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Abstract. This paper introduces a negative margin loss to metric learn-
ing based few-shot learning methods. The negative margin loss signifi-
cantly outperforms regular softmax loss, and achieves state-of-the-art
accuracy on three standard few-shot classification benchmarks with few
bells and whistles. These results are contrary to the common practice
in the metric learning field, that the margin is zero or positive. To un-
derstand why the negative margin loss performs well for the few-shot
classification, we analyze the discriminability of learned features w.r.t
different margins for training and novel classes, both empirically and
theoretically. We find that although negative margin reduces the fea-
ture discriminability for training classes, it may also avoid falsely map-
ping samples of the same novel class to multiple peaks or clusters, and
thus benefit the discrimination of novel classes. Code is available at
https://github.com/bl0/negative-margin.few-shot.
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1 Introduction

Recent success on visual recognition tasks [17, 42, 13, 38, 4, 2] heavily relies on the
massive-scale manually labeled training data, which is too expensive in many real
scenarios. In contrast, humans are capable of learning new concepts with only a
few examples, yet it still remains a challenge for modern machine learning sys-
tems. Hence, learning to generalize the knowledge in base classes (with sufficient
annotated examples) to novel classes (with a few labeled examples), also known
as few-shot learning, has attracted more and more attention [3, 19, 25, 7, 45, 43,
9, 37, 44, 36, 35, 10].

An important direction of few-shot classification is meta learning, which aims
to learn a meta-learner on base classes and generalizes it to novel classes. Metric
learning based methods [3, 7, 25], are an important series of the meta-learning
methods, and perform metric learning in the base classes and then transfer the
learned metrics to the novel classes. For example, [3] proved that simply using
⋆ Equal contribution. † The work is done when Yutong Lin is an intern at MSRA.
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(a) 1-shot accuracy
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(b) 5-shot accuracy

Fig. 1. The one-shot and five-shot accuracy on novel classes (in red) and base classes (in
blue) w.r.t different margins in cosine softmax loss on mini-ImageNet. As we expect,
applying larger margin to softmax loss can achieve better accuracy on base classes.
But surprisingly, applying appropriate negative margin to softmax loss can achieve
state-of-the-art few-shot accuracy on novel classes.

standard softmax loss or cosine softmax loss for learning metrics in base classes
can achieve the state-of-the-art few-shot classification performance via learning
a linear classifier on novel classes.

In the metric learning area, a common view is that the standard softmax loss
is insufficient for discrimination on different training classes. Several previous
approaches integrate the large and positive margin to the softmax loss [22] or the
cosine softmax loss [6, 47] so as to enforce the score of ground truth class larger
than that of other classes by at least a margin. This could help to learn highly-
discriminative deep features and result in remarkable performance improvement
on visual recognition tasks, especially on face recognition [22, 6, 47].

Consequently, it inspires us to adopt this large-margin softmax loss to learn
better metrics for few-shot classification. As we expected, shown as the blue
curves in Fig. 1, the metrics learned by large-margin softmax with positive mar-
gin are more discriminative on training classes, resulting in higher few-shot accu-
racy on the validation set of training classes. But in the standard open-set setting
of few-shot classification, shown as red curves in Fig. 1, we surprisingly find out
that adding the positive margin in softmax loss would hurt the performance.

From our perspective, the positive margin would make the learned metrics
more discriminative to training classes. But for novel classes, positive margin
would map the samples of the same class to multiple peaks or clusters in base
classes (shown in Fig. 3 and Fig. 7) and hurt their discriminability. We then give
a theoretical analysis that the discriminability of the samples in the novel classes
is monotonic decreasing w.r.t the margin parameter under proper assumption.
Instead, appropriate negative margin could achieve a better tradeoff between
the discriminability and transferability for novel classes, and achieves better
performance on few-shot classification.

The main contributions of this paper are summarized as follows:
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1. This is the first endeavor to show that softmax loss with negative margin
works surprisingly well on few-shot classification, which breaks the inherent
understanding that margin can only be limited to positive values [6, 22, 47].

2. We provide insightful intuitive explanation and the theoretical analysis about
why negative margin works well for few-shot classification.

3. The proposed approach with negative margin achieves state-of-the-art per-
formance on three widely-used few-shot classification benchmarks.

