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Abstract. Semi-Supervised Learning (SSL) based on Convolutional Neu-
ral Networks (CNNs) have recently been proven as powerful tools for
standard tasks such as image classification when there is not a sufficient
amount of labeled data available during the training. In this work, we
consider the general setting of the SSL problem for image classification,
where the labeled and unlabeled data come from the same underlying
distribution. We propose a new SSL method that adopts a hierarchical
Optimal Transport (OT) technique to find a mapping from empirical
unlabeled measures to corresponding labeled measures by leveraging the
minimum amount of transportation cost in the label space. Based on
this mapping, pseudo-labels for the unlabeled data are inferred, which
are then used along with the labeled data for training the CNN. We eval-
uated and compared our method with state-of-the-art SSL approaches
on standard datasets to demonstrate the superiority of our SSL method.

Keywords: Semi-Supervised Learning, Hierarchical Optimal Transport.

1 Introduction

Training a CNN model relies on large annotated datasets, which are usually te-
dious and labor intensive to collect [30]. Two approaches are usually considered
to address this problem: Transfer Learning (TL) and Semi-Supervised Learning
(SSL). In TL [51], learning of a new task is improved by transferring knowledge
from a related task which has already been learned. However, in SSL [41], learn-
ing of a new task is improved by using information from an input distribution
that is provided by a large amount of unlabeled data. To make use of the unla-
beled data, it is assumed that the underlying distribution of this data follows at
least one of the following structural assumptions: continuity, clustering, or man-
ifold [12]. In the continuity assumption [61, 8, 36], data points close to each other
are more likely to belong to the same class. In the clustering assumption [13, 61,
25], data tend to form discrete clusters, and data in the same cluster are more
likely to share the same label. In the manifold assumption [10, 59], data lie ap-
proximately on a manifold of much lower dimension than the input space which
can be classified by distances between probability measures on the manifold
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[55]. To quantify the difference between two probability measures on a mani-
fold properly, modeling the geometrical structures of the manifold is required
[5, 4, 53]. One of the methodologies used to model geometrical structures on the
probability simplex (i.e., manifold of discrete probability measures) is grounded
on the theory of Optimal Transport (OT) [53, 46]. The Wasserstein distance,
which arises from the idea of OT, exploits prior geometric knowledge of the base
space in which random variables are valued [53]. Computing the Wasserstein dis-
tance between two random variables amounts to achieving a transportation plan
which requires the minimal expected cost. The Wasserstein distance considers
the metric properties of the base space in which a pattern is defined [5]. This
characteristic of the Wasserstein distances has attracted a lot of attention for
machine learning and computer vision tasks such as computing the barycenters
[1, 2] of multiple distributions [50], generating data [7], designing loss function
[21], domain adaptation [15, 27, 57, 18, 48, 32], and clustering [17, 28, 23, 37].

Data are usually organized in a hierarchical structure, or taxonomy. For ex-
ample, considering a set of data belonging to the same class in a dataset as a
measure, we can think of all the data in the dataset as a measure of measures.
Inspired by OT, which maps two measures with the minimum amount of trans-
portation cost, we can think of using hierarchical OT to map two measure of
measures such that the total transportation cost across the measures becomes
minimum. In this paper, we propose an SSL method that leverages from hierar-
chical OT to map measures from an unlabeled set to measures in a labeled set
with a minimum amount of the total transportation cost in the label space.

Our method stems from two basic premises: 1) Data in a given class in the
labeled and unlabeled sets come from the same distribution. 2) Assume we are
given three measures with roughly the same amount of data, where only two
of these measures come from the same distribution. The OT cost between two
measures from the same distribution is expected to be less than the OT cost
between one of these measures and the measure from a different distribution.
Following these premises, we thus expect that the hierarchical OT maps measures
from the same distribution in the labeled and unlabeled sets such that the total
transportation cost between two measure of measures becomes minimum. Based
on this mapping, a pseudo-label for unlabeled data in each measure from the
unlabeled set is inferred. These unlabeled data annotated by pseudo-labels are
then used along with the labeled data to train a CNN. However, data in the
unlabeled set are not labeled to allow us to identify the measures. Thus, following
the clustering assumption in SSL and the role of OT in clustering [17, 28, 23, 37],
we can consider all the measures in the unlabeled set as a group of clusters which
are identified by the Wasserstein barycenters of the unlabeled data.

2 Related Work

Pseudo-Labeling is one of the straightforward SSL techniques in which a model
incorporates its own predictions on unlabeled data to achieve additional infor-
mation during the training [33, 44, 20, 35, 24]. The main downside of these ap-
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proaches is vulnerability to confirmation bias, i.e., they can not correct their
own mistakes, when predictions of the model on unlabeled data are confident
but incorrect. In such cases, the erroneous data can not contribute to the train-
ing and the error of the models is augmented during the training. This effect is
intensified in cases where the distribution of the unlabeled data is different from
that of labeled data. It has been shown that pseudo-labeling is practically similar
to entropy regularization [42], in the sense that it forces the model to produce
higher confident predictions for unlabeled data [33, 49]. However, in contrast to
entropy regularization, it only forces these criteria onto data which have a low
entropy prediction because of the threshold of confidence.

