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Abstract. The task of large-scale retrieval-based image localization is
to estimate the geographical location of a query image by recognizing its
nearest reference images from a city-scale dataset. However, the general
public benchmarks only provide noisy GPS labels associated with the
training images, which act as weak supervisions for learning image-to-
image similarities. Such label noise prevents deep neural networks from
learning discriminative features for accurate localization. To tackle this
challenge, we propose to self-supervise image-to-region similarities in
order to fully explore the potential of difficult positive images along-
side their sub-regions. The estimated image-to-region similarities can
serve as extra training supervision for improving the network in gener-
ations, which could in turn gradually refine the fine-grained similarities
to achieve optimal performance. Our proposed self-enhanced image-to-
region similarity labels effectively deal with the training bottleneck in
the state-of-the-art pipelines without any additional parameters or man-
ual annotations in both training and inference. Our method outperforms
state-of-the-arts on the standard localization benchmarks by noticeable
margins and shows excellent generalization capability on multiple image
retrieval datasets.†

1 Introduction

Image-based localization (IBL) aims at estimating the location of a given image
by identifying reference images captured at the same places from a geo-tagged
database. The task of IBL has long been studied since the era of hand-crafted
features [29, 35, 2, 21, 22, 34] and has been attracting increasing attention with
the advances of convolutional neural networks (CNN) [46], motivated by its wide
applications in SLAM [30, 17] and virtual/augmented reality [5]. Previous works
have been trying to tackle IBL as image retrieval [1, 28, 23], 2D-3D structure
matching [27, 38] or geographical position classification [43, 44, 19] tasks. In this
paper, we treat the problem as an image retrieval task, given its effectiveness
and feasibility in large-scale and long-term localization.

†Code of this work is available at https://github.com/yxgeee/SFRS.
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Fig. 1. (a) To mitigate the noise with weak GPS labels, existing works [1, 28] only
utilized the easiest top-1 image of the query for training. (b) We propose to adopt self-
enhanced similarities as soft training supervisions to effectively explore the potential
of difficult positives
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Fig. 2. (a) Even with true positive pairs, the image-level supervision provides mislead-
ing information for non-overlapping regions. (b) We further estimate fine-grained soft
labels to refine the supervision by measuring query-to-region similarities

The fundamental challenge faced by image retrieval-based methods [1, 28,
23] is to learn image representations that are discriminative enough to tell apart
repetitive and similar-looking locations in GPS-tagged datasets. It is cast as a
weakly-supervised task because geographically close-by images may not depict
the same scene when facing different directions.

To avoid being misled by noisy and weak GPS labels, most works [1, 28]
utilized on-the-fly first-ranking images of the queries as their positive training
samples, i.e. to force the queries to be closer to their already nearest neighbors
(Fig. 1(a)). Consequently, a paradox arises when only the most confident, or in
other words, the easiest on-the-fly positives are utilized in the training process,
but these images in turn result in a lack of robustness to varying conditions
as the first-ranking images for queries might be too simple to provide enough
supervisions for learning robust feature representations. To tackle the issue, we
argue that difficult positives are needed for providing informative supervisions.

Identifying the true difficult positives, however, is challenging with only ge-
ographical tags provided from the image database. Therefore, the network is
easy to collapse when näıvely trained with lower-ranking positive samples, which
might not have overlapping regions with the queries at all. Such false positives
might deteriorate the feature learning. Kim et al.[23] attempted to mine true
positive images by verifying their geometric relations, but it is limited by the
accuracy of off-the-shelf geometric techniques [18, 9]. In addition, even if pairs of
images are indeed positive pairs, they might still have non-corresponding regions.
The correct image-level labels might not necessarily be the correct region-level
labels. Therefore, the ideal supervisions between paired positive images should
provide region-level correspondences for more accurately supervising the learning
of local features.
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To tackle the above mentioned challenge, we propose to estimate informative
soft image-to-region supervisions for training image features with noisy pos-
itive samples in a self-supervised manner. In the proposed system, an image
retrieval network is trained in generations, which gradually improves itself with
self-supervised image-to-region similarities. We train the network for the first
generation following the existing pipelines [1, 28], after which the network can
be assumed to successfully capture most feature distribution of the training
data. For each query image, however, its k-nearest gallery images according
to the learned features might still contain noisy (false) positive samples. Di-
rectly utilizing them as difficult true positives in existing pipelines might worsen
the learned features. We therefore propose to utilize their previous generation’s
query-gallery similarities to serve as the soft supervision for training the network
in a new generation. The generated soft supervisions are gradually refined and
sharpened as the network generation progresses. In this way, the system is no
longer limited to learning only from the on-the-fly easiest samples, but can fully
explore the potential of the difficult positives and mitigate their label noise with
refined soft confidences (Fig. 1(b)).

