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Abstract. In this paper, we study an intermediate form of supervi-
sion, i.e., single-frame supervision, for temporal action localization
(TAL). To obtain the single-frame supervision, the annotators are asked
to identify only a single frame within the temporal window of an action.
This can significantly reduce the labor cost of obtaining full supervi-
sion which requires annotating the action boundary. Compared to the
weak supervision that only annotates the video-level label, the single-
frame supervision introduces extra temporal action signals while main-
taining low annotation overhead. To make full use of such single-frame
supervision, we propose a unified system called SF-Net. First, we pro-
pose to predict an actionness score for each video frame. Along with
a typical category score, the actionness score can provide comprehen-
sive information about the occurrence of a potential action and aid
the temporal boundary refinement during inference. Second, we mine
pseudo action and background frames based on the single-frame anno-
tations. We identify pseudo action frames by adaptively expanding each
annotated single frame to its nearby, contextual frames and we mine
pseudo background frames from all the unannotated frames across multi-
ple videos. Together with the ground-truth labeled frames, these pseudo-
labeled frames are further used for training the classifier. In extensive
experiments on THUMOS14, GTEA, and BEOID, SF-Net significantly
improves upon state-of-the-art weakly-supervised methods in terms of
both segment localization and single-frame localization. Notably, SF-Net
achieves comparable results to its fully-supervised counterpart which re-
quires much more resource intensive annotations. The code is available
at https://github.com/Flowerfan/SF-Net.
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1 Introduction

Recently, weakly-supervised Temporal Action Localization (TAL) has attracted
substantial interest. Given a training set containing only video-level labels, we
aim to detect and classify each action instance in long, untrimmed testing videos.
In the fully-supervised annotation, the annotators usually need to rollback the

https://github.com/Flowerfan/SF-Net
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Fig. 1. Different ways of annotating actions while watching a video. (a) Annotating
actions in the fully-supervised way. The start and end time of each action instance
are required to be annotated. (b) Annotating actions in the weakly-supervised setting.
Only action classes are required to be given. (c) Annotating actions in our single-frame
supervision. Each action instance should have one timestamp. Note that the time is
automatically generated by the annotation tool. Compared to the weakly-supervised
annotation, the single-frame annotation requires only a few extra pauses to annotate
repeated seen actions in one video.

video for repeated watching to give the precise temporal boundary of an ac-
tion instance when they notice an action while watching the video [40]. For the
weakly-supervised annotation, annotators just need to watch the video once to
give labels. They can record the action class once they notice an unseen ac-
tion. This significantly reduces annotation resources: video-level labels use fewer
resources than annotating the start and end times in the fully-supervised setting.

Despite the promising results achieved by state-of-the-art weakly-supervised
TAL work [24,26,28], their localization performance is still inferior to fully-
supervised TAL work [5,17,27]. In order to bridge this gap, we are motivated
to utilize single-frame supervision [22]: for each action instance, only one single
positive frame is pointed out. The annotation process for single-frame supervi-
sion is almost the same as it in the weakly-supervised annotation. The annotators
only watch the video once to record the action class and timestamp when they
notice each action. It significantly reduces annotation resources compared to full
supervision.

In the image domain, Bearman et al. [2] were the first to propose point super-
vision for image semantic segmentation. Annotating at point-level was extended
by Mettes et al. [21] to video domain for spatio-temporal localization, where each
action frame requires one spatial point annotation during training. Moltisanti et
al. [22] further reduced the required resources by proposing single-frame super-
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vision and developed a method that selects frames with a very high confidence
score as pseudo action frames.

However, [22] was designed for whole video classification. In order to make
full use of single-frame supervision for our TAL task, the unique challenge of
localizing temporal boundaries of actions remains unresolved. To address
this challenge in TAL, we make three innovations to improve the localization
model’s capability in distinguishing background frames and action frames. First,
we predict “actionness” at each frame which indicates the probability of being
any actions. Second, based on the actionness, we investigate a novel background
mining algorithm to determine frames that are likely to be the background and
leverage these pseudo background frames as additional supervision. Third, when
labeling pseudo action frames, besides the frames with high confidence scores, we
aim to determine more pseudo action frames and thus propose an action frame
expansion algorithm.