2 Related Work
Few-Shot Classification. The existing representative few-shot learning meth-
ods can be broadly divided into three categories: gradient-based methods, hallu-
cination-based methods, and metric-based methods.

Gradient-based methods tackle the few-shot classification by learning the
task-agnostic knowledge. [9, 39, 31, 29, 27] focus on learning a suitable initializa-
tion of the model parameters which can quickly adapt to new tasks with a limited
number of labeled data and a small number of gradient update steps. Another
line of works aims at learning an optimizer, such as LSTM-based meta learner
[37] and weight-update mechanism with an external memory [28], for replacing
the stochastic gradient descent optimizer. However, it is challenging to solve the
dual or bi-level optimization problem of these works, so their performance is not
competitive on large datasets. Recently, [19, 1] alleviate the optimization prob-
lem by closed-form model like SVM, and achieve better performance on few-shot
classification benchmark of large dataset.

Hallucination-based methods attempt to address the limited data issue by
learning an image generator from base classes, which is adopted to hallucinate
new images in novel classes [12, 48]. [12] presents a way of hallucinating additional
examples for novel classes by transferring modes of variation from base classes.
[48] learns to hallucinate examples that are useful for classification by the end-
to-end optimization of both classifier and hallucinator. As hallucination-based
methods can be considered as the supplement and are always adopted with other
few-shot methods, we follow [3] to exclude these methods in our experimental
comparison and leave it to future work.

Metric-based methods aim at learning a transferable distance metric. Match-
ingNet [45] computes cosine similarity between the embeddings of labeled im-
ages and unlabeled images, to classify the unlabeled images. ProtoNet [43] rep-
resents each class by the mean embedding of the examples inside this class,
and the classification is performed based on the distance to the mean embed-
ding of each class. RelationNet [44] replaces the non-parametric distance in Pro-
toNet to a parametric relation module. Recently, [3, 7, 25] reveal that the simple
pre-training and fine-tuning pipeline (following the standard transfer learning
paradigm) can achieve surprisingly competitive performance with the state-of-
the-art few-shot classification methods.

Based on this simple paradigm, our work is the first endeavor towards ex-
plicitly integrating the margin parameter to the softmax loss, and mostly impor-
tantly breaks the inherent understanding that the margin can be only restricted
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as positive values, with both intuitive understanding and theoretical analysis.
With an appropriate negative margin, our approach could achieve the state-of-
the-art performance on three standard few-shot classification benchmarks.

Margin based Metric Learning. Metric learning aims to learn a distance
metric between examples, and plays a critical role in many tasks, such as classi-
fication [49], clustering [51], retrieval [20] and visualization [24].

In practice, the margin between data points and the decision boundary plays
a significant role in achieving strong generalization performance. [16] develops
a margin theory and shows that the margin loss leads to an informative gener-
alization bound for classification task. In the past decades, the idea of margin-
based metric learning has been widely explored in SVM [40], k-NN classifica-
tion [49], multi-task learning [33], etc. In the deep learning era, many margin-
based metric learning methods are proposed to enhance the discriminative power
of the learned deep features, and show remarkable performance improvements in
many tasks [20, 19, 30], especially in face verification [41, 21, 47, 6]. For example,
SphereFace [21], CosFace [47], and ArcFace [6] enforce the intra-class variance
and inter-class diversity by adding the margin to cosine softmax loss.

However, as the tasks of previous works are based on close-set scenarios,
they limit the margin parameter as positive values [21, 47, 6], where making the
deep features more discriminative could be generalized to the validation set and
improve the performance. For open-set scenarios, such as few-shot learning, in-
creasing the margin would not enforce the inter-class diversity but unfortunately
enlarge the intra-class variance for novel classes, as shown in Fig. 2, which would
hurt the performance. In contrast, an appropriate negative margin would better
tradeoff the discriminability and transferability of deep features in novel classes,
and obtain better performance for few-shot classification.

3 Methodology

In a few-shot classification task, we are given two sets of data with different
classes, formulated as Ib = {(xi, yi)}N

b

i=1 as the base training set with Cb base
classes for the first training stage, and In = {(x′

i, y
′
i)}N

n

i=1 as the novel training
set with Cn novel classes for the second training stage. For the novel training
set, each class has K samples, where K = 1 or 5, and Cn = 5 is the standard
setting [3, 19, 25, 7, 44, 36, 35]. This is called Cn-way K-shot learning. Few-shot
classification aims to learn both discriminative and transferable feature repre-
sentations from the abundant labeled data in base classes, such that the features
can be easily adapted for the novel classes with few labeled examples.