However, utilizing only the image-level soft supervisions for paired positive
images simply forces features from all their spatial regions to approach the same
target scores (Fig. 2(a)). Such an operation would hurt the network’s capability
of learning discriminative local features. To mitigate this problem, we further
decompose the matching gallery images into multiple sub-regions of different
sizes. The query-to-region similarities estimated from the previous generation’s
network can serve as the refined soft supervisions for providing more fine-grained
guidance for feature learning (Fig. 2(b)). The above process can iterate and train
the network for multiple generations to progressively provide more accurate and
fine-grained image-to-region similarities for improving the features.

Our contributions can be summarised as three-fold. (1) We propose to es-
timate and self-enhance the image similarities of top-ranking gallery images to
fully explore the potential of difficult positive samples in image-based localization
(IBL). The self-supervised similarities serve as refined training supervisions to
improve the network in generations, which in turn, generates more accurate im-
age similarities. (2) We further propose to estimate image-to-region similarities
to provide region-level supervisions for enhancing the learning of local features.
(3) The proposed system outperforms state-of-the-art methods on standard lo-
calization benchmarks by noticeable margins, and shows excellent generalization
capability on both IBL and standard image retrieval datasets.

2 Related Work

Image-based Localization (IBL). Existing works on image-based localization
can be grouped into image retrieval-based [1, 28, 23], 2D-3D registration-based
[27, 38] and per-position classification-based [43, 44, 19] methods. Our work aims
at solving the training bottleneck of the weakly-supervised image retrieval-based
IBL problem. We therefore mainly discuss related solutions that cast IBL as an
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image retrieval task. Retrieval-based IBL is mostly related to the traditional
place recognition task [3, 6, 24, 39, 41], which has long been studied since the era
of hand-engineered image descriptors, e.g. SIFT [29], BoW [35], VLAD [2] and
Fisher Vector [34]. Thanks to the development of deep learning [26], NetVLAD
[1] successfully transformed dense CNN features for localization by proposing a
learnable VLAD layer to effectively aggregate local descriptors with learnable se-
mantic centers. Adopting the backbone of NetVLAD, later works further looked
into multi-scale contextual information [23] or effective metric learning [28] to
achieve better performance. Our work has the similar motivation with [23], i.e.
to mine difficult positive samples for more effective local feature learning. How-
ever, [23] was only able to roughly mine positive images by adopting off-the-shelf
geometric verification techniques [18, 9] and required noticeable more parame-
ters for both training and inference. In contrast, our method self-enhances fine-
grained supervisions by gradually estimating and refining image-to-region soft
labels without any additional parameters.
Self-supervised label estimation has been widely studied in self-supervised
learning methods [16, 25, 8, 32, 33], where the network mostly learns to predict
a collective label set by properly utilizing the capability of the network itself.
Some works [4, 11, 12, 14] proposed to create task-relative pseudo labels, e.g. [4]
generated image-level pseudo labels for classification by clustering features on-
the-fly. The others [31, 15, 13, 48] attempted to optimize the network by dealing
with pretext tasks whose labels are more easily to create, e.g. [31] solved jigsaw
puzzles and [15] predicted the rotation of transformed images. Inspired by the
self-supervised learning methods, we propose a self-supervised image-to-region
label creation scheme for training the network in generations, which effectively
mitigates the image-to-image label noise caused by weak geo-tagged labels.
Self-distillation. Training in generations via self-predicted soft labels has been
investigated in self-distillation methods [10, 47, 45]. However, soft labels in these
methods are not applicable to our task, as they focus on the classification prob-
lem with predefined classes. We successfully generalize self-distillation to the
weakly-supervised IBL problem by proposing to generate soft labels for both
query-to-gallery and query-to-region similarities in the retrieval task.