Consistency Regularization is considered as a way of using unlabeled
data to explore a smooth manifold on which all of the data points are embed-
ded [10]. This simple criterion has provided a set of methods , such as SWA [8],
stochastic perturbations [45], π-model [31], Mean Teacher (MT) [52], and Virtual
Adversarial Training (VAT) [38] that are currently considered as state-of-the-
art for SSL. The original idea behind stochastic perturbations and π-model is
pseudo-ensemble [9]. The pseudo-ensemble regularization techniques are usually
designed such that the prediction of the model, fθ(x), does not change signif-
icantly for realistic perturbed data (x → x′). This goal is obtained by adding
a loss term d(fθ(x), fθ(x

′)) to the total loss of the model fθ(x), where d(., .)
is mean squared error or Kullback-Leibler divergence. The main downside of
pseudo-ensemble methods, including π-model, is that they rely on a potentially
unstable target prediction, which can immediately change during the training.

To address this issue, temporal ensembling [31] and MT [52], were proposed
to obtain a more stable target output f ′θ(x). Temporal ensembling uses an ex-
ponentially accumulated average of outputs, fθ(x), to make the target output
smooth and consistent. Inspired by this method, MT uses a prediction function
which is parametrized by an exponentially accumulated average of θ during the
training. Similar to π-model, MT adds a mean squared error loss d(fθ(x), f ′θ(x))
as a regularization term to the total loss function for training the network. It
has been shown that MT outperforms temporal ensembling in practice [52]. In
contrast to stochastic perturbation methods which rely on constructing fθ(x)
stochastically, VAT initially approximates a small perturbation r, and then adds
it to x, which significantly changes the prediction of the model fθ(x). Next, a
consistency regularization technique is applied to minimize d(fθ(x), fθ(x + r))
with respect to θ which represents the parameters of the model.

3 Preliminaries

3.1 Discrete OT and Dual Form

For any r ≥ 1, let the probability simplex be denoted by ∆r = {q ∈ Rr : qi ≥
0,
∑r
i=1 qi = 1}, and also assume that X = {x1, ..., xn} and X ′ = {x′1, ..., x′m}

are two sets of data points in Rd such that X =
∑n
i=1 aiδxi

and X ′ =
∑m
i=1 biδx′

i

in which δxi
is a Dirac unit mass located on point xi, and a, b are the weight-

ing vectors which belong to the probability simplex ∆n and ∆m, respectively.
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Then, the Wasserstein-p distance Wp(X ,X ′) between two discrete measures X
and X ′ is the p-th root of the optimum of a network flow problem known as the
transportation problem [11]. The transportation problem depends on two com-
ponents: 1) matrix M ∈ Rn×m which encodes the geometry of the data points
by measuring the pairwise distance between elements in X and X ′ raised to the
power p, 2) the transportation polytope π(a, b) ∈ Rn×m which acts as a feasible
set, characterized as a set of n ×m non-negative matrices such that their row
and column marginals are a and b, respectively. This means that the transporta-
tion plan should satisfy the marginal constraints. In other words, let 1m be an
m-dimensional vector with all elements equal to one, then the transportation
polytope is represented as follows: π(a, b) = {T ∈ Rn×m|T>1n = b, T1m = a}.
Essentially, each element T (i, j) indicates the amount of mass which is trans-
ported from i to j. Note that in the transportation problem, the matrix M is
also considered as a cost parameter such that M(i, j) = d(xi, x

′
j)
p where d(.) is

the Euclidean distance.
Let

〈
T,M

〉
denote the Frobenius dot-product between T and M matrices.

Then, the discrete Wasserstein distance Wp(X ,X ′) is formulated by an optimum
of a parametric linear program p(.) on a cost matrix M , and n×m number of
variables parameterized by the marginals a and b as follows:

Wp(X ,X ′) = p(a, b,M) = min
T∈π(a,b)

〈
T,M

〉
. (1)

The Wasserstein distance in (1) is a Linear Program (LP) and a subgradient
of its solution can be calculated by Lagrange duality. The dual LP of (1) is:

d(a, b,M) = max
(α,β)∈CM

α>a+ β>b, (2)

where the polyhedron CM of dual variables is as follows: [11]

CM = {(α, β) ∈ Rm+n|αi + βj ≤M(i, j)}. (3)

Considering LP duality, the following equality is established: d(a, b,M) = p(a, b,M)
[11]. Computing the exact Wasserstein distance is time consuming. To alleviate
this, in [16], Cuturi has introduced an interesting method that regularizes (1)
using the entropy of the solution matrix, H(T ), (i.e., min

〈
T,M

〉
+ γH(T ) ,

where γ is regularization strength). It has been shown that if T ′γ is the solu-
tion of the regularized version of (1) and α′γ is its dual solution in (2), then
∃!u ∈ Rn, v ∈ Rm such that the solution matrix is T ′γ = diag(u)Kdiag(v) and

α′γ = − log(u)/γ + (log(u)>1n)/(γn))1n where, K = exp(−M/γ). The vectors
u and v are updated iteratively between step 1 and 2 by using the well-known
Sinkhorn algorithm as follows: step 1 : u = a/Kv and step 2 : v = b/K>u [16].