In addition, for many real-world applications, detecting precise start time and
end time is overkill. Consider a reporter who wants to find some car accident
shots in an archive of street camera videos: it is sufficient to retrieve a single
frame for each accident, and the reporter can easily truncate clips of desired
lengths. Thus, in addition to evaluating traditional segment localization in TAL,
we also propose a new task called single-frame localization, which requires only
localizing one frame per action instance.

In summary, our contributions are three-fold:
(1) To our best knowledge, this is the first work to use single-frame super-

vision for the challenging problem of localizing temporal boundaries of actions.
We show that the single-frame annotation significantly saves annotation time
compared to fully-supervised annotation.

(2) We find that single-frame supervision can provide strong cue about the
background. Thus, from frames that are not annotated, we propose two novel
methods to mine likely background frames and action frames, respectively. These
likely background and action timestamps are further used as pseudo ground truth
for training.

(3) We conduct extensive experiments on three benchmarks, and the per-
formances on both segment localization and single-frame localization tasks are
largely boosted.

2 Related Work

Action recognition. Action recognition has recently witnessed an increased
focus on trimmed videos. Both temporal and spatial information is significant
for classifying the video. Early works mainly employed hand-crafted features
to solve this task. IDT [33] had been widely used across many video-related
tasks. Recently, various deep neural networks were proposed to encode spatial-
temporal video information. Two-stream network [30] adopted optical flow to
learn temporal motion, which had been used in many latter works [3,30,35]. Many
3D convolutional networks [3,32,10] are also designed to learn action embeddings.
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Beyond fully-supervised action recognition, a few works focus on self-supervised
video feature learning [42] and few-shot action recognition [43]. In this paper,
we focus on single-frame supervision for temporal action localization.

Point supervision. Bearman et al. [2] first utilized the point supervision for
image semantic segmentation. Mettes et al. [21] extended it to spatio-temporal
localization in video, where the action is pointed out by one spatial location
in each action frame. We believe this is overkill for temporal localization, and
demonstrate that single-frame supervision can achieve very promising results
already. Recently, single-frame supervision has been used in [22] for video-level
classification, but this work does not address identifying temporal boundaries.
Note that Alwassel et al. [1] proposed to spot action in the video during inference
time but targeted detecting one action instance per class in one video while our
proposed single-frame localization task aims to detect every instance in one
video.

Fully-supervised temporal action localization. Approaches of temporal
action localization trained in full supervision have mainly followed a proposal-
classification paradigm [5,7,11,17,29,27], where temporal proposals are gener-
ated first and then classified. Other categories of methods, including sequential
decision-making [1] and single-shot detectors [16] have also been studied. Given
full temporal boundary annotations, the proposal-classification methods usually
filter out the background frames at the proposal stage via a binary actionness
classifier. Activity completeness has also been studied in the temporal action
localization task. Zhao et al. [41] used a structural temporal pyramid pooling
followed by an explicit binary classifier to evaluate the completeness of an action
instance. Yuan et al. [37] structured an action into three parts to model its tem-
poral evolution. Chéron et al. [6] handled the spatio-temporal action localization
with various supervisions. Long et al. [20] proposed a Gaussian kernel to dynam-
ically optimize temporal scale of action proposals. However, these methods use
fully temporal annotations, which are resource intensive.

