test them on τ = {0.1, 0.2, . . . , 0.9}. For the pruning
confidences that do not have corresponding networks, we select the model trained
with the closest pruning confidence.

The general trend of Figure 1 is that smaller pruning confidences τ perform
better. Lower pruning confidences lead to more proposals and higher average
recall. Also, note that the average precision follows the similar trend, which
indicates that the performance is mostly capped by the recall, as shown in the
precision/recall curve in the main paper. Lastly, the decoder runs marginally
faster as the pruning confidence increases, since it generates fewer proposals.
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Fig. 1: Analysis of the impact of sparsity pruning confidence τ .

1.3 Encoder backbone models

We vary the sparse tensor encoder and analyze its impact on performance in
Table 2. As expected, GSDN with deeper encoder performs better. Additionally,
we plot the detailed runtime break-down of each component of our proposed model
with varying backbones in Figure 2. Overall, the decoder and post-processing
time stay almost constant while the encoder dominates the runtime.

1.4 Anchor ratios

We examine the impact of anchor ratios on the performance of our model
in Table 3. Overall, mAP@0.25 (mAP with IoU threshold of 0.25) improves
marginally as we use more anchors. However, the improvement of mAP@0.5
with more anchors is significant. mAP@0.5 considers a prediction box with
intersection-over-union greater than 0.5 with the corresponding ground-truth box
to be positives. In other words, it requires approximately 80% overlap between a
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backbone model mAP@0.25 mAP@0.5

ResNet14 52.1 25.4
ResNet18 55.1 27.8

ResNet34 57.2 29.7

Table 2: Analysis of the impact of different backbone models on performance.
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Fig. 2: Runtime breakdown of our model with varying backbones.

prediction and the ground-truth box for each of the three axes for the prediction
to be positive. Thus, more anchors allow the network to capture various ground
truth boxes more accurately and mAP@0.5 improves significantly.

anchor ratios mAP@0.25 mAP@0.5

ar ∈ {1} 56.3 22.7
ar ∈ {1, 4, 1

4
} 55.3 27.0

ar ∈ {1, 2, 4, 1
2
, 1
4
} 57.2 29.7

Table 3: Analysis of the impact of different anchor ratios on performance.

1.5 Generative Sparse Tensor Decoder

The key motivation and main contribution of our work is in dynamically gen-
erating sparse tensor coordinates to ground the object detection prediction on.
However, one may argue that simply making detection predictions on the ob-
served surface is sufficient. We disprove this hypothesis by building an ablation
model which directly makes predictions on the output of the Hierarchical Sparse
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Tensor Encoder without the proposed Generative Sparse Tensor Decoder. As
shown in Table 4, our proposed model outperforms the encoder-only baseline
with a significant margin.

backbone model mAP@0.25 mAP@0.5

No decoder 52.1 24.6
Ours 57.2 29.7

Table 4: Analysis of the impact of the proposed Generative Sparse Tensor Decoder.

2 Additional Results

2.1 Experiments on the ScanNet dataset

In Table 5, we report class-wise mAP@0.5 result on the ScanNet v2 validation set.
Our method outperforms two-state object detector, Qi et al. [3], despite being
a single-shot object detector. In Figure 3 and Figure 4, we compare qualitative
results on the ScanNet V2 validation set.

cab bed chair sofa tabl door wind bkshf pic cntr desk curt fridg showr toil sink bath ofurn mAP

Hou et al. [2] 5.06 42.19 50.11 31.75 15.12 1.38 0.00 1.44 0.00 0.00 13.66 0.00 2.63 3.00 56.75 8.68 28.52 2.55 14.60
Hou et al. [2] + 5 views 5.73 50.28 52.59 55.43 21.96 10.88 0.00 13.18 0.00 0.00 23.62 2.61 24.54 0.82 71.79 8.94 56.40 6.87 22.53
Qi et al. [3] 8.07 76.06 67.23 68.82 42.36 15.34 6.43 28.00 1.25 9.52 37.52 11.55 27.80 9.96 86.53 16.76 78.87 11.69 33.54

Ours 13.18 74.91 75.77 60.29 39.51 8.51 11.55 27.61 1.47 3.19 37.53 14.10 25.89 1.43 86.97 37.47 76.88 30.53 34.82

Table 5: Class-wise mAP@0.5 object detection result on the ScanNet v2 validation.

2.2 Stanford Large-Scale 3D Indoor Spaces Dataset

We visualize the precision/recall curve of our object detection result on the S3DIS
dataset in Figure 6. We observe that certain classes with extreme bounding box
ratios such as board and bookcase tend to underperform and have a very low
recall. In Figure 5, we visualize additional qualitative results of our method on
the S3DIS building 5.

2.3 Gibson environment

We demonstrate the scalability and generalization capability of our network
by testing a model trained on the ScanNet dataset which consists of 3D scans
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G.T. Hou et al. [2] Qi et al. [3] Ours

Fig. 3: Qualitative object detection results on the ScanNet dataset [1].
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G.T. Hou et al. [2] Qi et al. [3] Ours

Fig. 4: Qualitative object detection results on the ScanNet dataset [1].
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G.T. Ours G.T. Ours

Fig. 5: Qualitative object detection results on the S3DIS dataset.
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Fig. 6: Per-class object detection precision/recall curves of GSDN on the building
5 of the S3DIS dataset.
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Fig. 7: Runtime and peak memory usage analysis on 572 Gibson V2 environments.
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Fig. 8: Qualitative object detection results on the Gibson V2 environments.

of single-story rooms to the multi-story multi-room building in the Gibson
environment [5]. Since our network is fully-convolutional and is translation
invariant, our model perfectly generalizes to scenes without extra post-processing
such as sliding-window-style cropping and stitching results.

We further analyze the runtime and GPU memory usage of our method on
the entire 572 Gibson V2 environments. As shown in Figure 7, the runtime and
GPU memory usage of our method grows linearly to the number of input points
and sublinearly to the volume of the point cloud. This indicates that our method
is relatively invariant to the curse of dimensionality. In Figure 8, we visualize
additional qualitative results of our method on the Gibson environment.
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