3.2 Hierarchical OT

Let θ be a Polish space and S(θ) be the space of Borel probability measures on
θ. Since θ is a Polish space, S(θ) is also Polish space and can be metrized by the
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Wasserstein distance [40]. Considering the recursion of concepts, S(S(θ)) is also a
Polish space and is defined as a space of Borel probability measure on S(θ), which
we can then define a Wasserstein distance on this space by using the Wasserstein
metric in S(θ) (Section 3 in [40]). The concept of Wasserstein distance on the
measure of measures, S(S(θ)), which is also referred to as Hierarchical OT, is a
practical and efficient solution to include structure in the regular OT distance
[47, 3, 60, 34]. Hierarchical OT is used to model the data which are organized in a
hierarchical structure, and has been recently studied for tasks such as multimodal
distribution alignment [34], document representation [60], multi-level clustering
[23] and a similarity measure between two hidden Markov models [14].

Let D = {X1,X2, ...,Xn} and D′ = {X ′1,X ′2, ...,X ′m} be two sets of measures
such that M =

∑n
i=1 riδXi

and M′ =
∑m
i=1 siδX ′

i
in which δXi

is a Dirac mass
located on the measure Xi, and r and s denote the weighting vectors belonging
to the probability simplex ∆n and ∆m, respectively. Then, the hierarchical OT
distance between M and M′ can be formulated by a linear program as follows:

W ′p(M′,M) = min
T ′∈π′(r,s)

n∑
i=1

m∑
j=1

T ′(i, j)Wp(Xi,X ′j), (4)

where π′(r, s) = {T ′ ∈ Rm×n|T ′>1m = r, T ′>1n = s}, and Wp(., .) is the
Wasserstein-p distance between two discrete measures Xi and X ′j which is ob-
tained by Eq. (1). In Eq. (4), we have expanded Eq. (1) such that T ′(i, j) rep-
resents the amount of mass transported from δXi to δX ′

j
, and Wp(., .) is the

ground metric which has been substituted by the Euclidean distance in Eq. (1)
to represent hierarchical nature of the similarity metric between M′ and M.

3.3 Wasserstein Barycenters

GivenN >= 1 probability measures with finite second moments {X1,X2, ...,XN} ∈
S2(θ), their Wasserstein barycenters is a minimizer of F over S2(θ) where [1]:

F (X̃ ) = inf
X̃∈S2(θ)

1

N

N∑
i=1

W 2
2 (X̃ ,Xi). (5)

In the case where {X1, ...,XN} are discrete measures with finite number of
elements, each with size ei, the problem of finding Wasserstein barycenters X̃ on
the space of S2(θ) in (5) is recast to search only on a simpler space Or(θ), where
Or(θ) is the set of probability measures with at most r support points in θ, and

r =
∑N
i=1 ei −N + 1 [6]. There are fast and efficient algorithms that find local

solutions of the Wasserstein barycenters problem over Or(θ) for r ≥ 1, which
the use of these algorithms for clustering has also been studied in [17, 58].

4 Method

Here, we describe our SSL model as is shown in Figure 1. Here, data belonging
to the same class is defined as a measure. Thus, all the initial labeled data hier-
archically are considered as a measure of measures. Similarly, all the unlabeled
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Fig. 1. At each epoch, a small amount of unlabeled data is processed through the
current CNN and clustered into k groups. Then, the Wasserstein-2 distance is computed
between theses groups and the ones formed by the labeled data. Next, a regularized OT
is used to form an optimal coupling between the groups from the unlabeled data and
the labeled ones, using the Wasserstein-2 distance as cost function (i.e., hierarchical
OT). Finally, this coupling provides pseudo-labels for the selected unlabeled data to
perform a gradient descent step on the CNN. Here, circles represent unlabeled data
and triangles show the labeled data and their color indicate their labels.

data are also a measure of measures, each of which is constructed by data be-
longing to the same class. Following the basic premises mentioned earlier in the
introduction, we use a hierarchical OT to predict pseudo-labels for the unlabeled
measures to train a CNN. Our method is a three steps iterative algorithm. In
the first step, we make a clustering assumption about the unlabeled data and
consider all the unlabeled measures as a group of clusters which are identified
by the Wasserstein barycenters of the unlabeled data. In the second step, we use
the hierarchical OT to map each of the unlabeled measures to a corresponding
labeled measure, based on which, a pseudo-label for the data within each of the
clusters is predicted. Finally, unlabeled data annotated with pseudo-labels from
the second step are used along with the initial labeled data to train the CNN.