Weakly-supervised temporal action localization. Multiple Instance Learn-
ing (MIL) has been widely used in weakly-supervised temporal action localiza-
tion. Without temporal boundary annotations, temporal action score sequence
has been widely used to generate action proposals [34,24,18,23]. Wang et al. [34]
proposed UntrimmedNet composed of a classification module and a selection
module to reason about the temporal duration of action instances. Nguyen et
al. [24] introduced a sparsity regularization for video-level classification. Shou et
al. [28] and Liu [19] investigated score contrast in the temporal dimension. Hide-
and-Seek [31] randomly removed frame sequences during training to force the
network to respond to multiple relevant parts. Liu et al. [18] proposed a multi-
branch network to model the completeness of actions. Narayan et al. [23] in-
troduced three-loss forms to guide the learning discriminative action features
with enhanced localization capabilities. Nguyen [25] used attention modules to
detect foreground and background for detecting actions. Despite the improve-
ments over time, the performances of weakly-supervised methods are still inferior
to the fully-supervised method.
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Fig. 2. Overall training framework of our proposed SF-Net. Given single-frame su-
pervision, we employ two novel frame mining strategies to label pseudo action frames
and background frames. The detailed architecture of SF-Net is shown on the right.
SF-Net consists of a classification module to classify each labeled frame and the whole
video, and an actionness module to predict the probability of each frame being action.
The classification module and actionness module are trained jointly with three losses
explained in Sec. 3.3.

3 Method

In this section, we define our tasks, present architecture of our SF-Net, and
finally discuss details of training and inference, respectively.

3.1 Problem Definition

A training video can contain multiple action classes and multiple action in-
stances. Unlike the full supervision setting, which provides temporal boundary
annotation of each action instance, in our single-frame supervision setting, each
instance only has one frame pointed out by annotator with timestamp t and
action class y. Note that y ∈ {1, . . . , Nc} where Nc is the total number of classes
and we use index 0 to represent the background class.

Given a testing video, we perform two temporal localization tasks: (1) Seg-
ment localization. We detect the start time and end time for each action
instance with its action class prediction. (2) Single-frame localization. We
output the timestamp of each detected action instance with its action class pre-
diction. The evaluation metrics for these two tasks are explained in Sec. 4.

3.2 Framework

Overview. Our overall framework is presented in Fig. 2. During training, learn-
ing from single-frame supervision, SF-Net mines pseudo action and background
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frames. Based on the labeled frames, we employ three losses to jointly train a
classification module to classify each labeled frame and the whole video, and an
actionness module to predict the probability of each frame being action. In the
following, we outline the framework while details of frame mining strategies and
different losses are described in Sec. 3.3.
Feature extraction. For a training batch of N videos, the features of all frames
are extracted and stored in a feature tensor X ∈ RN×T×D, where D is the
feature dimension, and T is the number of frames. As different videos vary in
the temporal length, we simply pad zeros when the number of frames in a video
is less than T .
Classification module. The classification module outputs the score of being
each action class for all frames in the input video. To classify each labeled frame,
we feed X into three Fully-Connected (FC) layers to get the classification score
C ∈ RN×T×Nc+1. The classification score C is then used to compute frame
classification loss Lframe. We also pool C temporally as described in [23] to
compute video-level classification loss Lvideo.
Actionness module. As shown in Fig. 2, our model has an actionness branch of
identifying positive action frames. Different from the classification module, the
actionness module only produces a scalar for each frame to denote the probability
of being contained in an action segment. To predict an actionness score, we feed
X into two temporal convolutional layers followed by one FC layer, resulting
in an actionness score matrix A ∈ RN×T . We apply sigmoid on A and then
compute a binary classification loss Lactionness.

3.3 Pseudo Label Mining and Training Objectives

Action classification at labeled frames. We use cross entropy loss for the
action frame classification. As there are NT frames in the input batch of videos
and most of the frames are unlabeled, we first filter the labeled frames for classi-
fication. Suppose we have K labeled frames where K � NT . We can get classifi-
cation activations of K labeled frames from C. These scores are fed to a Softmax
layer to get classification probability pl ∈ RK×Nc+1 for all labeled frames. The
classification loss of annotated frames in the batch of videos is formulated as:

Llframe = − 1

K

K∑
i

yilogpli, (1)

where the pli denote the prediction for the ith labeled action frame.