3.1 Negative-margin Softmax Loss

In image classification, the softmax loss is built upon the feature representation
of deep networks zi = fθ(xi) ∈ RD (fθ(·) denotes the backbone network with
the parameters θ), its corresponding label yi and the linear transform matrix
W = [W1,W2, ...,WCb ] ∈ RD×Cb . Recently, introducing the large and positive
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margin parameter to the softmax loss is widely explored in metric learning [22,
47, 6]. Hence, we directly integrate the margin parameter to the softmax loss to
learn the transferable metrics, aiming at benefiting the few-shot classification on
novel classes. The general formulation of large-margin softmax loss is defined as

L = − 1

N

N∑
i=1

log
eβ·(s(zi,Wyi)−m)

eβ·(s(zi,Wyi)−m) +
C∑

j=1,j ̸=yi
eβ·s(zi,Wj)

, (1)

where m is the margin parameter, β denotes the temperature parameter which
defines how much strength to enlarge the gap between the largest logit and other
logits. And s(·, ·) denotes the similarity function between two input vectors.

It’s worth noting that all the previous works on large-margin softmax loss
restrict the margin as positive values [22, 47, 6]. This is because that previous
works focus on the close-set scenarios, the loss with larger margin leads to the
smaller intra-class variance and the larger between-class variance, which will help
to classify examples in the same classes. This is also validated in Figure 1, that
the softmax loss with larger margin could improve the classification accuracy on
the validation set of training classes.

However, the situations are different in the open-set scenarios. Learned met-
rics which are too discriminative to training classes may hurt their transferabil-
ity to the novel classes. So applying appropriate negative margin to softmax loss
aims to tradeoff the discriminability on training classes and the transferability
to novel classes of the learned metrics.

Here we formulate two instantiations of Eqn. 1 with different similarity func-
tions. By taking the inner-product similarity s (zi,Wj) = WT

j zi into Eqn. 1,
the negative-margin softmax loss (abbreviated as Neg-Softmax) could be
obtained. By taking the cosine similarity s (zi,Wj) =

WT
j zi

∥zi∥∥Wj∥ into Eqn. 1, we
can formulate the negative-margin cosine softmax loss (abbreviated as Neg-
Cosine). The detailed loss functions could be found at the Appendix. These two
loss functions are adopted at the pre-training stage.

3.2 Discriminability analysis of deep features w.r.t different margins

We analyze the discriminability of the deep features extracted by the deep model
with different margins, to understand why negative margin works well on novel
classes. For simplicity, we only analyze the cosine softmax loss, and it is direct
to extend the analysis and conclusion to standard softmax loss.

We denote the pre-trained backbone network trained with margin parameter
m as fθ(m). For class j in base classes or novel classes, denote the set of examples
labeled with class j as Ij = {(xi, yi)|yi = j}. We compute the class center
µ(Ij ,m) for class j as the mean of the L2-normalized feature embeddings as

µ(Ij ,m) =
1

|Ij |
∑

(xi,yi)∈Ij

fθ(m) (xi)

∥fθ(m) (xi) ∥2
. (2)
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Fig. 2. Inter-class variance Dinter, intra-class variance Dintra, and discriminative func-
tion ϕ w.r.t margin m on both base and novel classes of mini-ImageNet. As the margin
increases, the features of base classes is more discriminative, while that of novel classes
is less discriminative.

The dataset I = I1 ∪ I2 ∪ · · · ∪ IC with C classes could be base dataset Ib with
a large number of base classes or novel dataset In with small number of novel
classes (such as 5 for 5-way few shot learning). Then we define the inter-class
variance Dinter(I,m), and intra-class variance Dintra(I,m) as

Dinter(I,m) =
1

C(C − 1)

C∑
j=1

C∑
k=1,k ̸=j

∥µ(Ij ,m)− µ(Ik,m)∥22,

Dintra(I,m) =
1

C

C∑
j=1

(
1

|Ij |
∑

(xi,yi)∈Ij

∥∥∥∥ fθ(m)(xi)

∥fθ(m)(xi)∥
− µ(Ij ,m)

∥∥∥∥2
2

).