4.1 Finding Unlabeled Measures via Wasserstein Metric

Given an image zi ∈ Rm×n from either the labeled or unlabeled dataset, CNN
acts as a function f(w, zi) : Rm×n → Rc with the parameters w that maps
zi to a c-dimensional output, where c is number of the classes. Assume that
X = {x1, ..., xm} and X ′ = {x′1, ..., x′m} are the sets of c-dimensional outputs
represented by the CNN for the labeled and unlabeled images, respectively. Let
Pi = 1/ni

∑ni

j=1 δxj
denote a discrete measure constructed by labeled data in

the i-th class, where δxj is a Dirac unit mass on xj and ni is number of the
data in the i-th class. Then, all of the labeled data form a measure of measures
as follows: M =

∑c
i=1 µiδPi

, where µi = ni/m represents amount of the mass
in the measure Pi and δPi

is a Dirac unit mass on the measure Pi. Similarly,

unlabeled data construct a measure of measures M′ =
∑k
j=1 νjδQj

, where each
measure Qi, is created by unlabeled data belonging to the same class, νj = n′j/m
is amount of the mass in the measure Qj , and δQi

is a Dirac unit mass on Qj .
However, data in the unlabeled set are not labeled to allow us to identify Qj .
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Algorithm 1 : Finding Unlabeled Measures via Wasserstein Metric

input: Q ∈ Rc×m.
1: initialize: H ∈ Rc×k, b = 1m/m, t = 1, η = 0.5.
2: while H and a have not converged do
3: Maximization Step:
4: set â = ã = 1m/m.
5: while not converged do
6: β = (t+ 1)/2, a← (1− β−1)â+ β−1ã.
7: α← α′: dual optimal form of OT d(a, b,MHQ).
8: ã← ã ◦ e−βα; ã← ã/ã>1n.
9: â← (1− β−1)â+ β−1ã, t← t+ 1.

10: end while
11: a← â.
12: Expectation Step:
13: T ′ ← optimal coupling for p(a, b,MHQ).

14: H ← (1− η)H+ η(QT
′>)diag(a−1), η ∈ [0, 1].

15: end while

One simple solution to find Qj , is to use the labels that are directly predicted
by the CNN on the unlabeled data. In this case, there is no need to form unla-
beled measures, since unlabeled data annotated by the CNN can be used directly
for training the CNN. However, CNN as a classifier trained on a limited amount
of the labeled data simply miss-classifies these unlabeled data. Thus, there is
little option other than unsupervised methods, such as clustering to explore the
unlabeled data belonging to the same class. This criterion stems from the struc-
tural assumption based on the clustering in SSL, where it is assumed that the
data within the same cluster are more likely to share the same label. Inspired by
the role of OT in clustering [17, 28, 23, 37], we leverage the Wasserstein metric
to explore these measures underlying the unlabeled data. Specifically, we use the
k-means objective incorporated by a Wasserstein metric loss to find Qj .

Given m unlabeled data x′1, ..., x
′
m ∈ θ, the k-means clustering as a vec-

tor quantization method [43] aims to find a set C containing at most k atoms
c1, ..., ck ∈ θ such that the following objective is minimized:

J(C) = inf
c1,...,ck

1

m

m∑
i=1

||x′i − cj ||2. (6)

Let Q = 1
m

∑m
i=1 δx′

i
be the empirical measure of data x′1, ..., x

′
m, where δx′

i
is a

Dirac unit mass on x′i. Then, (6) is equivalent to exploring a discrete probability
measure H including finite number of support points which minimizes:

F (H) = inf
H∈Ok(θ)

W 2
2 (H,Q). (7)

When N = 1 in (5), then (7) can also be considered as a Wasserstein barycen-
ters problem whose solution is studied in [1, 17, 58]. From this perspective as
studied by [17], the algorithm for finding the Wasserstein barycenters introduces
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an alternative for the popular Loyd’s algorithm to find local minimum of the k-
means objective, where the maximization step (i.e., the assignment of the weight
of each data point to its closest centroid) is equivalent to computing α′ in dual
form of OT (see Eq. (2)), while the expectation step (i.e., the re-centering step)
is equivalent to updating H using the OT. Algorithm 1 presents clustering algo-
rithm for exploring the unlabeled measures using the Wasserstein metric.

4.2 Mapping Measures via Hierarchical OT for Pseudo-Labeling

We design an OT cost function f(.) to map the measures in M′ =
∑k
j=1 νjδQj

to the measures in M =
∑c
i=1 µiδPi as follows:

f(µ, ν,G) = min
R∈T (µ,ν)

〈
R,G

〉
− ωH(R), (8)

where R is the optimal coupling matrix in which R(i, j) is amount of the mass
that should be transported from Qi to Pj to provide an OT plan between M′
and M. Thus, if the highest amount of the mass from Qi is transported to Pr
(i.e., Qi is mapped to Pr); the data belonging to the measure Qi are annotated
by r which is the label of the measure Pr. Variable G is the pairwise similarity
matrix between measures withinM andM′ in which G(i, j) = Wp(Qi,Pj) is the
regularized Wasserstein distance between two clouds of data in Qi and Pj . Note
that the ground metric used for computing Wp(Qi,Pj) is the Euclidean distance.
Moreover,

〈
R,G

〉
is the Frobenius dot-product between R and G matrices, and

T is transportation polytope defined as follows: T (µ, ν) = {R ∈ Rc×c|R>1c =
ν,R1k = µ}. Finally, H(R) is entropy of the optimal coupling matrix R used
for regularizing the OT, and ω is regularization strength in Eq. (8). The optimal
solution for the regularized OT in (8) is obtained by Sinkhorn algorithm.

