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S.1 Supplementary Video

The video on our website presents:

– a narrated overview of our method,
– a wide variety of GRAB sequences (3D moving meshes),
– GrabNet predictions for unseen objects from several viewpoints and
– GrabNet failure cases.

S.2 GRAB Dataset Content

Our GRAB dataset is available for research purposes on our website. The website
contains (at least) the material listed below:

– Our modified version of the object meshes of [2].
– Our marker locations on each object mesh.
– Body shape templates for our subjects.
– Pose parameters for our subjects and objects.
– Code to reproduce the interacting meshes, as seen in our video.
– Per-vertex contact annotations on meshes (body and object) for each frame.
– Vicon MoCap files (labeled marker positions, incl. on the floor and table).

S.3 Why MoCap Instead of 3D Scan Sequences?

For accurate human shapes, we capture a dense 3D scan for each subject to which
we fit a personalized 3D SMPL-X template mesh. However, 3D scanning does not
scale up for capturing human-object interaction sequences. This would produce
huge amounts of data, the processing of which would be a major undertaking.
Moreover, object tracking under occlusions would be still very challenging, as
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finding scan-to-model correspondences is a hard ill-posed problem. Instead, with
MoCap a minimum of 3 marker observations is enough for reliable object pose
estimation. The placement of many small markers on the objects means that we
can always estimate object pose. Using MoSh++ for the body, given a ground
truth body shape, produces accurate meshes that are on par with 3D scanning
but much more practical to capture. We follow therefore this practical and scal-
able approach; we use a high-end optical MoCap system (Sec. 3.1) and fit full
3D meshes to MoCap markers (Sec. 3.2) for both the human and the object.

S.4 Why not Capture RGB Images?

Capturing accurate human-object interactions while also capturing natural RGB
images is very challenging. Some recent datasets [4, 5] capture hand-only inter-
actions with objects and include RGB images, but the images capture only the
hand and not the whole body [4, 5] and are not fully natural due to visible in-
strumentation on the hand [4]. Please note that this latter point is fundamental.
Currently one must choose between accurate grasping, which requires instru-
mentation, or natural images, which reduces the accuracy of ground truth.

Both methods [4, 5] suffer from severe hand-object inter-penetrations. Garcia-
Hernando et al. [4] originally reconstruct a hand skeleton interacting with 4
object meshes, and their method was reported to have an average skeleton pen-
etration depth of 11.0± 8.9 mm (see Sec. 5.2 of [6]). Similarly, we compute the
surface penetration between MANO and the 3D object meshes for [5] and find
the mean to be 4.36 ± 0.94 mm. Although the hand inter-penetration of [5] is
not as severe as [4], it suffers from not having realistic contact with objects. In
Fig. S.1 we compare the contact “heatmaps” for [5] (left) and GRAB (right).
Note that for [5], the thumb and all fingertips are rarely in contact, whereas for
GRAB they are frequently in contact. The latter is much more realistic given
the central role of the thumb and fingertips in object manipulation. This points
to an important technical problem, without lowering the value of these works,
as they focus on a challenging application.

We conclude that state-of-the-art interaction methods, that also capture
RGB images, suffer from intense occlusions and penetrations along with non-
realistic contact between the hand and the objects. Such data is not good to
learn an accurate data-driven model of 3D interactions. In contrast, our “use”
grasps have only 3.25 ± 0.68 mm average surface penetration, which is signifi-
cantly lower than [4, 5], and realistic contact between the body and objects, while
containing more challenging scenarios, namely dexterous in-hand manipulation
and capture of the whole body instead of only the hand.