(3)

For every two classes, the inter-class variance is the squared L2 distance between
their class centers. For each class, the intra-class variance is the squared L2
distance between every sample in this class and the class center.

If inter-class variance becomes larger or intra-class variance becomes smaller,
the deep features would be more discriminative. So we follow [26] to define the
discriminative function ϕ(I,m) as the inter-class variance divided by the intra-
class variance:

ϕ(I,m) =
Dinter(I,m)

Dintra(I,m)
. (4)

To measure the discriminability of the deep features with different margins, we
plot the inter-class variance Dinter, intra-class variance Dintra, and discriminative
function ϕ w.r.t margin m on both the base and novel classes of mini-ImageNet,
respectively. As shown in Fig. 2, for base classes (red curves), as the margin in-
creases, the inter-class variance increases a lot, meanwhile the intra-class variance
does not change much, so the features of base classes become more discrimina-
tive. This is widely observed in previous works [6, 47, 22], and motivates them to
introduce large and also positive margin to softmax loss for close-set scenarios.

But for novel classes (blue curves), the situation is just on the contrary. As
the margin increases, the inter-class variance does not change much, but the
intra-class variance increases a lot, so the features of base classes become less
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Base Classes

Novel Classes

Negative PositiveMargin

Fig. 3. The visualizations of the data distributions on angular space with different
margins, on base classes (the first row) or novel classes (the second row) of MNIST.
Plots from left to right denotes the margins from negative to positive. For each figure,
we plot the histogram of the occurrence for each angle. Different colors denote the data
points belonging to different classes.

discriminative. This indicates that larger margin may hurt the classification on
the novel classes. This is also verified in the real few-shot classification task,
shown as red curves in Fig. 1, larger and positive margin will achieve worse
performance of few-shot classification on novel classes. Instead, the appropriate
negative margin could achieve the best performance, which may lead to a better
tradeoff on discriminability and transferability for novel classes.

3.3 Intuitive Explanation

To better understand how the margin works, we perform the visualization on
the data distributions in the angular space trained on MNIST1, as shown in
Fig. 3. We choose seven classes as the base classes for pre-training, and adopt
the other three classes as the novel classes. We first train this deep model with
2-dimensional output features using cosine softmax loss with different margins
on the base classes. Then we normalize the 2-D features to obtain the direction
of each data point, and visualize the count of each direction (also known as the
data distributions in angular space) on both base (first row) and novel classes
(second row) using the models trained with different margins.

As shown in the first row in Fig. 3, with larger and even positive margin (from
left to right), the clusters for each training class are getting thinner and higher,
and the angle differences between different class centers are getting larger. This
matches our previous observation in Fig. 2, that enlarging the margin leads to
the smaller intra-class variance and larger inter-class variance on the base classes.

However, with larger margin, less data points would lie in the space far from
all centers, which to some extent makes the output space much narrower. As
1 This technique is widely used to characterize the feature embedding under the

softmax-related objectives [47, 21, 54].
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Fig. 4. We first sort the 36 novel classes according to the probability of sample pairs in
the same novel class j classified into the same base class P s

j (one of every 3 categories
are plotted for clarity) on mini-ImageNet. For each novel class, (a) shows the histogram
of samples in this class to be classified to 64 base classes. (b) shows the accuracy curves
w.r.t different margins for novel classes with different averaged P s.

shown on the right side of the second row in Fig. 3, as novel classes are different
to base classes, model with large margin may map the data points of the same
class in novel classes to multiple peaks or clusters belonging to different base
classes. Then the intra-class variance for novel classes would increase accordingly,
making the classification of novel classes more difficult. Instead, as shown on the
left side of second row in Fig. 3, the appropriate negative margin would not
enforce the data points in novel classes too close to the training center, and may
alleviate the multi-peak issue, which could benefit the classification on novel
classes.

3.4 Theoretical Analysis

After giving the intuitive explanation that why negative margin works well on
novel classes, we then prove this claim theoretically. Denote the parameter of
the classifier joint pre-trained with backbone on base classes with margin m as
W(m), the probability of a sample in the novel category j classified by pre-
trained backbone fθ(m) and classifier W (m) as a base category k is

Pjk(m) =
1

|Ij |
∑

(xi,yi)∈Ij

exp
(
βs(fθ(m)(x),Wk(m))

)∑Cb

k′=1 exp
(
βs(fθ(m)(x),Wk′(m))

) , (5)

where s(·, ·) denotes the similarity function. The probability of a pair of sam-
ples in the same novel category j classified into the same base class is P sj (m) =∑Cb

k=1 P
2
jk(m). And the average probability of P sj (m) is P s(m) = 1

|Cn|
∑Cn

j=1 P
s
j (m).