Pseudo labeling of frames. With only a single label per action instance, the
total number of positive examples is quite small and may be difficult to learn
from. While we do not use full temporal annotation, it is clear that actions are
longer events spanning consecutive frames. To increase the temporal information
available to the model, we design an action frame mining and a background frame
mining strategy to introduce more frames into the training process.
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(a) Action frame mining: We treat each labeled action frame as an anchor
frame for each action instance. We first set the expand radius r to limit the
maximum expansion distance to the anchor frame at t. Then we expand the
past from t− 1 frame and the future from t+ 1 frame, separately. Suppose the
action class of the anchor frame is represented by yi. If the current expanding
frame has the same predicted label with the anchor frame, and the classification
score at yi class is higher than that score of the anchor frame multiplying a
predefined value ξ, we then annotate this frame with label yi and put it into the
training pool. Otherwise, we stop the expansion process for the current anchor
frame.

(b) Background frame mining: The background frames are also important
and widely used in localization methods [18,25] to boost the model perfor-
mance. Since there is no background label under the single-frame supervision,
our proposed model manages to localize background frames from all the un-
labeled frames in the N videos. At the beginning, we do not have supervision
about where the background frames are. But explicitly introducing a background
class can avoid forcing classifying a frame into one of the action classes. Our pro-
posed background frame mining algorithm can offer us the supervision needed
for training such a background class so as to improve the discriminability of the
classifier. Suppose we try to mine ηK background frames, we first gather the
classification scores of all unlabeled frames from C. The η is the ratio of back-
ground frames to labeled frames. These scores are then sorted along background
class to select the top ηK scores pb ∈ RηK as the score vector of the background
frames. The pseudo background classification loss is calculated on the top ηK
frames by,

Lbframe = − 1

ηK

∑
log pb, (2)

The background frame classification loss assists the model with identifying irrel-
evant frames. Different from background mining in [18,25] which either require
extra computation source to generate background frames or adopt a compli-
cated loss for optimization, we mining background frames across multiple videos
and use the classification loss for optimization. The selected pseudo background
frames may have some noises in the initial training rounds. As the training
evolves and the classifier’s discriminability improves, we are able to reduce the
noises and detect background frames more correctly. With the more correct
background frames as supervision signals, the classifier’s discriminability can be
further boosted. In our experiments, we observed that this simple background
mining strategy allows for better action localization results. We incorporate the
background classification loss with the labeled frame classification loss to formu-
late the single-frame classification loss

Lframe = Llframe +
1

Nc
Lbframe (3)

where Nc is the number of action classes to leverage the influence from back-
ground class.
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Fig. 3. The inference framework of SF-Net. The classification module outputs the
classification score C of each frame for identifying possible target actions in the given
video. The action module produces the actionness score determining the possibility of
a frame containing target actions. The actionness score together with the classification
score are used to generate action segment based on the threshold.

Actionness prediction at labeled frames. In fully-supervised TAL, various
methods learn to generate action proposals that may contain the potential ac-
tivities [36,17,5]. Motivated by this, we design the actionness module to make
the model focus on frames relevant to target actions. Instead of producing the
temporal segment in proposal methods, our actionness module produces the ac-
tionness score for each frame. The actionness module is in parallel with the
classification module in our SF-Net. It offers extra information for temporal ac-
tion localization. We first gather the actionness score Al ∈ RK of labeled frames
in the training videos. The higher the value for a frame, the higher probability of
that frame belongs to a target action. We also use the background frame mining
strategy to get the actionness score Ab ∈ RηK . The actionness loss is calculated
by,

Lactionness = − 1

K

∑
log σ(Al)− 1

ηK

∑
log(1− σ(Ab)), (4)

where σ is the sigmoid function to scale the actionness score to [0, 1].