4.3 Training CNN in SSL Fashion

In the third step, we use the generic cross entropy as our discriminative loss
function to train our CNN. Let {zi}bi=1 be training batch annotated by true
labels {yi}bi=1, and {z′i}bi=1 be training batch annotated by pseudo-labels {y′i}bi=1,
and ci denotes barycenter of the cluster that sample z′i belongs to it. Then, the
total loss function L(.), used to train our CNN in an SSL fashion is as follows:

L(w) =

b∑
i=1

Lc(f(w, zi), yi)+ξ
( b∑
i=1

Lc(f(w, z′i), y
′
i)+

1

b

b∑
i=1

||f(w, z′i)−ci||2
)
, (9)

where f(w, zi) is output of CNN for images zi, and Lc(.) denotes cross entropy,
and ξ is a balancing hyperparameter. Note that the third term in (9) is the
center loss [56] which aims to reduce the distance between the unlabeled data
and the barycenters of their corresponding cluster to perform a local consistency
regularization [61]. For training, we initially train the CNN using the labeled
data as a warm up step, and then use OT to provide pseudo-labels for the



Transporting Labels via Hierarchical Optimal Transport for SSL 9

Algorithm 2 : Transporting Labels via Hierarchical OT

input: LD: Zl = {(zl, yl)}ml=1, UD: Zu = {z′u}nu=1, balancing coefficients: ξ, ω, γ,
learning rate: r, batch size: b, number of clusters: k.

1: Train CNN parameters initially using the labeled data Zl.
2: repeat
3: Select {z′i}mi=1 ⊂ Zu, where m << n.
4: Compute X = {xl}ml=1, X ′ = {x′u}mu=1: softmax output on Zl and {z′i}mi=1, resp.
5: {Q1, ...,Qk} ← cluster on X ′ using Algorithm. 1.
6: {P1, ...,Pc} ← group X to c classes.
7: Compute µi, νi based on the amount of the mass in {Qi}ki=1 and {Pi}ci=1.
8: for each Qi and Pj do
9: G(i, j)←W2(Qi,Pj): using regularized OT.

10: end for
11: R← optimal coupling for f(µ, ν,G) in Eq. (8): using regularized OT.
12: {y′u}mu=1 ← pseudo-label each cluster Qi based on the highest amount of mass

transport toward the labeled measure (i.e., argmaxR(i, :)).
13: repeat
14: Select a mini-batch:{zi, z′i}bi=1 ⊂ ({z′i}mi=1 ∪ Zl).
15: w ← w − r∇w[L(w)], using Eq. (9).
16: until for an epoch
17: until a fixed number of epochs

unlabeled data to train the CNN along with the labeled data for the next epochs.
Specifically, after training the CNN using the labeled data, in each epoch, we
randomly select the same amount of labeled data from the pool of unlabeled data
to compute their pseudo-labels via hierarchical OT. Then, the CNN is trained
in a mini-batch mode. Our overall SSL method is described in Algorithm 2.

Discussion on Time Complexity: Algorithm 2 has two main computa-
tional parts: 1) clustering the unlabeled data via Algorithm 1 (i.e. line 5), and
2) mapping the measures via HrOT (i.e. lines 8-11). For part (1): we used [17]
and there is an analysis for its Time Complexity (TC) in [58] as follows: Let
c, n, k, and i be the number of classes, unlabeled data, barycenters, and iter-
ations in EM for Algorithm 1, resp. Based on the analysis provided in [58], in
our case, N = 1 (# of distributions), d = c (dimension) and τ = 1 (adjusting
the support points for barycenters every τ iterations). Thus, TC of part (1) is
O(ink) + O(inck) ≈ O(inck). For part (2): Since TC of computing the regu-
larized OT distance between two sets of data each with size m is O(m2) [22],
then we need O((n/c)(n/k)(ck)) = O(n2) to compute matrix G in lines 8-10,
and also we need O(ck) to find R in line 11. Thus, TC of part (2) is O(ck)+
O(n2) ≈ O(n2). By summing part(1) and (2), the total TC for inferring spudo-
labels on n data is O(n2 + inck). Note that i is not large due to smoothing[17].