Proposition. Assuming discriminative function for the base classes ϕ(Ib,m) is
a monotonic increasing function w.r.t margin parameter m, and then we denote
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ϕ−1(Ib,m1)− ϕ−1(Ib,m2) = r · (m2 −m1), where m2 > m1 and r > 0 is a scale
variable. ψ(m) = Dinter(I

n,m)/Dinter(I
b,m) is a monotonic decreasing function

and we denote ψ(m1)− ψ(m2) = t · (m2 −m1), t > 0.
Then ∀0 < P s < t

t(1−ϕ−1(Ib,m1))+rψ(m1)
, we have 2:

ϕ(In,m2) < ϕ(In,m1). (6)

The above proposition proves that the discriminative function on the novel
classes ϕ(In,m) is a monotonic decreasing function w.r.t m under proper as-
sumption and a measurable condition about the similarity between base and
novel classes using P s. The proposition indicates that an appropriate value of
“negative” margin could work well for discriminating the samples in novel classes.

Fig. 4 shows the actual behavior of mini-ImageNet dataset. We first sort
the 36 novel classes according to the probability of sample pairs in the same
novel class j classified into the same base class P sj (one of every 3 categories are
plotted for clarity) on mini-ImageNet. And the histograms of the samples in novel
classes to be classified to 64 base classes is shown in Fig. 4(a). Fig. 4(b) shows the
accuracy curves w.r.t different margins for novel classes with different averaged
P s. With smaller P s, the histograms of novel classes become more diverse (shown
in Fig. 4(a)) and their accuracies become lower (shown in Fig. 4(b)). Importantly,
most subsets of novel classes favor negative margins, implying the condition in
the Proposition is not hard to reach.

3.5 Framework

Following the standard transfer learning paradigm [52, 8], we adopt a two-stage
training pipeline for few-shot classification, including pre-training stage to per-
form metric learning on the abundant labeled data in base classes, and fine-
tuning stage to learn a classifier to recognize novel classes. This pipeline is widely
adopted in recent few-shot learning methods [3, 7, 25].

In the pre-training stage, we aim at training the backbone network fθ(·) with
abundant labeled data Ib in base classes, driven by metric learning loss, such
as softmax loss in [3]. In our paper, we adopt the negative-margin softmax loss,
which could learn more transferable representations for few-shot learning. In the
fine-tuning stage, as there are only few labeled samples in In for training (e.g.
5-way 1-shot learning only contains 5 training samples), we follow [3] to fix the
parameters of the backbone fθ(·), and only train a new classifier from scratch
by the softmax loss. Note that, the computation of similarity (such as inner-
product similarity or cosine similarity) in softmax loss is the same as that in the
pre-training stage.

2 Proof is attached in the supplemental material.
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4 Experiments

4.1 Setup

Datasets and scenarios. Following [3], we address the few-shot classification
problem under three different scenarios: (1) generic object recognition; (2) fine-
grained image classification; and (3) cross-domain adaptation.

For the generic scenario, the widely-used few-shot classification benchmark:
mini-ImageNet, is used to evaluate the effectiveness of the proposed Negative-
Margin Softmax Loss. The mini-ImageNet dataset, firstly proposed by [45], con-
sists of a subset of 100 classes from the ILSVRC-2012 [5], and contains 600
images for each classes. Following the commonly-used evaluation protocol of
[37], we split the 100 classes into 64 base, 16 validation, and 20 novel classes for
pre-training, validation, and testing. To validate the effectiveness of our model
on the large dataset, we further conduct ablation study on the ImageNet-1K
dataset following the setting in [12, 48].

For the fine-grained image classification, we use CUB-200-2011 dataset [46]
(hereinafter referred as CUB), which consists of 200 classes and 11,788 images
in total. Followingit stg the standard setting of [14], we split the classes in the
dataset into 100 base classes, 50 validation classes, and 50 novel classes.