This is attributed to our precision-focused setup, that increases accuracy on
the expense of not capturing RGB images, due to the uniform and artificial
texture of the MoCap body suit and the 3D printed objects. We believe that
this is a sensible trade-off; one can use our accurate 3D mesh reconstructions to
learn a model of 3D interactions, and use it as a prior in future work to improve
methods like [4, 5] for the hand or the whole body.
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HO-3D dataset [5] GRAB dataset (ours)

Fig. S.1: Contact “heatmaps” for HO-3D [5] (left) and GRAB (right), for the
right hand. The hotter the color, the more frequently that hand part is in
contact with objects. During grasping and manipulation, the thumb finger and
all fingertips play a central role. This is evident with GRAB but not with [5].

S.5 Penetration Plots

In the main paper we describe the observed human-object mesh inter-penetration.
Due to space constraints, we report here the corresponding plots in Fig. S.2. We
evaluate the degree of penetration for “use” sequences, that pose the most realis-
tic occlusions and capture challenges. “Use” grasps have 3.25±0.68 mm average
penetration, which effectively corresponds to the missing soft-tissue deformation.
Please note that there is no model of the human body with articulated fingers
and face that captures such soft-tissue deformation with contact. In addition,
67% of “use” grasps have ≤ 3.5 mm penetration, 86% ≤ 4.0 mm, 96% ≤ 4.5 mm
and 99.9% has ≤ 5.8 mm.

S.6 Protocol Details

Here we provide details that were not crucial for the main manuscript (Sec 3.4).
We capture motions with 4 intents: “use”, “pass”, “lift”, and “off-hand pass”.
For each sequence we randomize the object position and pose on a resting table,
the height of which is also randomized between 75 cm and 120 cm to increase
motion variance. We capture the following intents:
“Use”: For the objects that have a clear everyday use (e.g. drinking from cup),
we ask the subject to naturally use them. In case of multiple use cases (e.g.
digital/analog photo camera) we capture multiple sequences. For objects without
a clear use (e.g. cylinder) the subject has to grasp them and inspect them.
“Pass”: The subject is asked to pass the object to a predefined direction, that
is randomized (e.g. bottom-left, top-right, etc), to increase motion variance.
“Lift”: The subject is asked to grasp the object, lift it stably in any natural way
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Fig. S.2: Penetration plots for “use” grasps. For each frame we store the max
(red), mean (green) and median (blue) vertex penetration. (Left): percentage
of frames (Y axis) below a varying penetration error (X axis). (Right): bar-plot
for number of frames (Y axis) with a specific (quantized for binning) penetration
(X axis). The mean penetration is 3.25 ± 0.68 mm.

they can imagine, then leave it on the table in any random pose, and repeated
this several times with re-grasping. This increases grasp variance, by encouraging
the exploration of contact configurations and relative hand-object orientations.
“Off-Hand pass”: As a form of bimanual manipulation, the subject grasps the
object with the off hand, passes it to the dominant hand, and uses it (see “use”).

We capture MoCap markers placed on the body, face and fingers, as well
as on the object (Sec 3.1 in paper). Additionally, we capture markers attached
to the floor and the table, for potential future use. All subjects gave informed
consent to share their motion data for research purposes.

S.7 Computing Contact

Here we provide some additional intuition to Sec. 3.3 and Fig. 4 (right). In
particular we explain how we deal with noise in the reconstructed moving meshes
to produce clean contact data.

Figure S.3 (left): Consider the illustrated example of a 3D cup. Its mesh
thickness is thin, i.e. it has an outer and inner surface that are different, yet close
to each other. In Fig. S.3 (top-left) the thumb and index fingers of a grasping
hand penetrate both the outer and inner surface. This is due to noise, fitting
errors, and because existing models do not model contact-dependent skin defor-
mations.