5 Experiments and Setup

Setup: we conduct our experiments on SVHN [39], CIFAR-10/100 [29], and
Mini-ImageNet [54] datasets. Mini-ImageNet [54] is subset of ImageNet [19]
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Fig. 2. Validation error for hyperparameter tuning on CIFAR-10.

which consists of 100 classes and 600 images per class. For Mini-ImageNet, we
follow the SSL setup in [24]. We use 500 and 100 images per class for the train-
ing and testing splits, res. Following the prior works in [31, 52, 24, 8], we use
a ResNet-18 network for the Mini-ImageNet, and a “13-layer” network for the
SVHN and CIFAR-10/100 to evaluate our model. We use the typical configu-
ration for SVHN and CIFAR-10/100 [52], and the same for the Mini-ImageNet,
i.e., normalizing images using dataset mean and Standard Deviation (SD) to-
gether and then performing data augmentation by random horizontal flips and
random 4 pixel translations [52]. For training, we use Adam optimizer [26] with
a learning rate of 3× 10−3 and the batch size is set to 128. The stopping crite-
ria for the Sinkhorn algorithm is either maxIter = 10,000 or tolerance = 10−8,
where maxIter is the maximum number of iterations and tolerance is a thresh-
old for the integrated stopping criterion based on the marginal differences. The
barycenters in Algorithm. 1 are initially set to centroids obtained by k-means.

We follow suggested guidelines in [41] to evaluate our model. 1) We report
performance of a fully-supervised baseline since the purpose of SSL is to signifi-
cantly improve the fully-supervised baseline. 2) We vary the amount of labeled
data when reporting the accuracy of our SSL method since a perfect SSL algo-
rithm should remain effective even with small amount of labeled data. 3) We
compare our method with the case where the unlabeled data are labeled by
CNN using its own prediction during the training. 4) We study performance of
the soft-pseudo-labels which can be generated by our model. 5) We compare
the OT-based clustering method described in Algorithm. 1 vs k-means to show
the effectiveness of Wasserstein metric for finding the unlabeled measures in our
model. 7) We conduct ablation studies on the clustering resolution, and also we
study effect of the center loss as a local consistency regularizer in our SSL model.

Hyperparameter Tuning: Following [41, 8], we use a validation set of 5k
images for CIFAR-10/100, and standard validation set of 7k images for SVHN
to tune hyperparameters of our model. For CIFAR-10 and SVHN, we use 1k
labeled data, and for CIFAR-100, we use 4k labeled data. The results shown
in Figure 2 are the mean and SD of error rate on validation set for CIFAR-10.
Similarly, for other datasets, we also tuned the hyperparameters. For SVHN, the
values chosen for γ, ω and ξ are 0.01, 0.001, and 0.75, resp. For CIFAR-100, the
values chosen for γ, ω and ξ are 0.001, 0.001, 0.5, res. For Mini-ImageNet, we
used the same hyperparameters tuned for CIFAR-100.
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Dataset CIFAR-10 SVHN

Labels 1000 2000 4000 250 500 1000

Supervised 45.89± .97 32.14± 0.84 21.79± 0.23 43.58± 1.98 23.78± 0.94 14.83± 0.79

TDCNN [49] 32.67± 1.93 22.99± 0.79 16.17± 0.37 22.90± 1.91 13.79± 1.24 8.77± 0.82

VAT [38] - - 11.36 - - 5.42

π model [31] - - 12.36± 0.31 - 6.65± 0.53 4.82± 0.17

Temporal Ens [31] - - 12.16± 0.24 - 5.12± 0.13 4.42± 0.16

MT [52] 19.04± 0.51 14.35± 0.31 11.41± 0.25 4.35± 0.50 4.18± 0.27 3.95± 0.19

LP [24] 22.02± 0.88 15.66± 0.35 12.69± 0.29 - - -
LP+MT [24] 16.93± 0.70 13.22± 0.29 10.61± 0.28 - - -

SWA [8] 15.58 11.02 9.05 - - -

DOT 17.97± 0.47 14.46± 0.55 11.84± 0.20 5.14± 0.23 4.74± 0.35 4.11± 0.26

HrOT (k-means) 15.78± 0.65 13.16± 0.58 10.94± 0.32 4.89± 0.27 4.14± 0.30 3.86± 0.24

HrOT w/o CL 13.65± 0.36 10.44± 0.39 9.02± 0.44 4.82± 0.25 4.06± 0.24 3.61± 0.15

Soft HrOT 12.58± 0.34 9.56± 0.37 8.14± 0.49 4.32± 0.28 3.77± 0.21 3.55± 0.12

HrOT 11.91± 0.25 8.87± 0.32 7.74± 0.28 4.19± 0.16 3.52± 0.23 3.06± 0.09

Table 1. Comparing test error between HrOT and different baselines and SSL methods.

5.1 Fully Supervised and Deep SSL Methods

We report the error rate of the ”13-layer” CNN on CIFAR-10/100 and SVHN
datasets and ResNet-18 on the Mini-ImageNet dataset for both cases where we
only use the labeled data (i.e., Supervised in Table. 1 & 2), and the case where
we leverage the unlabeled data using the hierarchical OT technique during the
training (i.e., HrOT in Table. 1 & 2). All of the compared SSL methods in Table.
1 & 2 use a common CNN architecture. Following the prior works [31, 52, 24, 8],
to compare HrOT with other SSL algorithms, we selected the same amount of
data in the training set as the labeled data and the remaining as the unlabeled
data for SVHN (73k), CIFAR-10/100 (50k) and Mini-ImageNet (50k) datasets.
We run our SSL algorithm over 5 times with different random splits of labeled
and unlabeled sets for each dataset, and we report the mean and SD of the test
error rates. The results in Table. 1 & 2 indicate the potential of our model for
leveraging the unlabeled data in comparison to other SSL methods.

