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1 Other Approaches for Calculating Contrasting Class
Similarity

Suppose the ls-normalized attribute matrix w.r.t. the C° seen classes and C"
unseen classes are A € RO*C" and B € RXC" | respectively. We have calcu-
lated the contrasting class similarity V' € RC"*C" using least square regression
(LSR) in Line 324 (§3.4) of the manuscript. We further assess the scalability of
RGEN towards other types of calculating for V. Specifically, we take CUB [1]
and AWA2 [2] as example datasets and compare the following three types of
calculations for V:

LSR: V =(B'B+8I) 'B'A. (1)
Cosine: V =BTA. (2)
Exponential Cosine: V = exp(B'A). (3)

Note that, the dot-product in Eq. (2) and (3) equals to cosine similarity metric,
since each column of A and B is [ normalized.

Table 1: Comparisons of RGEN performances (%) under ZSL and GZSL w.r.t.
three types of calculations for V.

CUB AWA?2
Types ZSL GZSL ZSL GZSL
MCA| ts tr H [MCA[ ts tr H
LSR 76.1 (60.0 73.5 66.1| 73.6 [67.0 76.5 71.5
Cosine 75.2 |58.3 71.8 64.3| 73.0 |67.3 77.1 71.8
Exp Cosine| 74.9 [58.7 71.8 64.6| 72.5 [67.3 76.3 71.5

Both the ZSL and GZSL [2] results are shown in Table 1. It can be seen that
1) LSR cousistently achieves a better MCA (mean class accuracy) under ZSL on
both CUB and AWA2, and 2) LSR achieves a better H under GZSL on CUB,
and meanwhile, a slightly better H is obtained by Cosine metric under GZSL
on AWA2. All three methods perform well with a desirable performance. This
validates the scalability of the proposed RGEN.
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Fig. 1: MCA-(n3,n4) maps of RGEN under ZSL.

2 Effects of Coefficients 13 and 14, to RGEN

13 and ny are the trade-off parameters w.r.t. the compact loss L., and the diver-
gent loss L., respectively. For RGEN training (Eq. (11) of §3.5 in the manuscrip-
t), we have fixed n3 and n4 to 1.0 and 0.0001 on all the four datasets used,
respectively. By further taking the values of 73 from {0.01,0.1,0.5,1.0,1.5,2.0}
and the values of 1y from {le — 5,1e — 4,1e — 3, 1le — 2}, we observe the MCA
of RGEN w.r.t. different combinations of (n3,n4) for ZSL, on CUB and AWA2
datasets (Fig. 1). We find that a small r4, meanwhile, a relative large 13 are
better for assisting the RGEN model. As such, we set (13,74) = (1.0, 0.0001) for
all datasets.

3 More t-SNEs of the Features in the Semantic Space

We have only illustrated the t-SNEs [3] (on unseen test images of AWA2) of
RGEN and its variants (CPA and PRR) under GZSL, due to space limitation. We
further take CUB and AWA2 as examples to visualize the feature representations
of both seen and unseen test images in the semantic space for RGEN, CPA and
PRR. Fig. 2 and Fig. 3 illustrate the t-SNEs of RGEN, CPA and PRR for AWA2
and CUB, respectively.

4 More Qualitative Analysis on Attended Parts

In our manuscript, we have used unseen images from CUB under ZSL to visualize
the attended parts (Fig. 8 of the manuscript). Compared with the baseline (which
achieves a 71.3% MCA when trained by only the ACE loss, Table 4 of the
manuscript), RGEN has shown some useful insights, e.g., it can 1) discover more
divergent parts w.r.t. objects; 2) suppress background and redundant foreground
regions (maximum mask values in parts #1-4, 9-10 are all small and no similar
masks exist among foreground parts #5-8); and 3) automatically align the order
relationships of different parts (parts #5-8 are consistent w.r.t. different unseen
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Fig. 2: t-SNEs of the projected features in semantic space on AWA2.
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Fig. 3: t-SNEs of the projected features in semantic space on CUB.

class images). Here, we take the same trained model as used for drawing Fig. 8
of the manuscript and give more visualizations in Fig. 4 and Fig. 5 on CUB
dataset. Note that the showed images are randomly selected from the unseen
test set without any human intervention. Fig 4 and Fig. 5 again show the same
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qualitative conclusions as previously mentioned. This means that our RGEN
with parts relation reasoning has discovered some intrinsic reasons for unseen
class recognition, e.g., the model can automatically align the order relationships
of different parts.

Furthermore, we illustrate the attended parts of both seen and unseen images
on CUB, under the best RGEN GZSL model (Fig. 6 and Fig. 7). Note that the
showed images are also randomly selected from the unseen test set and seen test
set without any human intervention.