Full objective. We employ video-level loss as described in [23] to tackle the
problem of multi-label action classification at video-level. For the ith video, the
top-k activations per category (where k = Ti/8) of the classification activation
C(i) are selected and then are averaged to obtain a class-specific encoding ri ∈
RC+1 as in [26,23]. We average all the frame label predictions in the video vi to
get the video-level ground-truth qi ∈ RNc+1. The video-level loss is calculated
by

Lvideo = − 1

N

N∑
i=1

Nc∑
j=1

qi(j) log
exp(ri(j))∑

Nc+1 exp(ri(k))
, (5)

where qi(j) is the jth value of qi representing the probability mass of video vi
belong to jth class.
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Consequently, the total training objective for our proposed method is

L = Lframe + αLvideo + βLactionness, (6)

where Lframe, Lvideo, and Lactionness, denote the frame classification loss, video
classification loss, and actionness loss, respectively. α and β are the hyper-parameters
leveraging different losses.

3.4 Inference

During the test stage, we need to give the temporal boundary for each detected
action. We follow previous weakly-supervised work [24] to predict video-level
labels by temporally pooling and thresholding on the classification score. As
shown in Fig. 3, we first obtain the classification score C and actionness score
A by feeding input features of a video to the classification module and action-
ness module. Towards segment localization, we follow the thresholding strategy
in [24,25] to keep the action frames above the threshold and consecutive action
frames constitute an action segment. For each predicted video-level action class,
we localize each action segment by detecting an interval that the sum of classi-
fication score and actionness score exceeds the preset threshold at every frame
inside the interval. We simply set the confidence score of the detected segment
to the sum of its highest frame classification score and the actionness score. To-
wards single frame localization, for the action instance, we choose the frame with
the maximum activation score in the detected segment as the localized action
frame.

4 Experiment

4.1 Datasets

THUMOS14. There are 1010 validation and 1574 test videos from 101 action
categories in THUMOS14 [12]. Out of these, 20 categories have temporal anno-
tations in 200 validation and 213 test videos. The dataset is challenging, as it
contains an average of 15 activity instances per video. Similar to [14, 16], we use
the validation set for training and test set for evaluating our framework.

GTEA. There are 28 videos of 7 fine-grained types of daily activities in a kitchen
contained in GTEA [14]. An activity is performed by four different subjects, and
each video contains about 1800 RGB frames, showing a sequence of 7 actions,
including the background action.

BEOID. There are 58 videos in BEOID [8]. There is an average of 12.5 action
instances per video. The average length is about 60s, and there are 30 action
classes in total. We randomly split the untrimmed videos in an 80-20% proportion
for training and testing, as described in [22].
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Table 1. Comparison between different methods for simulating single-frame supervi-
sion on THUMOS14. “Annotation” means that the model uses human annotated frame
for training. “TS” denotes that the single-frame is sampled from action instances using
a uniform distribution, while “TS in GT” is using a Gaussian distribution near the
mid timestamp of each activity. The AVG for segment localization is the average mAP
from IoU 0.1 to 0.7.

Position mAP@hit
Segment mAP@IoU

0.3 0.5 0.7 AVG

Annotation 60.2±0.70 53.3±0.30 28.8±0.57 9.7±0.35 40.6±0.40

TS 57.6±0.60 52.0±0.35 30.2±0.48 11.8±0.35 40.5±0.28

TS in GT 52.8±0.85 47.4±0.72 26.2±0.64 9.1±0.41 36.7±0.52

4.2 Implementation Details

We use I3D network [3] trained on the Kinetics [4] to extract video features.
For the RGB stream, we rescale the smallest dimension of a frame to 256 and
perform the center crop of size 224 × 224. For the flow stream, we apply the
TV-L1 optical flow algorithm [38]. We follow the two-stream fusion operation
in [23] to integrate predictions from both appearance (RGB) and motion (Flow)
branches. The inputs to the I3D models are stacks of 16 frames.