3 Method

We propose to self-supervise image-to-region similarities for tackling the problem
of noisy pairwise image labels in image-based localization (IBL). In major pub-
lic benchmarks, each training image is generally associated with a GPS location
tag. However, images geographically close to each other do not necessarily share
overlapping regions. This is because the images might be captured from oppo-
site viewing directions. The GPS tags could only help to geographically discover
potential positive images with much label noise. Such a limitation causes bottle-
neck for effectively training the neural networks to recognize challenging positive
pairs. There were previous methods [1, 28, 23] tackling this problem. However,
they either ignored the potential of difficult but informative positive images,
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Fig. 3. Illustration of our proposed self-supervised image-to-region similarities for im-
age localization, where the image-to-region similarities are gradually refined via training
the network in generations as shown in (a). The sidebars for each difficult positive image
demonstrate the soft similarity labels for the full image, left half, right half, top half,
bottom half, top-left quarter, top-right quarter, bottom-left quarter and bottom-right
quarter sub-regions respectively, detailed in (b), whereas the easiest positives only have
one bar indicating the similarity label for the full image. Note that the most difficult
negative samples utilized for joint training are not shown in the figure for saving space

or required off-the-shelf time-consuming techniques with limited precision for
filtering positives.

As illustrated in Fig. 3, the key of our proposed framework is to gradually en-
hance image-to-region similarities as the training proceeds, which can in turn act
as soft and informative training supervisions for iteratively refining the network
itself. In this way, the potential of difficult positive samples can be fully explored
and the network trained with such similarities can encode more discriminative
features for accurate localization.

3.1 Retrieval-based IBL Methods Revisit

State-of-the-art retrieval-based IBL methods [1, 23, 28] adopt the following gen-
eral pipeline with different small modifications. They generally train the network
with learnable parameters θ by feeding triplets, each of which consists of one
query image q, its easiest positive image p∗ and its multiple most difficult nega-
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tive images {nj |Nj=1}. Such triplets are sampled according to the image features
fθ encoded by the current network on-the-fly. The easiest positive image p∗ is
the top-1 ranking gallery image within 10 meters of the query q, and the most
difficult negative images {nj |Nj=1} are randomly sampled from top-1000 gallery
images that are more than 25 meters away from q.

The network usually consists of a backbone encoder and a VLAD layer [1],
where the encoder embeds the image into a dense feature map and the VLAD
layer further aggregates the feature map into a compact feature vector. The
network can be optimized with a triplet ranking loss [1, 23] or a contrastive
loss [37]. More recently, Liu et al.[28] proposed a softmax-based loss with dot
products for better maximizing the ratio between the query-positive pair against
multiple query-negative pairs, which is formulated as

Lhard(θ) = −
N∑
j=1

log
exp〈fqθ , f

p∗

θ 〉
exp〈fqθ , f

p∗

θ 〉+ exp〈fqθ , f
nj

θ 〉
, (1)

where θ is the network parameters, fqθ is the query image features encoded by the
current network, and 〈·, ·〉 denotes dot product between two vectors. Trained by
this pipeline, the network can capture most feature distributions and generate
acceptable localization results. Such a network acts as the baseline in our paper.

However, an obvious problem arises: the network trained with the easiest pos-
itive images alone cannot well adapt to challenging positive pairs, as there gener-
ally exists variations in viewpoints, camera poses and focal lengths in real-world
IBL datasets. In addition, the image-level weak supervisions provide misleading
information for learning local features. There are non-overlapping regions even in
true positive pairs. The network trained with image-level supervisions might pull
the non-overlapping regions to be close to each other in the feature space. Such
incorrect image-level supervisions impede the feature learning process. To tackle
such challenges, we propose to utilize self-enhanced fine-grained supervisions for
supervising both image-to-image and image-to-region similarities. In this way,
difficult positive images as well as their sub-regions can be fully exploited to
improve features for localization.

