	1
	Anonymous ECCV submission
	Paper ID 2323
1 More V	Visual Results
More visual re	esults on RaFD [3], Multi-PIE [2], CelebA [7] and DeepFashion [6]
datasets are s	hown in Fig. 1, 2, 3 & 4 respectively.
2 User S	tudy for Evaluation
We conduct u	ser study among 68 subjects for method comparison, with random
24 groups of g	generated samples on RaFD dataset. Corresponding to our quanti-
tative evaluat	ion metrics, each subject is instructed to choose the best item on
translation ac	curacy (Acc) , content preserving (Con) , perceptual realism (Per)
and overall tra	ansform performance (Overall). The results in Tab. 1 demonstrate
that our meth	iod achieves the best performance among different approaches on
mance which	indicates that our method can better translate the input faces to
correct identit	ties and produce the best translated results visually.
	Freedom Freedom and the second s
	Methods A_{ac} $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Con $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Der $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ Overall $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
	FUNIT [4] 7.84 3.92 31.37 9.31
	Star-F $[1]$ 0.49 36.27 1.96 8.82
	Star-U $\begin{bmatrix} 1 \end{bmatrix}$ 11.27 1.96 1.96 4.41
	Ours 80.39 57.84 64.71 77.45
Table 1. User	study of generated results among different methods. The value refers to
the ratio of sele	ecting as best item.

We further study the effects of references on the translated results in detail. We generate final results with different reference numbers, as well as different ex-pressions of references, which is shown in Fig. 5. In the case of only 1 reference image provided, the generated results vary a lot according to the changes of ref-erences and they still preserve part of facial expressions from their corresponding references. However, with the reference number increased, the generated results become more stable with the most suitable facial expression.

045 4 Network Architecture

Encoder Structure In the encoder, we extract three level features from images
for alignment and fusion. Its architecture is shown in Table. 2. Three level features are extracted from the output of 'Conv1', 'Conv2' and 'ResBlock', which
correspond to low-, median- and high-level features.

Layer	Output Size	(kernel, stride)
Inputs	$H\times W\times 3$	(- , -)
Conv1	$H\times W\times 64$	(7, 1)
Conv2	$\frac{H}{2} \times \frac{W}{2} \times 128$	(4, 2)
Conv3	$\frac{H}{4} \times \frac{W}{4} \times 256$	(4, 2)
ResBlock $\times 2$	$\frac{H}{4} \times \frac{W}{4} \times 256$	(3, 1)

Table 2. Network architecture of Encoder. All convolution layers in 'Conv' blocks and
'Resblocks' are followed by Instance normalization [9] and ReLU.

T	Outrast Cine	(1
Layer	Output Size	(kernel, stride)
Inputs	$\frac{H}{4} \times \frac{W}{4} \times 256$	(- , -)
ResBlock $\times 2$	$\frac{H}{4} \times \frac{W}{4} \times 256$	(3, 1)
Upsample	$\frac{H}{2} \times \frac{W}{2} \times 256$	(-, -)
Conv1	$\frac{H}{2} \times \frac{W}{2} \times 128$	(5, 1)
Upsample (Skip)	$H\times W\times 128$	(-, -)
Conv2	$H\times W\times 64$	(5, 1)
Conv3_1 (Skip)	$H\times W\times 64$	(7, 1)
Conv3_2	$H \times W \times 64$	(7, 1)

Table 3. Network architecture of Decoder. All convolution layers in 'Conv' blocks
and 'ResBlocks' are followed by Instance normalization [9] and ReLU except 'Conv3_2'
layer, while 'Skip' indicates the corresponding aligned and fused features from encoder
are concatenated with features in current layers as skip connection.

Alignment Network Structure We design alignment networks for different level features from encoder. For higher level feature, we adopt less down-sample operations. Alignment network structure for each level feature is shown in Table. 4.
For each alignment network, the reference image and content image feature are concatenated as input, and the network produce a 3-channel output, with 2 channels as optical flow map and an extra channel as confidence map.

Decoder Structure At the stage of decoding, the aligned and fused features are
 fed to corresponding layers of decoder. These features are gradually decoded to
 the final generated images.

Fig. 3. More visual comparison on CelebA dataset. Noted that the references of the same person on CelebA are quite different, and thus our method obtain an average identity for results among three references.

6 ECCV-20 submission ID 2323

a com								
fence	Refl	G	Ge				Con	
1 Re	Result	3	9		9			
	Ref1	G	Gen		G	G		
lefences	Ref2	Gre		an		G		
$2 \mathrm{F}$	Result	G	G	C	1	G	G	
	Ref1	G		000	are	e		
	Ref2	Gre	Core		Ge	G		
Refences	Ref3		G	G		G	9	
4	Ref4		Ge	Ga	G	Ge		9
	Result							

Fig. 5. Effects of references on generated results. The image at the left top is the content image. For 'k reference(s)' rows, the first k rows are various combinations of different reference images ('Refi'), and the last row is the corresponding generated result ('Result').

