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1 Tracking algorithms

1.1 Private tracking

We adopt a simple greedy id association algorithm based on the center distance, shown
in Algorithm 1. We use the same algorithm for both 2D tracking and 3D tracking.

1.2 Public tracking

For public tracking, we follow Tractor [1] to extend a private tracking algorithm to
public detection. The id association is exactly the same as private detection (Line 1 to
Line 14). The difference lies in how a track can be created. In public detection, we only
initialize a track if it is near a provided bounding box (Line 17 to Line 21).

2 Results on MOT16

MOT16 shares the same training and testing sequences with MOT17, but officially sup-
ports private detection. As is shown in Table 1, we rank 2nd among all published entries.
We remark that all other entries use a heavy detector trained on private data [16] and
many rely on slow matching schemes [13, 16]. For example, LMP p [13] computes
person-reidentification features for all pairs of bounding boxes using a Siamese net-
work, requiringO(n2) forward passes through a deep network. In contrast, CenterTrack
involves a single pass through a network and operates online at 17 FPS.

Time(ms) MOTA ↑ IDF1 ↑ FP ↓ FN ↓ IDSW ↓
SORT [2] 36+D 60.4 56.1 11183 59867 1135
DeepSORT [15] 59+D 61.4 62.2 12852 56668 781
POI [16] 100+D 66.1 65.1 5061 55914 805
KNDT [16] 1428+D 68.2 60.0 11479 45605 933
LMP p [13] 2000+D 71.0 70.1 7880 44564 434
Ours (Private) 57 69.6 60.7 10458 42805 2124

Table 1: Evaluation on the MOT16 test sets (private detection). We compare to all pub-
lished on the leaderboard. The runtime is calculated from the HZ column on the leader-
board. +D means detection time, which is usually > 100ms [9].
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Algorithm 1: Private Detection

Input : T (t−1) = {(p, s, id)(t−1)
j }Mj=1:

Tracked objects in the previous
frame, with center p, size
s = (w, h).
B̂(t) = {(p̂, d̂)(t)i }

N
i=1:

Heatmap peaks with offset d̂ in
the current frame, sorted in
desending confidence.

Output: T (t) = {(p, s, id)(t)i }
N
i=1:

Tracked objects in the current
frame.

1 // Initialization: T (t) and S are
initialized as empty lists.

2 T (t) ← ∅
3 S ← ∅ // Set of matched tracks
4 W ← Cost(B(t), T (t−1))//

Wij = ||p̂i
(t) − d̂i

(t)
,p

(t−1)
j ||2

5

6 for i← 1 to N do
7 j ← argminj /∈S Wij

8 // calculate the distance threshold κ

9 κ← min(
√
ŵiĥi,

√
wjhj)

10 // if the cost is smaller the threshold.
11 if wij < κ then
12 // Propagate matched id
13 T (t) ←

T (t) ∪ (p̂
(t)
i , ŝ

(t)
i , id

(t−1)
j )

14 S ← S ∪ {j} // Mark track j as
matched

15 end
16 else
17

18

19

20 // Create a new track.
21 T (t) ←

T (t) ∪ (p̂
(t)
i , ŝ

(t)
i , NewId)

22

23 end
24 end
25 Return: T (t)

Algorithm 2: Public Detection

Input : T (t−1) = {(p, s, id)(t−1)
j }Mj=1:

Tracked objects in the previous
frame, with center p, size
s = (w, h).
B̂(t) = {(p̂, d̂)(t)i }

N
i=1:

Heatmap peaks with offset d̂ in
the current frame, sorted in
desending confidence.
D̂(t) = {(p, s)(t)k }

K
k=1: Public

detections.
Output: T (t) = {(p, s, id)(t)i′ }

N′
i′=1:

Tracked objects in the current
frame.

1 // Initialization: T (t) and S are
initialized as empty lists.