For these examples the actual contact area is the one on the outer object
surface. To annotate only this, following Sec. 3.3, we first compute all colliding
triangles and cluster them in connected “rings” (Fig. S.3, top-left). For each
“ring” we compute the corresponding penetrating hand areas (Fig. S.3, bottom).
The hand areas that contact the inner surface are a subset of the ones that
contact the outer one. Then, we remove (big red circles in Fig. S.3 bottom) the
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Fig. S.3: (Left): Annotating contact areas for a hand grasping a cup: (top-left)
“rings” of colliding triangles, color-coded for each finger, (bottom) penetrating
hand areas that correspond to each “ring”; the ones corresponding to the green
and purple vertices (red circled hand parts) penetrate the inner cup surface and
are ignored, (top-right) the final filtered “rings” and the enclosed vertices are
annotated as contact areas. The contact labels are binary; color is used here
only for visualization purposes. (Right): Contact labels can though be more
fine-grained, e.g. using the contacting hand parts or hand vertices. Here we see
an example of the former case. (top) Each color represents a contact area caused
by a different hand part. (bottom) Contact areas are shown also on the object
and unposed hand for clarity. Note that the size of contact areas is expanded
for illustration purposes.

purple and green groups, we keep only the remaining “rings”, and annotate the
vertices enclosed by them as contact vertices (Fig. S.3, top-right).

Figure S.3 (right): The above procedure gives binary contact annotations
(“contact” on “not in contact”). Contact labels, however, can be more fine-
grained, e.g. with the label of the corresponding hand part (Fig. S.3, right), or
even with the point on the 3D hand surface (Fig. S.4). For the former example,
we find the object vertices that are in contact, and for each one we find the
closest SMPL-X/MANO bone, and assign its ID as the contact label.

S.8 Adapting MoSh++

We adapt MoSh++ [9] (Sec. 3.2) for capturing the whole body (including the
hands and face). The human and object are tracked independently and on a
per-frame basis, for simplicity. We make two small changes to MoSh++. First
we use the ground-truth body shape, obtained from a 3D scan. Consequently,
we do not use MoSh++ to estimate body shape. Second, we extend MoSh++
to estimate the parameters of the SMPL-X body model. This means extending
it to capture facial pose and expression parameters. Additionally, we estimate
the rigid 6 DoF pose of the objects using their known shape and the detected
markers.
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Fig. S.4: (Right): Fine-grained contact labels. In contrast to the binary con-
tact labels of Fig. 4 (left) and Fig. 9 of the main manuscript, and the part-based
contact labels of Fig. S.3, here we show an example of much more fine-grained la-
bels. (left) A 3D hand-object grasp configuration. (middle) The object alone.
(right) The hand in canonical pose. We highlight different points on the 3D
surface of the inner hand with color gradients. The contact between the hand
and object define surface correspondences between them (shown as lines).

To adapt MoSh++ to capture faces, we need to tune the parameters of the
model. For this [9] follows a data-driven approach; they capture the SSM dataset
with an optical MoCap system synchronized with a 3D body scanner, and use the
scans for computing a reconstruction quality metric. However, SSM has markers
only on the main body, while also the fingers of the scans are very noisy.

Capturing such a dataset, with clear scan regions for both the body, the face
and all fingers, as well as synced MoCap for them, is too challenging. Instead, we
follow a more practical approach, and create a synthetic dataset by animating
SMPL-X and generating virtual markers on the moving meshes. To bridge the
domain gap, we simulate noise for marker position and visibility; we randomly
add 3D Gaussian noise with 1 mm variance in marker positions, as in [9], and
randomly drop up to 5 markers per frame.

Unfortunately, there is no existing dataset with rich SMPL-X sequences.
However, its model formulation is compatible to SMPL [8] for the body, FLAME
[7] for the face, and MANO [13] for the hands. Therefore, we resort to datasets
specific to each part to animate the body, face and hands. For the body, we employ
DFAUST [1] that captures 10 subjects performing 10 sequences each. We split the
subjects into 6 for training and 4 for a withheld test set. We compute personalized
SMPL-X mesh templates by registering the model to one scan per person as in
[13, 10], and pose their body according to the registrations of DFAUST. For the
hand, we employ the hand-only MANO model registrations of [13]. From the
1554 hand poses we hold out 155 for the test set and use the rest for training.
We then add hand motion to each body sequence by randomly choosing 15 hand
poses and interpolating between them. For the face, we employ sequences of
FLAME parameters from [3, 12]; the latter covers extreme facial expressions,
while the former has everyday speaking expressions. We randomly choose 100
sequences from each dataset, splitting them into 60 for the training set and 40
for the withheld test set.
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Table S.1: Evaluation of MoSh++ on the synthetic dataset. We compare the
vanilla [9] to our adapted version. For the first stage of MoSh++, Stage-I, we
report the distance of the latent marker placement compared to ground-truth
marker locations, and for the second stage of MoSh++, Stage-II, we report the
average vertex-to-vertex error between estimated and ground-truth meshes.