3.2 Self-supervising Query-gallery Similarities

A näıve way to utilize difficult positive images is to directly train the network
with lower-ranking positive images (e.g. , top-k gallery images) as positive sam-
ples with “hard” (one-hot) labels in Eq. (1). However, this may make the training
process deteriorate, because the network cannot effectively tell the true positives
apart from the false ones when trained with the existing pipeline in Sec. 3.1. To
mitigate the label noise and make full use of the difficult positive samples, we
propose to self-supervise query-gallery similarities of top-ranking gallery images
which also act as the refined soft supervisions, and to gradually improve the
network with self-enhanced similarity labels in generations.

We use θω to indicate the network parameters in different generations, de-
noted as {θω|Ωω=1}, where Ω is the total number of generations. In each genera-
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tion, the network is initialized by the same ImageNet-pretrained [7] parameters
and is trained again with new supervision set until convergence. We adopt the
same training process for each generation, except for the first initial generation,
for which we train the network parameter θ1 following the general pipeline in Sec.
3.1. Before proceeding to training the 2nd-generation network, the query-gallery
feature distances are estimated by the 1st-generation network. For each query
image q, its k-reciprocal nearest neighbors p1, · · · , pk according to Euclidean
distances are first obtained from the gallery image set. The query-gallery simi-
larities can be measured by dot products and normalized by a softmax function
with temperature τ1 over the top-k images,

Sθ1(q, p1, · · · , pk; τ1) = softmax
([
〈fqθ1 , f

p1
θ1
〉/τ1, · · · , 〈fqθ1 , f

pk
θ1
〉/τ1

]>)
, (2)

where fpiθ1 is the encoded feature representations of the ith gallery image by the
1st-generation network, and τ1 is temperature hyper-parameter that makes the
similarity vector sharper or smoother.

Rather than näıvely treating all top-k ranking images as the true positive
samples for training the next-generation network, we propose to utilize the rela-
tive similarity vector Sθ1 as extra training supervisions. There are two advantages
of adopting such supervisions: (1) We are able to use the top-ranking gallery im-
ages as candidate positive samples. Those plausible positive images are more
difficult and thus more informative than the on-the-fly easiest positive samples
for learning scene features. (2) To mitigate the inevitable label noise from the
plausible positive samples, we propose to train the next-generation network to
approach the relative similarity vectors Sθ1 , which “softly” measures the rela-
tive similarities between (q, p1), · · · , (q, pk) pairs. At earlier generations, we set
the temperature parameter τω to be large, as the relative similarities are less
accurate. The large temperature makes the similarity vector Sθω more equally
distributed. At later generations, the network becomes more accurate. The rel-
ative similarity vector Sθω ’s maximal response is more accurate to identify the
true positive samples. Lower temperatures are used to make Sθω concentrate on
a small number of gallery images.

The relative similarity vectors Sθ1 estimated by the 1st-generation network
are used to supervise the 2nd-generation network via a “soft” cross-entropy loss,

Lsoft(θ2) = `ce (Sθ2(q, p1, · · · , pk; 1),Sθ1(q, p1, · · · , pk; τ1)) , (3)

where `ce(y, ŷ) = −
∑
i ŷ(i) log(y(i)) denotes the cross-entropy loss. Note that

only the learning target Sθ1 adopts the temperature hyper-parameter to con-
trol its sharpness. In our experiments, the performance of the trained network
generally increases with generations and saturates around the 4th generation,
with temperatures set as 0.07, 0.06, 0.05, respectively. In each iteration, both the
“soft” cross-entropy loss and the original hard loss (Eq. (1)) are jointly adopted
as L(θ) = Lhard(θ) + λLsoft(θ) for supervising the feature learning.

By self-supervising query-gallery similarities, we could fully utilize the dif-
ficult positives obtained from the network of previous generations. The “soft”
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supervisions can effectively mitigate the label noise. However, even with the re-
fined labels, paired positive images’ local features from all their spatial regions
are trained to approach the same similarity scores, which provide misleading su-
pervision for those non-overlapping regions. The network’s capability on learning
discriminative local features is limited given only such image-level supervisions.