2 T (t) ← ∅
3 S ← ∅ // Set of matched tracks
4 W ← Cost(B(t), T (t−1))//

Wij = ||p̂i
(t) − d̂i

(t)
,p

(t−1)
j ||2

5 W ′ ← Cost(B(t), D(t))//
W ′ik = ||p̂i

(t),p
(t)
k ||2

6 for i← 1 to N do
7 j ← argminj /∈S Wij

8 // calculate the distance threshold κ

9 κ← min(
√
ŵiĥi,

√
wjhj)

10 // if the cost is smaller the threshold.
11 if wij < κ then
12 // Propagate matched id
13 T (t) ←

T (t) ∪ (p̂
(t)
i , ŝ

(t)
i , id

(t−1)
j )

14 S ← S ∪ {j} // Mark track j as
matched

15 end
16 else
17 k ← argminK

k=1 ←W ′ik

18 κ′ ← min(
√
ŵiĥi,

√
wkhk)

19 if W ′ik < κ′ then
20 // Create a new track.
21 T (t) ←

T (t) ∪ (p̂
(t)
i , ŝ

(t)
i , NewId)

22 end
23 end
24 end
25 Return: T (t)
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Modality mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓ NDS ↑
Megvii [18] LiDAR 52.8 0.300 0.247 0.379 0.245 0.140 63.3
PointPillars [6] LiDAR 30.5 0.517 0.290 0.500 0.316 0.368 45.3
Mappilary [12] Camera 30.4 0.738 0.263 0.546 1. 0.134 38.4
CenterNet [17] Camera 33.8 0.658 0.255 0.629 1. 0.141 40.1

Table 2: 3D detection results on nuScenes test set. We show 3D bounding box
mAP, mean translation error (mATE), mean size error (mASE), mean orientation er-
ror (mAOE), mean velocity error (mATE), mean attributes error (mAAE), and their
weighted (with weight 5 on mAP and 1 on others) average NDS.

3 3D detection

We follow CenterNet [17] to regress to object depth D̂ ∈ R
W
R ×H

R , 3d extent Γ̂ ∈
R

W
R ×H

R ×3, orientation (encoded as an 8-dimension vector) Â ∈ RW
R ×H

R ×8. The train-
ing loss for these are identical to CenterNet [17]. Since the 2D bounding box center
does not align with the projected 3D bounding box center due to perspective projection,
we in addition regress to an offset from the 2D center to the projected 3D bounding box
centerF̂ ∈ RW

R ×H
R ×2. We use L1Loss:

Loff3d =
1

N

N∑
k=1

|f̂k − fk|, (1)

where fk ∈ R2 is the ground truth offset of object k, and f̂k = F̂pk
is the value in F̂ at

location pk.
We show the 3D detection performance of CenterNet [17] with the offset prediction

in Table 2 for reference. The 3D detection performance is on-par with Mappilary [12]
and PointPillars [6], but far below the LiDAR based state-of-the-art Megvii [18].

4 Amodal bounding box regression

CenterNet [17] requires the bounding box center to be within the image. While in
MOT [7], the center of the annotated bounding box (Amodal bounding box) can be out-
side of the image. To accommodate this case, We extend the 2-channel bounding box
size head in CenterNet to a 4-channel head Â ∈ RW

R ×H
R ×4 for the distance to the top-,

left-, bottom-, right-bounding box border. Note that we still detect the in-frame bound-
ing box center and regress to the in-frame bounding box size. With this 4-dimensional
bounding box formulation, the output bounding box is not necessarily centered on the
detected center. The training loss for the 4-dimensional bounding box formulation is
L1Loss:

Lamodal size =
1

N

N∑
i=1

|Âpi
− ai| (2)

where ai ∈ R4 is the ground truth border distance.
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5 CrowdHuman dataset

CrowdHuman [10]contains 15k training images with common pose annotations. The
dataset is featured of high density and large occlusion. Both visible bounding box and
the Amodal bounding box are annotated. We use the Amodal bounding box annotation
in our experiments to align with MOT [7].