Mosh++
version

MoSh Stage-I MoSh Stage-II
mean ± std median mean ± std median

Vanila [9] 4.76 ± 1.03 4.55 5.59 ± 1.86 5.28

m
m

Our adapted 3.09 ± 0.55 2.80 4.86 ± 1.83 4.48

We use this dataset to set the weights following the approach in [9]. Table
S.1 compares a standard version of [9] with our adapted version on the synthetic
test set for both stages of MoSh++. For the first stage of MoSh++ (Stage-I)
we report the distance of the latent marker placement compared to ground-
truth marker locations in mm. For this stage we start from random marker
placement guesses in the 1-ring neighborhood of the ground-truth locations. We
repeat this three times with different random seeds for selecting 12 frames of
MoSh++; see [9]. For the second stage (Stage-II), we use the optimized latent
marker placements resulting from each random seed of the Stage-I and report
the average vertex-to-vertex error between estimated and ground-truth meshes
in mm. In each stage we choose the wights that minimizes the reported error. Our
adapted version shows a clear improvement, by fitting the whole body, hands
and face, with weights λ tuned on our synthetic dataset. In contrast [9] tunes
only the body weights on their SSM dataset, it fits the hands with empirical
weights, and does not fit the face.

S.9 GrabNet

To show that GRAB can be useful for machine learning applications, we train
on it a generative model to generate grasping poses for a 3D object, that we call
GrabNet. For this example application we focus only on right-hand grasps for
simplicity, but GRAB provides much richer data than this.

S.9.1 Data Preparation

We use only right hand data due to the large size of GRAB, but left hand poses
could also be mirrored to appear as right ones for data augmentation. In order to
select right-hand frames for training GrabNet we use the following rules. (i) The
right hand should be in contact. (ii) The left hand should not have any contact.
(iii) The object’s vertical position should be at least 5 mm different from its
initial one (i.e. it should be lifted from the resting table). (iv) The right thumb
and at least one more finger should be in contact. (v) A finger is considered a
contacting finger, when it is in contact with at least 50 object vertices. With
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these filters we make sure that we have only stable grasps with which to train
GrabNet.

To model arbitrary shapes, we use the basis point set [11] representation
BPSo for all our objects. For computational efficiency, we precompute BPSo

and load it from memory during training. We sample basis points in a sphere of
150 mm radius, that is big enough to cover our centroid-centered objects. We
empirically found 4096 basis points to be enough. We then compute the distances
from the basis points to our object meshes.

Out of our 51 objects, borrowed from [2], we hold out 4 objects for the val-
idation set (“apple”, “toothbrush”, “elephant” and “hand”), 6 objects for the
test set (“mug”, “wineglass”, “camera”, “binoculars”, “frying pan” and “tooth-
paste”), and use the remaining 41 objects for the training set.

The training, validation and test splits contain roughly 320k, 31k and 65k
data points, correspondingly.

To prepare the training data for RefineNet we add Gaussian noise to the
Ground Truth MANO parameters of the selected data for GrabNet. Since the
perturbation need to be minimal we empirically find N (µ = 0, σ2 = 0.2), N (µ =
0, σ2 = 0.004) , and N (µ = 0, σ2 = 0.05) for MANO finger joints rotation, root
rotation, and translation respectively.