5 More Comparisons of Prediction Results of Unseen
Test Images under GZSL

As the domain bias issue is a typical problem under GZSL, we have shown an
example in Fig. 3 of our manuscript, by feeding two test unseen images to the
Baseline/RGEN GZSL models on AWA2. Here, we show more randomly selected
examples for comparing the performances of Baseline (without balance loss) with
our RGEN GZSL model, on AWA2 (Fig 8 and Fig. 9). In most cases, our RGEN
can well address the domain bias issue encountered in the Baseline model.

6 Detailed Parameter Values for Each Dataset

As stated in §4.2 and §3.5 of the manuscript, we totally have eight key parameter-
S: M1, M2, N3, N4, A1, A2, K, and GCN Architecture in §3.3. We further illustrate
their taken values to achieve the results in Tables for each dataset (Table 2).
It can be seen that six out of eight parameters are fixed for all used datasets,
therefore, only A1, Ao are parameters that need to be tuned. However, as can be
seen from §4.5 of the manuscript, these two parameters are also robust to the
final MCA and H score. This indicates that the RGEN model is essentially a
scalable model to tackle ZSL and GZSL tasks.

7 Component Analysis w.r.t. tr, ts and H under the best
RGEN GZSL model

We have conducted component analysis w.r.t. H for GZSL in Table 5 of §4.5
in the manuscript, due to space limitation. In Table 3, we show all the results
including tr, ts and H score for the same setting of componet analysis in the
manuscript.

We conclude from Table 3 that 1) our balance loss contributes mostly to the
performance improvements of ts and H score; 2) in some cases, the tr is also
improved, e.g., all tr, ts and H are improved significantly on CUB; and 3) some-
times, the tr is dropped to some extent; however, compared with such tolerable
performance degradations on tr (e.g., 33.6%—31.0% on SUN and 52.4%—49.2%
on APY), the improvements on ts and H are significant on all the used datasets.
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Table 2: Detailed parameter values for each dataset.

Dataset|n1 12 m3 na A1 for CPA Ay for CPA \; for PRR A2 for PRR K GCN

CUB 0.9 0.1 1.0 1le-4 0.05 0.05 0.05 0.05 10 2048-1024-2048
AWA2 (0.9 0.1 1.0 le-4 0.001 0.05 0.001 0.05 10 2048-1024-2048
SUN 0.9 0.1 1.0 le-4 0.07 0.1 0.07 0.1 10 2048-1024-2048
APY 0.9 0.1 1.0 le-4 0.01 0.07 0.01 0.07 10 2048-1024-2048

Table 3: Component analysis w.r.t. tr, ts and H under best GZSL RGEN model.

CUB AWA2 SUN APY

ts tr H|ts tr H|ts tr H|ts tr H

25.8 67.1 37.2| 6.7 93.5 12.5/15.5 33.6 21.2| 8.9 52.4 15.2
v 24.8 59.8 38.6| 7.6 92.4 14.1/17.8 35.5 23.7| 9.2 52.4 15.6
v 28.0 67.3 39.6| 8.0 92.6 14.7|18.7 34.9 24.3| 9.6 56.0 16.4
26.7 67.5 38.3| 8.1 92.1 14.9/17.8 34.9 23.6| 9.2 56.9 15.8
61.7 67.8 64.6/66.8 73.3 69.9|42.8 31.0 35.9|29.5 49.2 36.8
61.4 68.5 64.7|64.1 76.4 69.7]44.4 30.8 36.4(29.2 48.0 36.3
60.0 73.5 66.1|67.0 76.5 71.5/44.0 31.7 36.8|30.4 48.1 37.2
62.3 68.2 65.1|167.1 75.9 71.3|44.2 31.4 36.7|30.4 49.5 37.7

Transfer Loss|CD Regularization| PRR Branch|Balance Loss

AN
N

N

NNXXXXN
N
A NN NN

Note that, in the real-world application, we want to correctly classify both
seen and unseen test images as many as possible (i.e., we pursue a higher H
score), but most of the recently proposed deep GZSL models [4,5] fail to achieve
a balanced tr and ts, especially, the ts is usually very low (e.g., 26.4% for LDF
and 36.2% for LFGAA on CUB). By contrary, our RGEN model has achieved a
satisfactory H score (balanced tr and ts) in all used datasets. As such, the benefits
brought by our model are much greater than the performance degradation of tr,
which shows its potential to the real-world application.
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Fig. 4: More visualizations of the attended parts for unseen test images on CUB,
under ZSL. For each row, the first one is the input image, the left ones are its
ten attended parts, the numbers are the maximum value within corresponding
mask (parts marked with green/red number are background and foreground
parts, respectively). As concluded in our manuseript, RGEN can 1) discover more
divergent parts w.r.t. objects; 2) suppress background and redundant foreground
regions (maximum mask values in parts #1-4, 9-10 are all small and no similar
masks exist among foreground parts #5-8); and 3) automatically align the order
relationships of different parts (parts #5-8 are consistent w.r.t. different unseen
class images). We randomly select four times from the unseen test image set:
(a) The 19 Randomly Selected Unseen Images for the 1th Time. (b) The 19
Randomly Selected Unseen Images for the 2¢th Time. Zoom in four times to see
details.
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(c) The 19 Randomly Selected Unseen Images for the 3th Time (d) The 19 Randomly Selected Unseen Images for the 4th Time