For the cross-domain adaptation scenario, we use mini-ImageNet → CUB
[3], in which the 100 classes in mini-ImageNet, the 50 validation and 50 novel
classes in CUB are adopted as base, validation and novel classes respectively, to
evaluate the performance of the proposed Negative-Margin Softmax Loss in the
presence of domain shift.
Implementation details. For fair comparison, we evaluate our model with
four commonly used backbone networks, namely Conv-4 [45], ResNet-12 [32],
ResNet-18 [3] and WRN-28-10 [25, 53]. Besides the differences in network depth
and architecture, the expected input size of Conv-4 and ResNet-12 is 84×84, and
that of ResNet-18 is 224×224, while WRN-28-10 takes 80×80 images as input.

Our implementation is based on PyTorch [34]. In the training stage, the
backbone network and classifier are trained from scratch, with a batch size of
256. The models are trained for 200, 400 and 400 epochs in the CUB, mini-
ImageNet and mini-ImageNet → CUB, respectively. We adopt the Adam [15]
optimizer with initial learning rate 3e-3 and cosine learning rate decay [23]. We
apply the same data argumentation as [3], including random cropping, horizontal
flipping and color jittering.

In the fine-tuning stage, each episode contains 5 classes and each class con-
tains 1 or 5 support images to train a new classifier from scratch and 16 query
images to test the accuracy. The final performance is reported as the mean clas-
sification accuracy over 600 random sampled episodes with the 95% confidence
interval. Note that all the hyper-parameters are determined by the performance
on the validation classes.
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Table 1. Few-shot classification results on the mini-ImageNet dataset. † indicates the
method using the combination of base and validation classes to train the meta-learner

Backbone Method 1 shot 5 shot

Conv-4

MAML [9] 48.70 ± 1.84 63.11 ± 0.92
ProtoNet [43] 49.42 ± 0.78 68.20 ± 0.66
MatchingNet [45] 48.14 ± 0.78 63.48 ± 0.66
RelationNet [44] 50.44 ± 0.82 65.32 ± 0.70
MAML+Meta-dropout [18] 51.93 ± 0.67 67.42 ± 0.52
R2D2 [1] 51.20 ± 0.60 68.80 ± 0.10
Neg-Softmax (ours) 47.65 ± 0.78 67.27 ± 0.66
Neg-Cosine (ours) 52.84 ± 0.76 70.41 ± 0.66

ResNet-12

SNAIL [27] 55.71 ± 0.99 68.88 ± 0.92
TADAM [32] 58.50 ± 0.30 76.70 ± 0.30
MetaOptNet-SVM [19] 62.64 ± 0.61 78.63 ± 0.46
Neg-Softmax (ours) 62.58 ± 0.82 80.43 ± 0.56
Neg-Cosine (ours) 63.85 ± 0.81 81.57 ± 0.56

ResNet-18

SNCA [50] 57.80 ± 0.80 72.80 ± 0.70
Baseline [3] 51.75 ± 0.80 74.27 ± 0.63
Baseline++ [3] 51.87 ± 0.77 75.68 ± 0.63
Neg-Softmax (ours) 59.02 ± 0.81 78.80 ± 0.61
Neg-Cosine (ours) 62.33 ± 0.82 80.94 ± 0.59

WRN-28-10

Activation to Parameter† [36] 59.60 ± 0.41 73.74 ± 0.19
LEO† [39] 61.76 ± 0.08 77.59 ± 0.12
Fine-tuning [7] 57.73 ± 0.62 78.17 ± 0.49
Cosine + rotation [11] 62.93 ± 0.45 79.87 ± 0.33
Neg-Softmax (ours) 60.04 ± 0.79 80.90 ± 0.60
Neg-Cosine (ours) 61.72 ± 0.81 81.79 ± 0.55

4.2 Results

Results on mini-ImageNet. For the generic object recognition scenario, we
evaluate our methods on the widely-used mini-ImageNet dataset. For fair com-
parison with existing methods which uses different network architecture as back-
bone, we evaluate our methods with all four commonly used backbone networks.
The 5-way 1-shot and 5-shot classification results on the novel classes of the
mini-ImageNet dataset are listed in Table 1. We find that by simply adopting
appropriate negative margin in standard softmax loss, our Neg-Softmax achieves
competitive results with the existing state-of-the-art methods. It is worth noting
that our Neg-Cosine achieves the state-of-the-art performance for both 1-shot
and 5-shot settings on almost all four backbones on mini-ImageNet.
Results on CUB. On the fine-grained dataset CUB, we compared the proposed
method with several state-of-the-art methods with ResNet-18 as backbone. The
results are showed in Table 2, in which the results of the comparison methods are
directly borrowed from [3]. It shows that the proposed Neg-Cosine outperforms
all the comparison methods on both 1-shot and 5-shot settings. Furthermore,
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Table 2. The few-shot classification accuracy on the novel classes (also known as test
classes) of the CUB dataset and cross-domain setting with ResNet-18 as the backbone