S.9.2 Results: Success and Failure Cases

Figures S.6, S.7 and S.8 provide a wide variety of qualitative GrabNet results.
More specifically, they show 10 different grasps (rows) generated for 6 unseen
objects (columns). The three figures show three different viewpoints (one view
per figure) for the same grasp of the 10× 6 grid. We see that most grasps look
natural and plausible, as GrabNet is learned from high-quality GRAB captures.
More results with a rotating viewpoint are shown in the video on our website.

GrabNet can still generate some failure cases. These are mostly cases of pen-
etrating fingers; there are not many cases of contacting fingers that fly away
from the object. Penetrations are observed mostly for objects with thin parts
(cup handle, wine glass, bowl). We found the frying pan to be the most chal-
lenging object, due to its comparably big size along with its thin surface walls
and handle. This might be due to the sparse BPSo representation for 3D ob-
ject shapes capturing mostly their bigger parts. Furthermore, at the moment we
use a penetration and a contact term in the training loss of GrabNet as soft
constraints, since here we focus on a data-driven method. One could add an op-
timization stage to refine the regressed grasp with hard penetration and contact
constraints.

The results show the value of GRAB for training data-driven models, but also
point to room for improvement for GrabNet’s modeling and training scheme.

S.9.3 GrabNet Implementation Details

The architecture for GrabNet is shown in Fig. S.5. For CoarseNet, we concatenate
the object BPSo representation with MANO hand parameters as input to the
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encoder, and also concatenate it with the latent code as the input (condition)
to the decoder. The outputs of the decoder are MANO translation (γ ∈ R3) and
joint angles (θ ∈ R96) in the continuous 6-dimensional representation of [14].

Using our validation set, we found out that 16 dimensions for the latent space
results in generating better grasps. Qualitative results are provided in Fig S.6.

For RefineNet we take the output of the CoarseNet (MANO parameters) and
first compute the distances of MANO vertices to the object vertices. We then
pass the distances with the MANO parameters to the network. RefineNet refines
the input grasp through 3 iterations. The CoarseNet and RefineNet are trained
for 16 and 23 epochs respectively with the learning rate starting from 5e − 4,
decreasing on validation error plateau to 0.1 times, and early stopping after
8 epochs with no improvement in validation error. Both networks are trained
separately.

S.9.4 Filtering out Unreliable Turkers

As mentioned in the main paper (Sec. 4), along with ground-truth (GRAB)
and GrabNet-generated grasps, we pass to Turkers noisy grasps generated by
perturbing ground-truth ones. These noisy grasps are our test for spotting un-
reliable Turkers, that either select their answers randomly or misunderstand the
task. Specifically, we remove the ones that gave a rating of 3 or more (indicating
good realism) for at least 20% of these noisy grasps. In total we removed 54 out
of 170 Turkers.

S.9.5 Heatmaps for Various Intents and Fine-Grained Numbers

Similar to Sec 3.5 of the main manuscript, here Fig. S.9 provides additional
fine-grained numbers for in-contact parts of the body. Each row corresponds
to an intent in the GRAB dataset. For each intent, the right column shows
the contact percentage and “heatmap” for the right hand, left hand, and head
across all frames and relative to all body vertices. In the three left columns,
the “heatmaps” and percentages are relative to only each part’s vertices and for
only the frames for which these parts are in contact (left hand, right hand, and
head), for visualization purposes. For example, for the “use” sequences (second
row in Fig S.9), the right hand was in contact for 90.62% of all frames, and in
those contact frames the thumb fingertip was in contact for 99.88% of them.

