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1 DMore Visual Results

More visual results on RaFD [3], Multi-PIE [2], CelebA [7] and DeepFashion [6]
datasets are shown in Fig. 1, 2, 3 & 4 respectively.

2 User Study for Evaluation

We conduct user study among 68 subjects for method comparison, with random
24 groups of generated samples on RaFD dataset. Corresponding to our quanti-
tative evaluation metrics, each subject is instructed to choose the best item on
translation accuracy (Acc), content preserving (Con), perceptual realism (Per)
and overall transform performance (Overall). The results in Tab. 1 demonstrate
that our method achieves the best performance among different approaches on
the metrics, especially on translation accuracy and overall transform perfor-
mance, which indicates that our method can better translate the input faces to
correct identities and produce the best translated results visually.

Methods [Acc (%) Con (%) Per (%) Overall (%)
FUNIT [4]| 7.84 392 3137 931
Star-F [1]| 049  36.27  1.96 8.82
Star-U [1]| 11.27 1.96 1.96 4.41
Ours 80.39 57.84 64.71 77.45

Table 1. User study of generated results among different methods. The value refers to
the ratio of selecting as best item.

3 Effects of Different Reference Images

We further study the effects of references on the translated results in detail. We
generate final results with different reference numbers, as well as different ex-
pressions of references, which is shown in Fig. 5. In the case of only 1 reference
image provided, the generated results vary a lot according to the changes of ref-
erences and they still preserve part of facial expressions from their corresponding
references. However, with the reference number increased, the generated results
become more stable with the most suitable facial expression.
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4 Network Architecture

Encoder Structure In the encoder, we extract three level features from images
for alignment and fusion. Its architecture is shown in Table. 2. Three level fea-
tures are extracted from the output of ‘Convl’, ‘Conv2’ and ‘ResBlock’, which
correspond to low-, median- and high-level features.

Layer Output Size | (kernel, stride)
Inputs HxW x3 (-,-)
Convl H x W x 64 (7, 1)
Conv2 |Z x % x 128 (4,2)
Conv3 |&£ x % x 256 (4,2)
ResBlock x2| £ x W x 256 (3,1)

Table 2. Network architecture of Encoder. All convolution layers in ‘Conv’ blocks and
‘Resblocks’ are followed by Instance normalization [9] and ReLU.

Layer Output Size | (kernel, stride)
Inputs B x W x 256 (-,-)
ResBlock x2 £ x & x 256 (3,1)
Upsample |4 x % x 256 (- -)
Convl B W x 128 (5,1)
Upsample (Skip)|H x W x 128 (-, -)
Conv2 H x W x 64 (5, 1)
Conv3_1 (Skip) | H x W x 64 (7, 1)
Conv3_2 Hx W x 64 (7, 1)

Table 3. Network architecture of Decoder. All convolution layers in ‘Conv’ blocks
and ‘ResBlocks’ are followed by Instance normalization [9] and ReLU except ‘Conv3.2’
layer, while ‘Skip’ indicates the corresponding aligned and fused features from encoder
are concatenated with features in current layers as skip connection.

Alignment Network Structure We design alignment networks for different level
features from encoder. For higher level feature, we adopt less down-sample oper-
ations. Alignment network structure for each level feature is shown in Table. 4.
For each alignment network, the reference image and content image feature are
concatenated as input, and the network produce a 3-channel output, with 2
channels as optical flow map and an extra channel as confidence map.

Decoder Structure At the stage of decoding, the aligned and fused features are
fed to corresponding layers of decoder. These features are gradually decoded to
the final generated images.
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Fig. 1. More visual comparison on RaFD dataset.
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Content FUNIT [4] Star-F [1] Star-U [1]

Fig. 2. More visual comparison on Multi-PIE dataset.
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Content FUNIT [4] Star-F [1] Star-U [1] Ours

Fig. 3. More visual comparison on CelebA dataset. Noted that the references of the
same person on CelebA are quite different, and thus our method obtain an average
identity for results among three references.
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Fig. 4. More visual comparison on DeepFashion dataset.
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Fig. 5. Effects of references on generated results. The image at the left top is the
content image. For ‘k reference(s)’ rows, the first k£ rows are various combinations of
different reference images (‘Refi’), and the last row is the corresponding generated
result (‘Result’).
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Table 4. Network architecture of multiple level alignment networks. All convolution
layers in ‘Conv’ blocks and ‘Resblocks’ are followed by Batch normalization and ReLLU
except the final convolution layer in each level. Besides, there are skip connections
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Layer Output Size |(kernel, stride)
Inputs HxW x64x2 (-,-)
Convl L x % xo64 (4,2)
Conv2 Hx W xo64 (4, 2)
| Conv3 Ho W ox64 (4,2)
2 [ResBlock x2| 4 x W x 64 (3, 1)
| Upsample % X % X 64 (- -)
g Conv4 Moo W32 (5, 1)
% Upsample I W x32 (-, -)
2| Convb I x ¥ x32 (5,1)
Upsample Hx W x 32 (-, -)
Conv6_1 HxW x16 (5, 1)
Conv6_2 HxWx3 (3, 1)
Inputs |Z x ¥ x 128 x 2 (-,-)
2| Convl 2o W% 128 (4,2)
Bl Comv2 | W28 (4, 2)
%OResBlock x2| Hx W x128 (3, 1)
T% Upsample % X % x 128 (-, -)
% Conv3 Hx W x64 (5, 1)
g| Upsample Hx W x64 (- -)
=| Conv4.1 I x W x64 (5, 1)
Conv4.2 Lx%Wx3 (3,1)
g Inputs | x W x 256 x 2 (-,-)
go Convl 2 W x 256 (4,2)
= |ResBlock x2|  x ¥ x 256 (3, 1)
T; Upsample % X % x 256 (-, -)
T Comv2l | Zx W28 (5, 1)
2| Conv2.2 T W3 (3, 1)

inside the network structure like U-net [8].
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