Method CUB mini-ImageNet→CUB
1 shot 5 shot 5 shot

MAML [9] 69.96 ± 1.01 82.70 ± 0.65 51.34 ± 0.72
ProtoNet [43] 71.88 ± 0.91 87.42 ± 0.48 62.02 ± 0.70
MatchingNet [45] 72.36 ± 0.90 83.64 ± 0.60 53.07 ± 0.74
RelationNet [44] 67.59 ± 1.02 82.75 ± 0.58 57.71 ± 0.73
Baseline [3] 65.51 ± 0.87 82.85 ± 0.55 65.57 ± 0.70
Baseline++ [3] 67.02 ± 0.90 83.58 ± 0.54 62.04 ± 0.76
Neg-Softmax (ours) 71.48 ± 0.83 87.30 ± 0.48 69.30 ± 0.73
Neg-Cosine (ours) 72.66 ± 0.85 89.40 ± 0.43 67.03 ± 0.76

Neg-Softmax also achieves highly competitive performance on both 1-shot and
5-shot settings.
Results on mini-ImageNet → CUB. In the real-world applications, there
may be a signification domain shift between the base and novel classes. So we
evaluate our methods on a cross domain scenario: mini-ImageNet → CUB, where
we pre-train the backbone on a generic object recognition dataset, and transfer it
to a fine-grained dataset. We follow [3] to report the 5-shot results with ResNet-
18 backbone, as shown in Table 2. We can observe that both Neg-Softmax and
Neg-Cosine are significantly better than all the comparison methods. Specifically,
Neg-Softmax outperforms Baseline [3], the state-of-the-art method on the mini-
ImageNet → CUB, by a large margin of 3.73%.
Results on ImageNet 1K dataset. To validate that negative margin works
well on large dataset, we follow [48, 12] to run an ablation study on the ImageNet-
1K dataset. We train ResNet-10 with standard cosine softmax loss and proposed
Neg-Cosine for 90 epochs on the base classes. The learning rate starts at 0.1 and
is divided by 10 every 30 epochs. The weight decay is 0.0001 and the temperature
factor is 15. In the fine-tuning stage, we train a new linear classifier using SGD
for 10000 iterations. The top-5 accuracy is reported in Table 4, which shows
that the accuracies of Neg-Cosine are consistently better than standard cosine
softmax loss with margin = 0 and LogReg [48].

4.3 Analysis

This section presents a comprehensive analysis of the proposed approach. In the
following experiments, we use Neg-Cosine with ResNet-18 backbone as default.
Effects of negative margin. Table 3 shows the 1-shot and 5-shot accuracy
of the standard softmax, cosine softmax and our proposed Neg-Softmax, Neg-
Cosine on the validation classes of mini-ImageNet, CUB and mini-ImageNet →
CUB. By adopting appropriate negative margin, Neg-Softmax and Neg-Cosine
yields significant performance gains over standard softmax loss and cosine soft-
max loss on all three benchmarks. Interestingly, Neg-Cosine outperforms Neg-
Softmax in the in-domain setting, such as mini-ImageNet and CUB, while Neg-
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Table 3. The few-shot accuracy of standard softmax, cosine softmax and our proposed
Neg-Softmax, Neg-Cosine on validation classes of three standard benchmarks

Method
mini-ImageNet CUB mini-ImageNet→CUB

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot
Softmax 45.98±0.79 75.25±0.61 58.32±0.87 80.21±0.59 46.87±0.78 67.68±0.71

Neg-Softmax 56.95±0.82 78.87±0.57 59.54±0.88 80.60±0.57 47.74±0.73 68.58±0.70
Cosine 59.49±0.90 79.58±0.59 66.39±0.93 82.17±0.58 42.96±0.76 61.99±0.75