6 Pretraining experiments

For pretraining on CrowdHuman [10], we use input resolution 512×512, false positive
ratio λfp = 0.1, false negative ratio λfn = 0.4, random scaling ratio 0.05, and random
translation ratio 0.05. The training follows Section.4.4 of the main paper. As shown in
Table 3, the model trained on CrowdHuman achieves a decent 52.2 MOTA in MOT
dataset, without seeing any MOT data.

Without CrowdHuman [10] pretraining, our performance drops to 60.7% MOTA on
the validation set. Pretraining help improve detection quality by decreasing the false
negatives. Note that most entries on MOT challenges use external data for pretraining,
and some of them use private data [16]. For reference, we also show our public detection
results without pretraining in Table 3, last row. This model corresponds to the entry we
submitted to MOT17 public detection challenge.

7 Additional experiments on KITTI

In Table 4, we show results of the same additional experiments (Section. 5.5 of the main
paper) on KITTI dataset [4]. The conclusions are the same as on MOT [7]. Training
on static images now performs slightly worse than training on video, mostly due to
that KITTI has larger inter-frame motion than MOT. Training without random heatmap
noise is much worse than the full model, with a high false-negative rate. And using the
Hungarian algorithm works the same as using a greedy matching. Our model without
nuScenes [3] achieves 84.5% MOTA on the validation set, this is on-par with other
state-of-the-art trackers on KITTI [5, 11, 14] with a heavy detector [8].

MOTA ↑ IDF1 ↑MT ↑ML ↓ FP ↓ FN ↓ IDSW ↓
Ours 66.1 64.2 41.3 21.2 4.5% 28.4% 1.0%
only CrowdH. 52.2 53.8 33.6 25.1 6.7% 39.7% 1.4%
scratch 60.7 62.8 33.0 22.4 4.0% 34.2% 1.0%
scratch-Pub. 57.4 59.6 31.1 27.1 2.1% 39.6% 1.0%

Table 3: Additional experiments on the MOT17 validation set. From top to bottom: our
full model, the model trained only on CrowdHuman dataset, our model trained from
scratch, and the public detection mode of our model trained from scratch.
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MOTA ↑MOTP ↑MT ↑ML ↓ FP ↓ FN ↓ IDSW ↓
Ours 88.7 86.7 90.3 2.1 5.4% 5.8% 0.1%
Static image 86.8 86.5 88.5 2.2 4.8% 7.9% 0.4%
w.o. noisy hm 80.1 85.3 76.2 7.6 3.8% 16.1% 0.1%
Hungarian 88.7 86.7 90.3 2.1 5.4% 5.8% 0.1%
scratch 84.5 83.2 83.4 2.8 5.7% 9.6% 0.3%

Table 4: Additional experiments on the KITTI validation set. From top to bottom: our
full model, the public-detection configuration of our model, our model trained on static
images only, our model trained without simulating heatmap noise, our model with the
Hungarian algorithm used for matching, and our model trained from scratch.

θ τ MOTA ↑ IDF1 ↑MT ↑ML ↓ FP ↓ FN ↓ IDSW ↓
0.4 0.4 62.6 64.9 44.0 18.9 10.3% 26.4% 0.7%
0.4 0.6 65.5 63.2 38.6 22.4 2.5% 30.5% 1.5%
0.4 0.5 66.1 64.2 41.3 21.2 4.5% 28.4% 1.0%
0.3 0.5 66.2 64.3 43.1 19.2 5.7% 26.9% 1.2%
0.5 0.5 65.2 62.1 39.8 23.0 3.7% 30.2% 0.9%

Table 5: Experiments with different output thresholds (θ) and rendering thresholds (τ )
on the MOT [7] validation set. We search θ and τ locally in a step of 0.1.

8 Output and rendering threshold

As the tracking evaluation metric (MOTA) does not consider the confidence of predic-
tions, picking an output threshold is essential in all tracking algorithms (see discussion
in AB3D [14]). In our case, we also need a threshold to render predictions to the prior
heatmap. We search the optimal thresholds on MOT [7] in Table 5. Basically, increas-
ing both thresholds results in fewer outputs, thus increases the false negatives while
decreases the false positives. We find a good balance at θ = 0.4 and τ = 0.5.
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