On all datasets, we set the learning rate to 10−3 for all experiments, and
the model is trained with a batch size of 32 using the Adam [13]. Loss weight
hyper-parameters α and β are set to 1. The model performance is not sensitive to
these hyper-parameters. For the hyper-parameter η used in mining background
frames, we set it to 5 on THUMOS14 and set it to 1 on the other two datasets.
The number of iterations is set to 500, 2000 and 5000 for GTEA, BEOID and
THUMOS14, respectively.

4.3 Evaluation Metrics

(1) Segment localization: We follow the standard protocol, provided with the
three datasets, for evaluation. The evaluation protocol is based on mean Average
Precision (mAP) for different intersection over union (IoU) values for the action
localization task.
(2) Single-frame localization: We also use mAP to compare performances.
Instead of measuring IoU, the predicted single-frame is regarded as correct when
it lies in the temporal area of the ground-truth segment, and the class label is
correct. We use mAP@hit to denote the mean average precision of selected action
frame falling in the correct action segment.

4.4 Annotation Analysis

Single-frame supervision simulation. First, to simulate the single-frame
supervision based on ground-truth boundary annotations existed in the above
three datasets, we explore the different strategies to sample a single-frame for
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Table 2. Single-frame annotation differences between different annotators on three
datasets. We show the number of action segments annotated by Annotator 1, Annotator
2, Annotator 3, and Annotator 4. In the last column, we report the total number of
the ground-truth action segments for each dataset.

Datasets Annotator 1 Annotator 2 Annotator 3 Annotator 4 # of total segments

GTEA 369 366 377 367 367
BEOID 604 602 589 599 594

THUMOS14 3014 2920 2980 2986 3007

each action instance. We follow the strategy in [22] to generate single-frame an-
notations with uniform and Gaussian distribution (Denoted by TS and TS in
GT). We report the segment localization at different IoU thresholds and frame
localization results on THUMOS14 in Table 1. The model with each single-frame
annotation is trained five times. The mean and standard deviation of mAP is
reported in the Table. Compared to models trained on sampled frames, the
model trained on human annotated frames achieves the highest mAP@hit. As
the the action frame is the frame with the largest prediction score in the predic-
tion segment, the model with higher mAP@hit can assist with localizing action
timestamp more accurately when people need to retrieve the frame of target
actions. When sampling frames are from near middle timestamps to the action
segment (TS in GT), the model performs inferior to other models as these frames
may not contain informative elements of complete actions. For the segment lo-
calization result, the model trained on truly single-frame annotations achieves
higher mAP at small IoU thresholds, and the model trained on frames sampled
uniformly from the action instance gets higher mAP at larger IoU thresholds. It
may be originated by sampled frames of uniform distribution containing more
boundary information for the given action instances.

Single-frame annotation. We also invite four annotators with different back-
grounds to label a single frame for each action segment on three datasets. More
details of annotation process can be found in the supplementary material. In
Table 2, we have shown the action instances of different datasets annotated by
different annotators. The ground-truth in the Table denotes the action instances
annotated in the fully-supervised setting. From the Table, we obtain that the
number of action instances by different annotators have a very low variance. The
number of labeled frames is very close to the number of action segments in the
fully-supervised setting. This indicates that annotators have common justifica-
tion for the target actions and hardly miss the action instance despite that they
only pause once to annotate single-frame of each action.

We also present the distribution of the relative position of single-frame an-
notation to the corresponding action segment. As shown in Fig. 4, there are rare
frames outside of the temporal range of action instances from the ground-truth
in the fully-supervised setting. As the number of annotated single frames is al-
most the same as the number of action segments, we can draw the inference that
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Fig. 4. Statistics of human annotated single-frame on three datasets. X-axis: single-
frame falls in the relative portion of the whole action; Y-axis: percentage of annotated
frames. We use different colors to denote annotation distribution on different datasets.

the single frame annotation includes all almost potential action instances. We
obtain that annotators prefer to label frames near to the middle part of action
instances. This indicates that humans can identify an action without watching
the whole action segment. On the other hand, this will significantly reduce the
annotation time compared with fully-supervised annotation as we can quickly
skip the current action instance after single-frame annotation.