 ECCV-20 submission ID 2323

0	н	-	
3	1	3)

318						318
319		Layer	Output Size	(kernel, stride)		319
320		Inputs	$H \times W \times 64 \times 2$	(- , -)		320
321		Conv1	$\frac{H}{2} \times \frac{W}{2} \times 64$	(4, 2)		321
322		Conv2	$\frac{2}{\underline{H}} \times \frac{W}{\underline{W}} \times 64$	(4, 2)		322
323	ıt	Conv2	$4 \times 4 \times 61$ $H \times W \times 64$	(1, 2)		323
324	mer	D - D D	$\frac{1}{8} \times \frac{1}{8} \times 04$	(4, 2)		324
220	ign	ResBlock ×2	$\frac{1}{8} \times \frac{1}{8} \times 64$	(3, 1)		323
320	l al	Upsample	$\frac{11}{4} \times \frac{W}{4} \times 64$	(-, -)		320
328	eve	Conv4	$\frac{H}{4} \times \frac{W}{4} \times 32$	(5, 1)		328
329	w-l	Upsample	$\frac{H}{2} \times \frac{W}{2} \times 32$	(-, -)		329
330	Lo	Conv5	$\frac{H}{2} \times \frac{W}{2} \times 32$	(5, 1)		330
331		Upsample	$H \times W \times 32$	(-, -)		331
332		Conv6_1	$H \times W \times 16$	(5, 1)		332
333		Conv6_2	$H \times W \times 3$	(3, 1)		333
334		Inputs	$\underline{H} \times \underline{W} \times 128 \times 2$	()		334
335	ıt	Convl	$2 \times 2 \times 120 \times 2$ $H \times W \times 128$	(,)		335
336	mer	Convi	$\frac{-\frac{1}{4}}{\frac{1}{4}} \times \frac{1}{4} \times \frac{1}{28}$	(4, 2)		336
337	igni	Conv2	$\frac{1}{8} \times \frac{1}{8} \times 128$	(4, 2)		337
338	l al	ResBlock $\times 2$	$\frac{\frac{11}{8} \times \frac{W}{8} \times 128}{\frac{W}{8} \times 128}$	(3, 1)		338
339	eve	Upsample	$\frac{H}{4} \times \frac{W}{4} \times 128$	(-, -)		339
340	n-l	Conv3	$\frac{H}{4} \times \frac{W}{4} \times 64$	(5, 1)		340
341	eibe	Upsample	$\frac{H}{2} \times \frac{W}{2} \times 64$	(-, -)		341
342	M	Conv4_1	$\frac{H}{2} \times \frac{W}{2} \times 64$	(5, 1)		342
344		Conv4_2	$\frac{H}{2} \times \frac{W}{2} \times 3$	(3, 1)		344
345	ıt	Inputs	$\frac{H}{H} \times \frac{W}{H} \times 256 \times 2$	(- , -)		345
346	meı	Conv1	$\frac{H}{H} \times \frac{W}{X} \times 256$	(4, 2)		346
347	ign	PosPloalt V2	$8 \times 8 \times 250$ $H \times W \times 256$	$(\mathbf{T}, 2)$ (2, 1)		347
348	l al	Resplock X2	$\frac{-\frac{1}{8} \times \frac{1}{8} \times 250}{H}$	(3, 1)		348
349	eve	Upsample	$\frac{11}{4} \times \frac{10}{4} \times 256$	(-, -)		349
350	zh-l	Conv2_1	$\frac{11}{4} \times \frac{W}{4} \times 128$	(5, 1)		350
351	Hig	Conv2_2	$\frac{H}{4} \times \frac{W}{4} \times 3$	(3, 1)		351
352						352
Table 4. Networ	rk a	architecture of	f multiple level alig	gnment network	s. All convolution	353
354 layers in 'Conv' h	oloc	cks and 'Resbl	ocks' are followed b	by Batch norma	lization and ReLU	354

except the final convolution layer in each level. Besides, there are skip connections inside the network structure like U-net [8].

R	eferences	360
1	Choi Y Choi M Kim M Ha I W Kim S Choo I Stargan Unified genera-	361
1	tive adversarial networks for multi-domain image-to-image translation. In: CVPR	302
	(2018)	26/
2	. Gross, R., Matthews, I., Cohn, J., Kanade, T., Baker, S.: Multi-pie. Image and	36
	Vision Computing (2010)	366
3	Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H., Hawk, S.T., Van Knip-	36
	penberg, A.: Presentation and validation of the radboud faces database. Cognition	36
4	Liu MY Huang X Mallya A Karras T Aila T Lehtinen J Kautz J.	36
1	Few-shot unsupervised image-to-image translation. In: ICCV (2019)	370
5	Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., Gao, S.: Liquid warping gan: A	37
	unified framework for human motion imitation, appearance transfer and novel view	372
	synthesis. In: ICCV (2019)	373
6	Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: Powering robust clothes	374
7	recognition and retrieval with rich annotations. In: CVPR (2016)	375
1	ICCV (2015)	376
8	Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-	377
	ical image segmentation. In: MICCAI (2015)	378
9	. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: The missing in-	379
	gredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)	380
10	Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., Bai, X.: Progressive pose attention	381
	transfer for person image generation. In: CVPR (2019)	382
		383
		384
		385
		386
		387
		388
		389
		390
		39.
		39.
		20
		30
		39
		39
		398
		399
		400
		403
		402
		403
		40