5.2 Soft-Pseudo-Labels based on Hierarchical OT

Other than particular manner in HrOT where we choose one particular pseudo-
label based on the highest amount of mass transport from an unlabeled measure
to a labeled measure to label the unlabeled measure, we also use ”soft pseudo-
labels” for training the CNN. In other words, instead of having one-hot target
in the usual classification loss, we use the row of the transportation mass corre-
sponding to the labeled measures as the target. The compared result in Table.
1 & 2 show that using one-hot targets (HrOT) outperforms using soft pseudo-
labels (Soft-HrOT). The reason can be supported by SSL methods based on the
entropy minimization [42]. This set of methods forces the model to produce con-
fident predictions (i.e., low entropy). Similarly, once we use one-hot targets, we
essentially encourage the network to produce more confident predictions com-
pared to using soft-pseudo labels.
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Datasets CIFAR-100 Mini-ImageNet-top1 Mini-ImageNet-top5

Labels 4000 10000 4000 10000 4000 10000

Supervised 55.89± 0.26 41.07± 0.33 75.94± 0.41 61.59± 0.69 53.85± 0.46 38.59± 0.53

LP [24] 46.20± 0.76 38.43± 1.88 70.29± 0.81 57.58± 1.47 47.58± 0.94 36.14± 2.19

MT [24] 45.36± 0.49 36.08± 0.51 72.51± 0.22 57.55± 1.11 49.35± 0.22 32.51± 1.31

LP+MT [24] 43.73± 0.20 35.92± 0.47 72.78± 0.15 57.35± 1.66 50.52± 0.39 31.99± 0.55

SWA [8] - 34.10± 0.31 - - - -

DOT 44.28± 0.47 36.82± 0.33 73.84± 0.44 59.26± 0.52 48.22± 0.75 32.14± 0.48

HrOT (k-means) 42.06± 0.62 35.57± 0.64 72.04± 0.35 58.09± 0.43 46.47± 0.83 31.48± 0.33

HrOT w/o CL 40.66± 0.71 32.88± 0.36 68.94± 0.51 55.77± 0.83 44.97± 0.54 29.18± 0.26

Soft HrOT 40.02± 0.84 31.76± 0.31 68.49± 0.63 54.73± 0.70 44.16± 0.26 28.19± 0.24

HrOT 38.98± 0.91 30.86± 0.56 67.66± 0.75 53.79± 0.46 43.38± 0.39 27.45± 0.59

Table 2. Comparing test error between HrOT and different baselines and SSL methods.
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Fig. 3. indicate the number of accurate predicted labels by HrOT and CNN.

5.3 Contribution of Hierarchical Optimal Transport to SSL

CNN trained on a limited amount of the labeled data simply miss-classifies the
unlabeled data. Instead, we use the OT to cluster the unlabeled data and then
map them with the labeled measures for pseudo-labeling. To compare these
two criteria for pseudo-labeling, we report the number of accurate pseudo-labels
obtained for the unlabeled training data using HrOT and the CNN by its own
prediction (i.e., ”13 layer” network). We experimentally show how HrOT has
a greater positive influence on the training of CNN classifier. Essentially, this
comparison allows us to know whether or not the CNN classifier can benefit from
our method for producing pseudo-labels during the training, because, otherwise,
the CNN can simply use its own predicted labels on the unlabeled training data
during the training. To indicate the efficiency of HrOT, we change the number
of labeled data in the training set and report the number of accurately predicted
pseudo-labels by our CNN, and HrOT on the remaining unlabeled training data.
Figure 3(a)-3(c) show that, for SVHN and CIFAR-10/100, the labels predicted
by HrOT on the unlabeled training data are more accurate than the CNN,
which means that the entire CNN can better benefit from HrOT than the case
where it is trained solely by its own predicted labels. Moreover, we monitored
the trend of transportation cost between the labeled and unlabeled measures
obtained by Eq. 8 during the training. Experiments on SVHN and CIFAR-10 in
Figure 4(a) and Figure 4(b) show that this cost reduces as the images fed into
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Fig. 4. (a, b) OT cost trend, (c, d) mapping measures to barycenters and each other.
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Fig. 5. Validation error for different clustering resolution.

the CNN are represented by a better feature set during the training. In Figure
4(c) and Figure 4(d), we also visualized barycenters of the clusters, and mapping
between measures of two classes in CIFAR-10 (i.e., bird and frog) using Sinkhorn
algorithm. The Figures show that measures of different classes are separated
properly after the training. Here, filled and unfilled squares represent unlabeled,
and labeled data, respectively and the color of squares indicates their label.