Annotation speed for different supervision. To measure the required an-
notation resource for different supervision, we conduct a study on GTEA. Four
annotators are trained to be familiar with action classes in GTEA. We ask
the annotator to indicate the video-level label, single-frame label and temporal
boundary label of 21 videos lasting 93 minutes long. While watching, the anno-
tator is able to skim quickly, pause, and go to any timestamp. On average, the
annotation time used by each person to annotate 1-minute video is 45s for the
video-level label, 50s for the single-frame label, and 300s for the segment label.
The annotation time for single-frame label is close to the annotation time for
video-level label but much fewer than time for the fully-supervised annotation.

4.5 Analysis

Effectiveness of each module, loss, and supervision. To analyze the con-
tribution of the classification module, actionness module, background frame min-
ing strategy, and the action frame mining strategy, we perform a set of ablation
studies on THUMOS14, GTEA and BEOID datasets. The segment localization
mAP at different thresholds is presented in Table 3. We also compare the model
with only weak supervision and the model with full supervision. The model with
weak supervision is implemented based on [23].

We observe that the model with single-frame supervision outperforms the
weakly-supervised model. And large performance gain is obtained on GTEA
and BEOID datasets as the single video often contains multiple action classes,
while action classes in one video are fewer in THUMOS14. Both background
frame mining strategy and action frame mining strategy boost the performance
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Table 3. Segment localization mAP results at different IoU thresholds on three
datasets. Weak denotes that only video-level labels are used for training. All action
frames are used in the full supervision approach. SF uses extra single frame supervi-
sion with frame level classification loss. SFB means that pseudo background frames
are added into the training, while the SFBA adopts the actionness module, and the
SFBAE indicates the action frame mining strategy added in the model. For models
trained on single-frame annotations, we report mean and standard deviation results of
five runs. AVG is the average mAP from IoU 0.1 to 0.7.

Dataset Models
mAP@IoU

0.1 0.3 0.5 0.7 AVG

GTEA

Full 58.1 40.0 22.2 14.8 31.5

Weak 14.0 9.7 4.0 3.4 7.0

SF 50.0±1.42 35.6±2.61 21.6±1.67 17.7±0.96 30.5±1.23

SFB 52.9±3.84 34.9±4.72 17.2±3.46 11.0±2.52 28.0±3.53

SFBA 52.6±5.32 32.7±3.07 15.3±3.63 8.5±1.95 26.4±3.61

SFBAE 58.0±2.83 37.9±3.18 19.3±1.03 11.9±3.89 31.0±1.63

BEOID

Full 65.1 38.6 22.9 7.9 33.6

Weak 22.5 11.8 1.4 0.3 8.7

SF 54.1±2.48 24.1±2.37 6.7±1.72 1.5±0.84 19.7±1.25

SFB 57.2±3.21 26.8±1.77 9.3±1.94 1.7±0.68 21.7±1.43

SFBA 62.9±1.68 36.1±3.17 12.2±3.15 2.2±2.07 27.1±1.44

SFBAE 62.9±1.39 40.6±1.8 16.7±3.56 3.5±0.25 30.1±1.22

THUMOS14

Full 68.7 54.5 34.4 16.7 43.8

Weak 55.3 40.4 20.4 7.3 30.8

SF 58.6±0.56 41.3±0.62 20.4±0.55 6.9±0.33 31.7±0.41

SFB 60.8±0.65 44.5±0.37 22.9±0.38 7.8±0.46 33.9±0.31

SFBA 68.7±0.33 52.3±1.21 28.2±0.42 9.7±0.51 39.9±0.43

SFBAE 70.0±0.64 53.3±0.3 28.8±0.57 9.7±0.35 40.6±0.40

on BEOID and THUMOS14 by putting more frames into the training, the perfor-
mance on GTEA decreases mainly due to that GTEA contains almost no back-
ground frame. In this case, it is not helpful to employ background mining and
the actionness module which aims for distinguishing background against action.
The actionness module works well for the BEOID and THUMOS14 datasets,
although the actionness module only produces one score for each frame.