Neg-Cosine 63.68±0.86 82.02±0.57 69.17±0.85 85.60±0.56 44.51±0.85 64.04±0.75
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Fig. 5. The 1-shot (on red) and 5-shot (on blue) accu-
racy on validation classes of mini-ImageNet w.r.t dif-
ferent margins in Neg-Cosine and Neg-Softmax
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Fig. 6. Accuracy w.r.t #
shots of validation classes on
the mini-ImageNet dataset
for margin = -0.3, 0 and 0.3

Softmax could achieve better performance than Neg-Cosine in the cross-domain
setting. This is also observed in [3].
Accuracy w.r.t different margins. Figure 5 shows the 1-shot accuracy and
5-shot accuracy on validation classes of mini-ImageNet dataset w.r.t different
margins in Neg-Cosine and Neg-Softmax. As we expect, as the margin gets neg-
ative and smaller, both the 1-shot accuracy and 5-shot accuracy of Neg-Cosine
and Neg-Softmax first increase and then decrease, demonstrating a desirable
bell-shaped curve. Hence, adopting appropriate negative margin yields signifi-
cant performance gains over both standard softmax loss and cosine softmax loss
on 1-shot and 5-shot classification of mini-ImageNet.
Various regularization techniques. Table 5 shows the importance of reg-
ularizations on Neg-Cosine, which reveals that integrating various regulariza-
tion techniques steadily improves the 1-shot and 5-shot test accuracy on mini-
ImageNet benchmark. Firstly, by simply adopting negative margin, the test ac-
curacy increased by 5.74% and 4.37% on the 1-shot and 5-shot settings, respec-
tively. Based on our approach, weight decay and DropBlock could further im-
prove the performance. After integrating all regularizations together, our method
achieves state-of-the-art accuracy of 62.33% and 80.94% for the 1-shot and 5-shot
settings respectively on novel classes of mini-ImageNet.
More shots. We conduct an experiment by varying the number of shots from
1 (few shot) to 300 (many shot) and report the classification accuracy of the
validation classes on the mini-ImageNet dataset in Figure 6. It shows that the
test accuracy of margin=−0.3 is consistently higher than that of margin=0 from
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Table 4. Top-5 accuracy on
ImageNet 1K dataset with
ResNet-10 as backbone.
Mehod 1 shot 5 shot
LogReg [48] 38.4 64.8
Cosine 42.1 64.0
Neg-Cosine 43.8 66.3

Table 5. Test accuracy on 5-way mini-ImageNet of
various regularization techniques

negative
margin

weight
decay

drop
block 1 shot 5 shot

54.51 ± 0.79 75.70 ± 0.62
✓ 60.25 ± 0.81 80.07 ± 0.58
✓ ✓ 62.21 ± 0.83 80.81 ± 0.59
✓ ✓ ✓ 62.33 ± 0.82 80.94 ± 0.59

1-shot to 300-shot settings, which prove that the negative margin could benefit
the open-set scenarios with more shots.
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Fig. 7. The t-SNE visualizations of the feature em-
beddings and the corresponding 1-shot accuracy in
the base and novel classes of mini-ImageNet dataset
for the softmax loss with negative, zero and positive
margin respectively

T-SNE visualization. Fig. 7
shows the t-SNE [24] visu-
alizations. As shown in the
first row, compared with neg-
ative margin, the feature em-
bedding of zero and positive
margin exhibit more discrimi-
native structures and achieve
better 1-shot accuracy on the
base classes. However, the
second row shows that en-
larging the margin parame-
ter would break the cluster
structure of the novel classes
and make the classification of
novel classes harder. Instead,
the appropriate negative mar-
gin retain the better clus-
ter structure for novel classes.
Thus the few-shot classifica-
tion accuracy of negative margin is better than that of zero and positive margin.

5 Conclusion

In this paper, we unconventionally propose to adopt appropriate negative-margin
to softmax loss for few-shot classification, which surprisingly works well for the
open-set scenarios of few-shot classification. We then provide the intuitive ex-
planation and the theoretical proof to understand why negative margin works
well for few-shot classification. This claim is also demonstrated via sufficient
experiments. With the negative-margin softmax loss, our approach achieves the
state-of-the-art performance on all three standard benchmarks of few-shot clas-
sification. In the future, the negative margin may be applied in more general
open-set scenarios that do not restrict the number of samples in novel classes.
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