3.3 Self-supervising Fine-grained Image-to-region Similarities

To tackle the above challenge, we propose to fine-grain the image-to-image sim-
ilarities into image-to-region similarities to generate more detailed supervisions.
Given the top-k ranking images p1, · · · , pk for each query q, instead of directly
calculating image-level relative similarity vector Sθω , we can further decompose
each plausible positive image’s feature maps into 4 half regions (top, bottom, left,
right halves) and 4 quarter regions (top-left, top-right, bottom-left, bottom-right
quarters). Specifically, The gallery image pi’s feature maps mi are first obtained
by the network backbone before the VLAD layer. We split mi into 4 half regions
and 4 quarter regions, and then feed them into the aggregation VLAD respec-

tively for obtaining 8 region feature vectors {fr
1
i

θ , f
r2i
θ , · · · , f

r8i
θ } corresponding to

the 8 image sub-regions {r1i , r2i , · · · , r8i }, each of which depicts the appearance
of one sub-region of the gallery scene. Thus, the query-gallery supervisions are
further fine-grained by measuring the relative query-to-region similarities,

Srθω (q, p1, · · · , pk;τω) = softmax
([
〈fqθω , f

p1
θω
〉/τω, 〈fqθω , f

r11
θω
〉/τω, · · · , 〈fqθω , f

r81
θω
〉/τω,

· · · , 〈fqθω , f
pk
θω
〉/τω, 〈fqθω , f

r1k
θω
〉/τω, · · · , 〈fqθω , f

r8k
θω
〉/τω

])
. (4)

The “soft” cross-entropy loss in Eq. (3) can be extended such that it can learn
from the fine-grained similarities in Eq. (4) to encode more discriminative local
features,

Lrsoft(θω) = `ce

(
Srθω (q, p1, · · · , pk; 1),Srθω−1

(q, p1, · · · , pk; τω−1)
)
. (5)

The image-to-region similarities can also be used for mining the most difficult
negative gallery-image regions for each query q. The mined negative regions can
be used in the hard loss in Eq. (1). For each query q, the accurate negative
images could be easily identified by the geographical GPS labels. We propose
to further mine the most difficult region n∗j for each of the negative images nj
on-the-fly by measuring query-to-region similarities with the current network.
The image-level softmax-based loss in Eq. (1) could be refined with the most
difficult negative regions as

Lrhard(θω) = −
N∑
j=1

log
exp〈fqθω , f

p∗

θω
〉

exp〈fqθω , f
p∗

θω
〉+ exp〈fqθω , f

n∗
j

θω
〉
. (6)

Note that the image-to-region similarities for selecting the most difficult nega-
tive regions are measured by the network on-the-fly, while those for supervising
difficult positives in Eq. (5) are measured by the previous generation’s network.
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In our proposed framework, the network is trained with extended triplets,
each of which consists of one query image q, the easiest positive image p∗, the
difficult positive images {pi|ki=1}, and the most difficult regions in the negative
images {n∗j |Nj=1}. The overall objective function of generation ω is formulated as

L(θω) = Lrhard(θω) + λLrsoft(θω), (7)

where λ is the loss weighting factor. The multi-generation training can be per-
formed similarly to that mentioned in Sec. 3.2 to self-supervise and to gradually
refine the image-to-region similarities.

3.4 Discussions

Why not decompose queries for self-supervising region-to-region sim-
ilarities? We observe that region-to-region similarities might contain many su-
perficially easy cases that are not informative enough to provide discriminative
training supervisions for the network. For instance, the similarity between the
sky regions of two overlapping images might be too easy to serve as effective
training samples. Image-to-region similarities could well balance the robustness
and granularity of the generated supervisions, as region-to-region similarities
have more risk to be superficial.
Why still require Lrhard? We observe that the top-1 gallery images obtained
from the k-reciprocal nearest neighbors can almost always act as true positives
for training with hard supervisions in Eq. (6). The hard loss could stabilize the
training process to avoid error amplification.

4 Experiments

4.1 Implementation Details

Datasets. We utilize the Pittsburgh benchmark dataset [42] for optimizing our
image retrieval-based localization network following the experimental settings of
state-of-the-art methods [28, 1]. Pittsburgh consists of a large scale of panoramic
images captured at different times and are associated with noisy GPS locations.
Each panoramic image is projected to create 24 perspective images. For fair
comparison, we use the subset Pitts30k for training and select the best model
that achieves the optimal performance on the val-set of Pitts30k. The Pitts30k-
train contains 7,416 queries and 10,000 gallery images, and the Pitts30k-val
consists of 7,608 queries and 10,000 gallery images. We obtain the final retrieval
results by ranking images in the large-scale Pitts250k-test, which contains 8,280
probes and 83,952 database images.