5.4 Clustering Resolution

We study effect of the clustering resolution on the performance of our model. We
use 1k labeled data for SVHN and CIFAR-10, and 4k labeled data for CIFAR-
100 and MiniImageNet datasets. We change number of the centriods during
the clustering, and report the error on the validation set. The results in Figure
5(a)-5(d) indicates that our model benefits from over-clustering but intense over-
clustering decreases performance. The rationale can be supported by SSL models
based on consistency regularization [61, 36]. Specifically, if we intensively increase
the number of the clusters, we only consider the global structure (or geometry)
of the data in the label space, and then we ignore their local structure when
transporting labels. This is not appropriate for SSL, since in such a case, we
ignore the local consistency of data. However, if we cluster data in the label
space via Wasserstein metric and then map them through HrOT, we exploit both
local and global structure of the data in the label space during the transporting
labels. To further validate this claim, we conducted following ablation study: in
each batch, we solve an OT between labeled data {xl}mu=1 and unlabeled data
{x′u}mu=1 directly and use the OT to assign pseudo-labels to the unlabeled data.
We refer to this baseline as Direct-OT (DOT), our results in Table 1 & 2 indicate
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Fig. 6. Performance of HrOT by varying the labeled data.

that mapping data directly using OT significantly reduces the performance of
the CNN compared to our original model, HrOT which indicate importance
of the clustering and considering hierarchical structure in OT for generating
pseudo-labels in our SSL model.

In further study, instead of using OT to cluster, we use the regular k-means
in our method. We refer to this baseline as HrOT (k-means). The compared
results between HrOT and HrOT(k-means) in Table . 1 & 2 shows the power
of Wasserstein-metric in the k-means objective for finding unlabeled measures.
Moreover, we ablated the center loss in (Eq. 9) to see the effect of this term as a
local consistency regularizer in our SSL model (i.e., HrOT w/o CL in in Tables
1 & 2). The compared results with HroT in Tables 1 & 2 show that this term
can have relatively a positive influence on the performance of our model.

5.5 Varying Labeled Data

We evaluate how varying the amount of initial labeled data degrades the per-
formance of HrOT in the very limited label regime. We gradually increase the
number of labeled data during the training and report the performance of our
SSL method on the testing set. Here, we run our SSL method over 5 times with
different random splits of labeled and unlabeled sets for SVHN and CIFAR-
10/100, and report the results in Figure 6(a)-6(c). The results show that the
performance of HrOT tends to level off as the number of labels increases.

6 Conclusion

We proposed a method which leverages optimal transport to train a CNN clas-
sifier in an SSL manner. We used the Wasserstein barycenters of the unlabeled
data to identify the measures in the unlabeled set. Then, we used hierarchical
optimal transport to map measures from the unlabeled set to measures in the
labeled set with a minimum amount of the total transportation cost in the label
space. Based on this mapping, pseudo-labels for the unlabeled data were in-
ferred, which were then used along with the labeled data for training the CNN.
Finally, we experimentally evaluated our SSL method to indicate its potential
for leveraging the unlabeled data when labels are limited during the training.
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50. Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T.,
Guibas, L.: Convolutional wasserstein distances: Efficient optimal transportation
on geometric domains. ACM Transactions on Graphics (TOG) 34(4), 66 (2015)

51. Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on deep transfer
learning. In: International Conference on Artificial Neural Networks. pp. 270–279.
Springer (2018)

52. Tarvainen, A., Valpola, H.: Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. In: Advances in
neural information processing systems. pp. 1195–1204 (2017)

53. Villani, C.: Optimal transport: old and new, vol. 338. Springer Science & Business
Media (2008)

54. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks
for one shot learning. In: Advances in neural information processing systems. pp.
3630–3638 (2016)

55. Vural, E., Guillemot, C.: A study of the classification of low-dimensional data with
supervised manifold learning. Journal of Machine Learning Research 18, 157–1
(2017)

56. Wen, Y., Zhang, K., Li, Z., Qiao, Y.: A discriminative feature learning approach for
deep face recognition. In: European conference on computer vision. pp. 499–515.
Springer (2016)



18 F. Taherkhani et al.

57. Yan, Y., Li, W., Wu, H., Min, H., Tan, M., Wu, Q.: Semi-supervised optimal
transport for heterogeneous domain adaptation. In: IJCAI. pp. 2969–2975 (2018)

58. Ye, J., Wu, P., Wang, J.Z., Li, J.: Fast discrete distribution clustering using wasser-
stein barycenter with sparse support. IEEE Transactions on Signal Processing
65(9), 2317–2332 (2017)

59. Yu, B., Wu, J., Ma, J., Zhu, Z.: Tangent-normal adversarial regularization for semi-
supervised learning. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. pp. 10676–10684 (2019)

60. Yurochkin, M., Claici, S., Chien, E., Mirzazadeh, F., Solomon, J.M.: Hierarchical
optimal transport for document representation. In: Advances in Neural Information
Processing Systems. pp. 1599–1609 (2019)

61. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. In: Advances in neural information processing systems. pp.
321–328 (2004)


