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1 Learning Latent Semantic Modality

Apart from the visual, motion, and audio modalities, which can be directly
observed (apparent modalities), the latent semantics modality that carries high-
level semantic information can be helpful for the language related tasks. We
design a lightweight network to perform semantic attributes prediction using
the sentence annotation provided by each dataset (either the video captioning
or the sentence localization dataset). Note that this is a standalone task and the
latent semantics modality is optional for our method.

The input of this network is the concatenation of all apparent modalities
XA = [Xv||Xm||Xa], where XA ∈ RN×(da+dm+dv). We simply process XA

using bidirectional LSTMs and concatenate the hidden states of each LSTM:

X l = [
−−−−→
LSTM(XA)||

←−−−−
LSTM(XA)], (1)

where X l ∈ RN×2dhid , and
−−−−→
LSTM(·) and

←−−−−
LSTM(·) denote the LSTM networks

that have dhid units and process their input sequences in the forward and back-
ward directions, respectively. X l is then passed through a fully-connected layer
with sigmoid activation to predict semantic attribute probabilities:

P = sigmoid(X lWc + bc), (2)

where Wc and bc are parameters, P ∈ RC×N collects the temporal semantic
attributes, and C is the vocabulary size of predefined attributes.

To train this network, we construct labels from the sentence annotations in
event captioning or sentence localization datasets. We first process the training
sentences of a dataset, select the most frequent C words that are noun or verb,
and lemmatize them to form an attribute vocabulary. Then each sentence can
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be converted to a one-hot label l ∈ RC according to whether its words are in the
vocabulary, where lc = 1 indicates that attribute c is present in the sentence,
otherwise lc = 0. The label l is broadcast to the N temporal locations to compute
the cross entropy loss at each location:

Lce = − 1

C

∑C

c=1
(lc lnPc + (1− lc) ln(1− Pc)), (3)

where Lce ∈ RN . For the sentence localization task, the sentence annotations
are usually available for temporal segments. To unify the loss representations,
we construct a temporal mask M tcp ∈ [0, 1]N defined as:

M tcp
i =

{
1 if i ∈ [s, e] and rand(0, 1) > 0.5

0 otherwise
(4)

where [s, e] is the temporal segment of the sentence annotation normalized to be
in [0, 1]. In event captioning it is safe to assume s = 0 and e = 1 since the videos
are relatively short. Randomness is introduced in M tcp to prevent overfitting.
The final temporal semantic attributes prediction loss is computed as:

Ltcp =
1

N
Lce ·M tcp, (5)

where · is the dot product operator. From the above description, we can see that
when the network learns to predict attributes, X l carries rich information of
latent semantics for every temporal location. Thus, it can be used to assist our
target tasks through interacting with other modalities.

2 Feed-Forward Network (FFN)
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Fig. 1. The structure of the Feed-Forward Network (FNN).

As shown in Fig. 1, FFN is mainly composed of three position-wise fully-
connected layers, each of which basically applies a fully-connected layer to each
element of the input feature sequence with shared parameters. ReLU activation
and layer normalization are applied to the first and second layers, respectively,
and the initial input is connected to the second layer’s output via a residual
connection to encourage gradient flow. The output dimension dout is decided
according to the input (dout ≤ din).
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3 More on Motivation

Our motivation is two-fold (Note that the Equations, Tables, and Figures men-
tioned in this section are all in the original paper):

(1) It is intuitive that both human and AI models understand events better
via a combination of different sensory modalities, but the importances of different
modalities vary among videos as well as among the moments inside a video.
This motivates us to fuse the modality-interacted tensor by considering both
the modality-wise and sequence-wise importances (Eq. (7)).