To verify the generalization ability of our method on different IBL tasks, we
directly evaluate our models trained on Pitts30k-train on the Tokyo 24/7 [41]
dataset, which is quite challenging since the queries were taken in varying con-
ditions. In addition, we evaluate the model’s generalization ability on standard
image retrieval datasets, e.g. the Oxford 5k [35], Paris 6k [36], and Holidays [20].
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Table 1. Comparison with state-of-the-arts on image-based localization benchmarks.
Note that the network is only trained on Pitts30k-train and directly evaluated on both
Tokyo 24/7 and Pitts250k-test datasets

Method
Tokyo 24/7 [41] Pitts250k-test [42]

R@1 R@5 R@10 R@1 R@5 R@10

NetVLAD [1] (CVPR’16) 73.3 82.9 86.0 86.0 93.2 95.1
CRN [23] (CVPR’17) 75.2 83.8 87.3 85.5 93.5 95.5
SARE [28] (ICCV’19) 79.7 86.7 90.5 89.0 95.5 96.8

Ours 85.4 91.1 93.3 90.7 96.4 97.6

Evaluation. During inference, we perform PCA whitening whose parameters
are learnt on the Pitts30k-train, reducing the feature dimension to 4,096. We
follow the same evaluation metric of [28, 1], where the top-k recall is measured
on the localization datasets, Pitts250k-test [42] and Tokyo 24/7 [41]. The query
image is determined to be successfully retrieved from top-k if at least one of the
top k retrieved reference images locates within d = 25 meters from the query
image. As for the image-retrieval datasets, Oxford 5k [35], Paris 6k [36], and
Holidays [20], the mean average precision (mAP) is adopted for evaluation.
Architecture. For fair comparison, we adopt the same architecture used in [28,
1], which comprises of a VGG-16 [40] backbone and a VLAD layer [1] for encoding
and aggregating feature representations. We use the ImageNet-pretrained [7]
VGG-16 up to the last convolutional layer (i.e. conv5) before ReLU, as the
backbone. Following [28], the whole backbone except the last convolutional block
(i.e. conv5) is frozen when trained on image-based localization datasets.
Training details. For data organization, each mini-batch contains 4 triplets,
each of which consists of one query image, one easiest positive image, top-10
difficult positive images and 10 negative images. The negative images are sam-
pled following the same strategy in [28, 1]. Our model is trained by 4 genera-
tions, with 5 epochs in each generation. We empirically set the hyper-parameters
λ = 0.5, τ1 = 0.07, τ2 = 0.06, τ3 = 0.05 in all experiments. The stochastic gra-
dient descent (SGD) algorithm is utilized to optimize the loss function, with
momentum 0.9, weight decay 0.001, and a constant learning rate = 0.001.

4.2 Comparison with State-of-the-arts

We compare with state-of-the-art image localization methods NetVLAD [1],
CRN [23] and SARE [28] on localization datasets Pitts250k-test [42] and Tokyo
24/7 [41] in this experiment. Our model is only trained on Pitts30k-train with-
out any Tokyo 24/7 images. CRN (Contextual Reweighting Network) improves
NetVLAD by proposing a contextual feature reweighting module for selecting
most discriminative local features for aggregation. While a Stochastic Attraction
and Repulsion Embedding (SARE) loss function is proposed on top of VLAD-
aggregated feature embeddings in [28]. None of the above methods have well
handled the bottleneck of weakly-supervised training for image localization.
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(a) Tokyo 24/7 [41] (b) Pitts250k-test [42]

Fig. 4. Quantitative results of ablation studies on our proposed method in terms of
top-k recall on Tokyo 24/7 and Pitts250k-test datasets. The models are only trained
on Pitts30k-train set

Experimental results are shown in Tab. 1. The proposed method achieves
90.7% rank-1 recall on Pitts250k-test, outperforming the second best 89.0% ob-
tained by SARE, with an improvement of 1.7%. The feature embeddings learned
by our method show very strong generalization capability on the challenging
Tokyo 24/7 dataset where the rank-1 recall is significantly boosted to 85.4%, up
to 5.7% performance improvement against SARE. The superior performances
validate the effectiveness of our self-enhanced image-to-region similarities in
learning discriminative features for image-based localization.