Fig. 5: More visualizations of the attended parts for unseen test images on CUB,
under ZSL. For each row, the first one is the input image, the left ones are its
ten attended parts, the numbers are the maximum value within corresponding
mask (parts marked with green/red number are background and foreground
parts, respectively). As concluded in our manuscript, RGEN can 1) discover more
divergent parts w.r.t. objects; 2) suppress background and redundant foreground
regions (maximum mask values in parts #1-4, 9-10 are all small and no similar
masks exist among foreground parts #5-8); and 3) automatically align the order
relationships of different parts (parts #5-8 are consistent w.r.t. different unseen
class images). We randomly select four times from the unseen test image set:
(c¢) The 19 Randomly Selected Unseen Images for the 3th Time. (d) The 19
Randomly Selected Unseen Images for the 4th Time. Zoom in four times to see
details.
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For both (a) and (b): Each row means input image and its ten attended parts, numbers indicate the maximum value in the
corresponding attention mask. Attended parts marked with red color numbers are divergent and discriminative parts.
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(a) GZSL: The 19 Randomly Selected Test Seen Images for the 1th Time (b) GZSL: The 19 Randomly Selected Test Unseen Images for the 1th Time

Fig. 6: Visualizations of the attended parts for both seen/unseen test images on
CUB, under GZSL. Different from the attended parts under ZSL, the discovered
divergent and discriminative parts are #2-3, 5-6, 10. As can be seen from (a) and
(b), RGEN can still 1) discover more divergent parts w.r.t. objects; 2) suppress
background and redundant foreground regions (maximum mask values in parts
#1, 4, 7-9 are all small and no similar masks exist among foreground parts
#2-3, 5-6, 10); and 3) automatically align the order relationships of different
parts (parts #2-3, 5-6, 10 are consistent w.r.t. different unseen/seen test class
images). Note that, maximum mask values of part #3 and #6 are not very
confident, however, the attended regions on these two columns of parts are still
focused on the edge of the object. As such, we claim that these two columns of
parts could be still beneficial to the final performance. We randomly select two
times from both the unseen/seen test image set: (a) The 19 Randomly Selected
Test Seen Images for the 1¢h time. (b) The 19 Randomly Selected Test Unseen
Images for the 1th time. Zoom in four times to see details.
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For both (a) and (b): Each row means input image and its ten attended parts, numbers indicate the maximum value in the
corresponding attention mask. Attended parts marked with red color numbers are divergent and discriminative parts.

(a) GZSL: The 19 Randomly Selected Test Seen Images for the 2th Time (b) GZSL: The 19 Randomly Selected Test Unseen Images for the 2th Time

Fig. 7: Visualizations of the attended parts for both seen/unseen test images on
CUB, under GZSL. Different from the attended parts under ZSL, the discovered
divergent and discriminative parts are #2-3, 5-6, 10. As can be seen from (a) and
(b), RGEN can still 1) discover more divergent parts w.r.t. objects; 2) suppress
background and redundant foreground regions (maximum mask values in parts
#1, 4, 7-9 are all small and no similar masks exist among foreground parts
#2-3, 5-6, 10); and 3) automatically align the order relationships of different
parts (parts #2-3, 5-6, 10 are consistent w.r.t. different unseen/seen test class
images). Note that, maximum mask values of part #3 and #6 are not very
confident, however, the attended regions on these two columns of parts are still
focused on the edge of the object. As such, we claim that these two columns of
parts could be still beneficial to the final performance. We randomly select two
times from both the unseen/seen test image set: (a) The 19 Randomly Selected
Test Seen Images for the 2th time. (b) The 19 Randomly Selected Test Unseen
Images for the 2th time. Zoom in four times to see details.
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Fig. 8: Cyan and magenta bars are the predicted scores (before the softmax-layer

in Baseline and RGEN models) on seen/unseen classes, respectively. Domain bias

in (a) Baseline has been well addressed by our (b) RGEN, which further show the

effectiveness of our RGEN under GZSL. Zoom in four times to see details. “\/”

indicates the input image is correctly classified as the ground-truth category.
x” indicates the input image is misclassified as the one beside this symbol.
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Fig. 9: Cyan and magenta bars are the predicted scores (before the softmax-layer

in Baseline and RGEN models) on seen/unseen classes, respectively. Domain bias

in (a) Baseline has been well addressed by our (b) RGEN, which further show the

effectiveness of our RGEN under GZSL. Zoom in four times to see details. “\/”

indicates the input image is correctly classified as the ground-truth category.
x” indicates the input image is misclassified as the one beside this symbol.

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494