(2) Neuroscience researches have proven that information processing in one
modality can affect another, which means that there are interactions among
modalities and complementary information may communicate through such in-
teractions. This motivates us to design sequence- and channel-level interactions
for each pair of modalities. In the sequence-level interaction, each element from
one sequence interacts with all the elements in the other sequence through the
bilinear model (Eq. (2)). This fully-connected information flow between two
modalities enables better utilization of complementary information than tradi-
tional fusion strategies as shown in Table 1. It is also widely accepted that differ-
ent feature channels capture different information. Thus the goal of channel-level
interaction is to emphasize important channels, which is realized by gating. The
gate variable is computed via a channel-to-channel attention mechanism, and
sequence-wise mean-pooling (Eq. (4)) is for reducing computation. The gating
power is demonstrated by the experiment below in Section 6. The improvement
brought by channel-level interaction is not as significant as sequence-level inter-
action, but it is indeed effective.

Based on the motivation, our goal is finding a better combination of modal-
ities via fine-grained interaction. Attention is the building block we adopted to
achieve this goal, because it is easy to understand and implement (also yields a
clear framework). Finally, we have proven our modality interaction to be both
effective and able to provide explainability (see Figs. 4 and 5).

4 Computational Complexity

Table 1. PMI-CAP’s running times on one RTX 2080Ti GPU.

Mode Memory Time/batch

Train (batch size=32) 5939MB 0.38s
Infer (batch size=1) 1441MB 0.08s

The major computational cost is from sequence-level interaction, which mainly
consists of feature projection and bilinear modeling (Eqs. (2) and (3) in the
original paper). Assume that a pair of interacting feature sequences both have
dimension b × n × d, where b and n stand for batch size and sequence length,
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Table 2. Performances of PMI combined with other methods of target tasks.

Method B@4 M C

Masked Transformer [3] 47.49 32.43 77.35
Masked Transformer [3]+PMI 50.95 35.20 86.61

Method IoU=0.3 IoU=0.5 IoU=0.7

ABLR [2] 53.55 37.47 16.21
ABLR [2]+PMI 55.26 39.52 16.88

Table 3. Performance comparison on the ActivityNet Captions dataset.

Method B@4 M C

vanilla-CAP (IRV2+I3D) 1.75 10.14 40.63
PMI-CAP (IRV2+I3D) 1.99 10.89 43.56

PMI-CAP (IRV2+I3D+A) 2.31 11.00 51.30
PMI-CAP/no-channel (IRV2+I3D) 2.00 10.52 43.06

2019 Rank-1 Intra-Event 3.91 11.96 49.56

respectively. Then the computational complexity is O(bnd2 + bn2d). For short
videos, since n � d, the complexity becomes O(bnd2) (mainly batch matrix
multiplication) and is efficient to run on GPU. While for very long videos like
TV shows the O(bn2d) term is dominant and the computational cost would grow
quadratically with video length. Nonetheless, reducing the quadratic complexity
for very long videos is out of scope of this work and is left for future work. Actual
running times of PMI-CAP are shown in Table 1.

5 Compatibility with Other Models

We also test the effectiveness of our proposed PMI when combined with other
types of architectures for event captioning or sentence localization. Note that the
original methods used concatenated features [3] or single feature [2] as inputs, our
implementations concatenate multimodal features for both methods. Results are
presented in Table 2. For video captioning, we adopt the Masked-Transformer
model [3] which is essentially different from RNN-based caption decoders. We
use PMI to encode the multimodal features as its input and a substantial per-
formance improvement over feature concatenation is obtained. We combine PMI
with the state-of-the-art RNN-based sentence localization method ABLR [2] by
inserting our PMI module between the feature extraction and Bi-LSTM feature
encoding of ABLR, and a clear performance gain is also observed.

6 Captioning Performances on ActivityNet Captions

We further evaluate several variants of our PMI-CAP on the ActivityNet Cap-
tions and compare them with the 2019 ActivityNet captioning challenge win-
ner [1], which used a more diverse set of features (e.g., objects and contexts) in
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addition to the three common modalities. Following the official evaluation pro-
tocol, we compare the performances of captioning ground-truth event proposals
on the validation set. The results are shown in Table 3. The vanilla-CAP method
removes PMI and uses feature concatenation instead. The channel-level inter-
action and gating are disabled in the “no-channel” setting. As can be observed
from the top four rows, our proposed method is consistently effective on Activi-
tyNet. It is notable that our method can also achieve comparable performances
with the challenge winner despite using fewer features.
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