4.3 Ablation Studies

We perform ablation studies on Tokyo 24/7 [41] and Pitts250k-test [42] to anal-
yse the effectiveness of the proposed method and shed light on the importance
of supervisions from self-enhanced fine-grained image-to-region similarities. We
illustrate quantitative results in Fig. 4, and show the detailed ablation exper-
iments in Tab. 2. “Baseline” is our re-implementation of SARE [28], which is
trained with only the best-matching positive image using Lhard in Eq. (1).
Directly training with noisy difficult positives in the existing pipeline.
Existing image-based localization benchmarks only provide geo-tagged images
for learning image-to-image similarities. These GPS labels are weak and noisy
in finding true positive images for given query images. SARE [28] and previ-
ous works only choose the easiest positive for training, i.e. the most similar one
to the query in the feature space. Our proposed approach can effectively learn
informative features from multiple difficult positives (top-k positive images) by
introducing self-enhanced image-region similarities as extra supervisions, thus
boost the rank-1 recall to 90.7% and 85.4% on Pitts250k-test and Tokyo 24/7
respectively. To check whether such difficult (top-k) positive images can be easily
used without our proposed self-enhanced image-to-region similarities to improve
the final performance, we conduct an ablation experiment by training the “Base-
line” with extra difficult positive images. This model is denoted as “Baseline w/
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Table 2. Ablation studies for our proposed method on individual components. The
models are only trained on Pitts30k-train set

Method
Tokyo 24/7 [41]

R@1 R@5 R@10

Baseline 80.6 87.6 90.8
Baseline w/ top-k positives 76.2 88.6 90.8
Baseline w/ regions 79.8 86.9 90.4

Ours w/o all sub-regions 80.6 88.0 90.9
Ours w/o positive sub-regions 80.8 88.6 91.1
Ours w/o negative sub-regions 82.2 89.2 92.7
Ours w/o quarter regions 84.4 90.5 92.1

Ours w/o top-k ranking refinery 83.8 90.2 92.4
Ours w/o softmax temperature annealing 83.5 88.6 90.8

Ours 85.4 91.1 93.3

top-k positives” in Tab. 2. It shows that näıvely adding more difficult positive
images for training causes drastic performance drop, where the rank-1 recall de-
creases from 80.6% (“Baseline”) to 76.2% on Tokyo 24/7. The trend is similar on
Pitts250k-test. This phenomenon validates the effectiveness of our self-enhanced
image-to-region similarities from difficult positive samples on the IBL tasks.

Effectiveness of fine-grained image-to-region similarities. As described
in Sec. 3.3, our proposed framework explores image-to-region similarities by di-
viding a full image into 4 half regions and 4 quarter regions. Such design is
critical in our framework as query and positive images are usually only par-
tially overlapped due to variations in camera poses. Simply forcing query and
positive images to be as close as possible in feature embedding space regardless
of non-overlapping regions would mislead feature learning, resulting in inferior
performance. As shown in Tab. 2, on Tokyo 24/7, the rank-1 recall drops from
85.4% to 84.4% (“Ours w/o quarter regions”) when the 4 quarter regions are
excluded from training, and further drastically drops to 80.6% (“Ours w/o all
sub-regions”) when no sub-regions are used. The effectiveness of sub-regions in
positive and negative images are compared by “Ours w/o positive sub-regions”
and “Ours w/o negative sub-regions” in Tab. 2. It shows that in both cases the
rank-1 recall is harmed, and the performance drop is even more significant when
positive sub-regions are ignored. The above observations indicate that difficult
positives are critical for feature learning in IBL tasks, which have not been well
investigated in previous works, while our fine-grained image-to-region similarities
effectively help learn discriminative features from these difficult positives.