Comparisons with state-of-the-art. Experimental results on THUMOS14
testing set are shown in Table 4. Our proposed single-frame action localization
method is compared to existing methods for weakly-supervised temporal action
localization, as well as several fully-supervised ones. Our model outperforms
the previous weakly-supervised methods at all IoU thresholds regardless of the
choice of feature extraction network. The gain is substantial even though only one
single-frame for each action instance is provided. The model trained on human
annotated frames achieves higher mAP at lower IoU compared to model trained
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Table 4. Segment localization results on THUMOS14 dataset. The mAP values at
different IoU thresholds are reported, and the column AVG indicates the average mAP
at IoU thresholds from 0.1 to 0.5. * denotes the single-frame labels are simulated based
on the ground-truth annotations. # denotes single-frame labels are manually annotated
by human annotators.

Supervision Method
mAP @IoU

0.1 0.2 0.3 0.4 0.5 0.6 0.7 AVG

Full S-CNN [29] 47.7 43.5 36.3 28.7 19.0 - 5.3 35.0

Full CDC [27] - - 40.1 29.4 23.3 - 7.9 -

Full R-C3D [36] 54.5 51.5 44.8 35.6 28.9 - - 43.1

Full SSN [41] 60.3 56.2 50.6 40.8 29.1 - - 47.4

Full Faster- [5] 59.8 57.1 53.2 48.5 42.8 33.8 20.8 52.3

Full BMN [15] - - 56.0 47.4 38.8 29.7 20.5 -

Full P-GCN [39] 69.5 67.8 63.6 57.8 49.1 - - 61.6

Weak Hide-and-Seek [31] 36.4 27.8 19.5 12.7 6.8 - - 20.6

Weak UntrimmedNet [34] 44.4 37.7 28.2 21.1 13.7 - - 29.0

Weak W-TALC [9] 49.0 42.8 32.0 26.0 18.8 - 6.2 33.7

Weak AutoLoc [28] - - 35.8 29.0 21.2 13.4 5.8 -

Weak STPN [24] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 35.0

Weak W-TALC [26] 55.2 49.6 40.1 31.1 22.8 - 7.6 39.7

Weak Liu et al. [18] 57.4 50.8 41.2 32.1 23.1 15.0 7.0 40.9

Weak Nguyen et al. [25] 60.4 56.0 46.6 37.5 26.8 17.6 9.0 45.5

Weak 3C-Net [23] 59.1 53.5 44.2 34.1 26.6 - 8.1 43.5

Single-frame simulation* Moltisanti et al. [22] 24.3 19.9 15.9 12.5 9.0 - - 16.3

Single-frame simulation* SF-Net 68.3 62.3 52.8 42.2 30.5 20.6 12.0 51.2

Single-frame# SF-Net 71.0 63.4 53.2 40.7 29.3 18.4 9.6 51.5

on sampling frames uniformly from action segments. The differences come from
the fact that the uniform sampling frames from ground-truth action segments
contain more information about temporal boundaries for different actions. As
there are many background frames in the THUMOS14 dataset, the single frame
supervision assists the proposed model with localizing potential action frames
among the whole video. Note that the supervised methods have the regression
module to refine the action boundary, while we simply threshold on the score
sequence and still achieve comparable results.

5 Conclusions

In this paper, we have investigated how to leverage single-frame supervision
to train temporal action localization models for both segment localization and
single-frame localization during inference. Our SF-Net makes full use of single-
frame supervision by predicting actionness score, pseudo background frame min-
ing and pseudo action frame mining. SF-Net significantly outperforms weakly-
supervised methods in terms of both segment localization and single-frame lo-
calization on three standard benchmarks.
Acknowledgements. This research was partially supported by ARC DP200100938
and Facebook.
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