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1 Description for the blind-spot mechanisms.

Here, we provide an example to explain the blind-spot mechanism illustrated in
Fig. (3)a in detail. Taking the 7 × 7 input as an example, the output feature
map of each layer has the same size, due to the fully-convolutional net with
paddings and stride one. For simplicity, we adopt the 3 × 3 kernel and ignore
the number of channels. Denote the input as y, each pixel can be represented as
yi,j , i ∈ {0, 1, 2, 3}, j ∈ {0, 1, 2, 3}, where y0,0 is the center position value, called
the blind-spot.

1. First, we operate the centrally masked convolution on y according to Eq. (5),
leading to the feature map f1. Obviously, values including f10,0 and f1i,j , i ∈
{2, 3}, j ∈ {2, 3} are irrelevant to y0,0. On the contrary, f1i,j , i ∈ {1}, j ∈ {1}
are computed using y0,0. The blind-spot requirement requires to avoid using
f1i,j , i ∈ {1}, j ∈ {1} when computing the value of center position in the next
feature map, which motivates us to adopt the dilated convolution.

2. With a dilation rate of 2, we get feature map f2. In particular, its center
position value f20,0 is obtained from f1i,j , i ∈ {0, 2}, j ∈ {0, 2}. From (1), these

values are not affected by y0,0. Moreover, we also find that f2i,j , i ∈ {0, 2}, j ∈
{0, 2} are not relevant to y0,0, which further inspires us to adopt the dilated
convolution in the following layers.

3. With such principle, we investigate the blind-spot mechanism as shown in
Fig. (3)a.

2 Additional Visualization Results

More denoising results for AWGN, heteroscedastic Gaussian (HG) and multivari-
ate Gaussian (MG) noise are provided for comprehensive comparison. Specifical-
ly, we compare the proposed D-BSN and MWCNN(unpaired) with the bench-
mark method CBM3D [1], the supervised MWCNN in a Noise2Clean training
manner. In particular, we also consider the Laine19 [3] on AWGN with σ = 25
by using their released model. As for the real noisy images, we provide more
visualization results from CC15 [6], DND [7], RNI6 [4] and RNI15 [4] datasets
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to compare with the state-of-the-arts. For better view, we recommend to zoom
in the images on a computer screen.

Denoising results for AWGN are presented in Fig. 1∼ Fig. 4. It can be noted
that, our D-BSN achieves comparable visualization performance with the self-
supervised approach Laine19 [3]. Particularly, by leveraging the synthetic paired
training data from D-BSN, our MWCNN(unpaired) can preserve more texture
information in comparison with all the other methods. For one hand, the nearly
noisy-free images in the training set Y are predicted by D-BSN, which guaran-
tees the promising denoising results of MWCNN(unpaired). On the other hand,
the clean image set X contains the truly clean signal, which is beneficial to learn
denoising network with fine details. In addition, we provide the denoising results
of PG and MG in Fig. 5 and Fig. 6, respectively. Significantly, both our D-BSN
and MWCNN(unpaired) outperform the benchmark method CBM3D [1]. With
heavy degradation as shown in Fig. 5 and Fig. 6, our MWCNN(unpaired) can re-
store the images well and achieves competitive performance with the supervised
MWCNN(N2C) variant. For the real noisy images in Fig. 7∼Fig. 14, MWC-
NN(unpaired) performs favorably against the benchmark method CBM3D [1]
and the discriminative learning method DnCNN [9]. Even compared with the
CBDNet [2] and VDN [8], our method shows comparable visualization results
without the consideration of the details of ISP and paired noisy-clean images.
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Noisy/20.60dB MWCNN(N2C)/35.17dB [5] D-BSN/34.54dB

Ground Truth Laine19/35.04dB [3] MWCNN(unpaired)/35.16dB

Fig. 1: Denoising results of different methods on AWGN with σ = 25.
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Noisy/20.43dB MWCNN(N2C)/31.21dB [5] D-BSN/30.83dB

Ground Truth Laine19/31.10dB [3] MWCNN(unpaired)/31.18dB

Fig. 2: Denoising results of different methods on AWGN with σ = 25.
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Noisy/21.00dB MWCNN(N2C)/31.30dB [5] D-BSN/30.89dB

Ground Truth Laine19/31.13dB [3] MWCNN(unpaired)/31.25dB

Fig. 3: Denoising results of different methods on AWGN with σ = 25.

Noisy/20.52dB MWCNN(N2C)/32.26dB [5] D-BSN/31.84dB

Ground Truth Laine19/32.07dB [3] MWCNN(unpaired)/32.20dB

Fig. 4: Denoising results of different methods on AWGN with σ = 25.
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Noisy/22.61dB MWCNN(N2C)/33.72dB [5] D-BSN/32.56dB

Grount Truth CBM3D/30.09dB [1] MWCNN(unpaired)/33.42dB

Fig. 5: Denoising results of different methods on heteroscedastic Gaussian (HG)
noise.
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Noisy/13.52dB MWCNN(N2C)/30.64dB [5] D-BSN/28.92dB

Grount Truth CBM3D/24.93dB [1] MWCNN(unpaired)/29.70dB

Fig. 6: Denoising results of different methods on multivariate Gaussian (MG)
noise.
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Noisy Ground Truth BM3D/33.78dB

DnCNN/37.25dB CBDNet/38.59dB MWCNN(unpaired)/37.38dB

Fig. 7: Denoising results of different methods on real-world images from CC15.

Noisy Ground Truth CBM3D/29.54dB

DnCNN/33.62dB CBDNet/34.81dB MWCNN(unpaired)/34.10dB

Fig. 8: Denoising results of different methods on real-world images from CC15.
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Noisy Ground Truth CBM3D/30.58dB

DnCNN/30.09dB CBDNet/31.99dB MWCNN(unpaired)/32.38dB

Fig. 9: Denoising results of different methods on real-world images from CC15.

Noisy BM3D/23.95dB VDN/34.08dB

DnCNN/21.11dB CBDNet/31.40dB MWCNN(unpaired)/34.11dB

Fig. 10: Denoising results of different methods on real-world images from DND.
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Noisy BM3D/25.65dB VDN/32.09dB

DnCNN/23.76dB CBDNet/31.54dB MWCNN(unpaired)/32.93dB

Fig. 11: Denoising results of different methods on real-world images from DND.

Noisy BM3D/35.50dB VDN/39.87dB

DnCNN/33.35dB CBDNet/38.74dB MWCNN(unpaired)/38.81dB

Fig. 12: Denoising results of different methods on real-world images from DND.
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Chupa Chups David Hilbert Marilyn Old Tom Morris

Fig. 13: Denoising results of different methods on real noisy images from RNI6.
From top to bottom: noisy images, denoised images by BM3D [1], denoised
images by DnCNN-B [9], denoised images by our MWCNN(unpaired).
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Audrey Hepburn Singer Pattern1 Flowers

Fig. 14: Denoising results of different methods on real noisy images from RNI15.
From top to bottom: noisy images, denoised images by CBM3D [1], denoised
images by CBDNet [2], denoised images by our MWCNN(unpaired).
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