Effectiveness of self-enhanced similarities as soft supervisions. When
comparing “Ours w/o all sub-regions” and “Baseline w/ top-k positives”, one
may find that the only difference between these two methods is Lsoft in Eq.
(3). By adding the extra objective Lsoft to “Baseline w/ top-k positives”, the
rank-1 recall is significantly improved from 76.1% to 80.6% (the same with “Base-
line”) on Tokyo 24/7. “Ours w/o all sub-regions” even outperforms “Baseline”
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(a) Query (b) Our heatmap (c) [28]’s heatmap (d) Our top-1 (e) [28]’s top-1

Fig. 5. Retrieved examples of our method and state-of-the-art SARE [28] on Tokyo
24/7 dataset [41]. The regions highlighted by red boxes illustrates the main differences.

on Pitts250k-test as shown in Fig. 4. The above comparisons demonstrate the ef-
fectiveness of using our self-enhanced similarities as soft supervisions for learning
from difficult positive images even at the full image level.

More importantly, soft supervisions serve as a premise for image-to-region
similarities to work. We evaluate the effects of soft supervisions at the region
level, dubbed as “Baseline w/ regions”, where the dataset is augmented with
decomposed regions and only the noisy GPS labels are used. The result in Tab.
2 is even worse than “Baseline” since sub-regions with only GPS labels provide
many too easy positives that are not informative enough for feature learning.
Benefit from top-k ranking refinery. We propose to find k-reciprocal near-
est neighbors of positive images for recovering more accurate difficult positives
images for training in Sec. 3.2. Although our variant (“Ours w/o top-k rank-
ing refinery”) without using k-reciprocal nearest neighbors refining top-k images
already outperforms “Baseline” by a large margin, ranking with k-reciprocal
nearest neighbor further boosts the rank-1 recall by 1.6% on Tokyo 24/7. The
superior performance demonstrates that k-reciprocal nearest neighbor ranking
can more accurately identify true positive images.
Benefits from softmax temperature annealing. We validate the effective-
ness of the proposed temperature annealing strategy (Sec. 3.2) in this experiment
by setting a constant temperature τ = 0.07 in all generations. Comparisons be-
tween “Ours” and “Ours w/o softmax temperature annealing” in Fig. 4 and Tab.
2 show that temperature annealing is beneficial for learning informative features
with our self-enhanced soft supervisions.

4.4 Qualitative Evaluation

To better understand the superior performance of our method on the IBL tasks,
we visualize the learned feature maps before VLAD aggregation as heatmaps,
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Table 3. Evaluation on standard image retrieval datasets in terms of mAP (%) to
validate the generalization ability of the networks

Method
Oxford 5k [35] Paris 6k [36]

Holidays [20]
full crop full crop

NetVLAD [1] (CVPR’16) 69.1 71.6 78.5 79.7 83.1
CRN [23] (CVPR’17) 69.2 - - - -
SARE [28] (ICCV’19) 71.7 75.5 82.0 81.1 80.7

Ours 73.9 76.7 82.5 82.4 80.5

shown in Fig. 5. In the first example, our method pays more attention on the
discriminative shop signs than SARE, which provide valuable information for lo-
calization in city-scale street scenarios. In the second example, SARE incorrectly
focuses on the trees, while our method learns to ignore such misleading regions
by iteratively refining supervisions from fine-grained image-to-region similarities.
Although both methods fail in the third example, our retrieved top-1 image is
more reasonable with wall patterns similar to the query image.

4.5 Generalization on Image Retrieval Datasets

In this experiment, we evaluate the generalization capability of learned feature
embeddings on standard image retrieval datasets by directly testing trained mod-
els without fine-tuning. The experimental results are listed in Tab. 3. “Full”
means the feature embeddings are extracted from the whole image, while only
cropped landmark regions are used in the “crop” setting. Our method shows
good generalization ability on standard image retrieval tasks, and outperforms
other competitors on most datasets and test settings. All compared methods do
not perform well on Holidays due to the the fact that Holidays contains lots of
natural sceneries, which are difficult to find in our street-view training set.

5 Conclusion

This paper focuses on the image-based localization (IBL) task which aims to
estimate the geographical location of a query image by recognizing its nearest
reference images from a city-scale dataset. We propose to tackle the problem of
weak and noisy supervisions by self-supervising image-to-region similarities. Our
method outperforms state-of-the-arts on the standard localization benchmarks
by noticeable margins.
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