S.10 Bias from MoCap Markers

A natural question arises - are subjects biased in their grasps by MoCap markers?
We empirically place more markers in areas less likely to be contacted, according
to object affordances. To account for potential occlusions, though, we have to
place some markers in other areas as well. For this reason, we still expect our
markers to be contacted.
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Our subjects did not complain about discomfort or bias, yet we need more
evidence for this. Apart from the analysis in the main manuscript (see Sec 3.5 and
Fig. 5), here we perform k-means clustering (k=20) on our grasps, and visualize
each cluster center, i.e. a grasping hand, and the grasped object. We observe that
several clusters (typically 3-6 out of 20) show that fingers do come in contact
with markers. Figure S.10 shows for 5 objects (rows) 3 representative contacting
clusters (columns). We believe this is good additional empirical evidence that
our 1.5 mm radius hemi-spherical markers cause no or minimal bias.

S.11 Influence of Contact Heuristic Thresholds

We use several heuristics to determine contact frames, see Sec. 3.3 in the main
manuscript. For the contact “heatmap” analysis we take all the contact frames
for which object is being manipulated, i.e. it is off the table. Because the heatmap
is integrated over many frames, small variations in the heuristics have little
impact on the contact patterns.

To show this empirically, we perform a sensitivity analysis by changing
our thresholds. Figure S.11 shows “heatmaps” for “use” sequences for several
setups, following the format of Fig. 5 of the main manuscript. The results verify
our hypothesis that the heuristics have minimal influence.
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Fig. S.5: GrabNet Architecture. For the encoder input, we concatenate the
BPS representation of the object with MANO parameters, while for decoder
input we concatenate it with a sample from latent space. The decoder gives the
MANO hand parameters which we pass to the MANO model to obtain the 3D
hand mesh.
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Fig. S.6: Visualization of 10 different grasps (rows) generated by GrabNet for
6 unseen objects (columns). Conditioned on the BPSo representation of unseen
3D object shapes, we sample from the learned 16 dimensional latent grasping
space Z of CoarseNet (see Fig. 8 of the paper). We then concatenate BPSo to
the Z sample, and pass them to the decoder of CoarseNet, that outputs the
coarse grasping MANO hand model parameters. We then pass the coarse grasps
to the RefineNet to get the final grasps. Some failure cases are highlighted with
red. Different viewpoint for the results of Fig. S.7, S.8.
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Fig. S.7: Visualization of 10 different grasps (rows) generated by GrabNet for
6 unseen objects (columns). Conditioned on the BPSo representation of unseen
3D object shapes, we sample from the learned 16 dimensional latent grasping
space Z of CoarseNet (see Fig. 8 of the paper). We then concatenate BPSo to
the Z sample, and pass them to the decoder of CoarseNet, that outputs the
coarse grasping MANO hand model parameters. We then pass the coarse grasps
to the RefineNet to get the final grasps. Some failure cases are highlighted with
red. Different viewpoint for the results of Fig. S.6, S.8.
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Fig. S.8: Visualization of 10 different grasps (rows) generated by GrabNet for
6 unseen objects (columns). Conditioned on the BPSo representation of unseen
3D object shapes, we sample from the learned 16 dimensional latent grasping
space Z of CoarseNet (see Fig. 8 of the paper). We then concatenate BPSo to
the Z sample, and pass them to the decoder of CoarseNet, that outputs the
coarse grasping MANO hand model parameters. We then pass the coarse grasps
to the RefineNet to get the final grasps. Some failure cases are highlighted with
red. Different viewpoint for the results of Fig. S.6, S.7.
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Fig. S.9: Contact “heatmaps” and percentages for all intents in GRAB, for
various body parts. Each row corresponds to an intent in the GRAB dataset.
For each intent, the right column shows the results for each part (right hand,
left hand, and head) across all frames and relative to all body vertices. In the
three left columns, the results are relative to only each part’s vertices and for
only frames for which these parts are in contact (left hand, right hand, and
head), for visualization purposes.
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Fig. S.10: Do subjects avoid markers? To answer this, we perform k-means
clustering (k=20) on our grasps, and visualize each cluster center, i.e. a grasping
MANO (green), and the grasped object (blue). We observe that several cluster
centers (columns) per object (rows) show that subjects contact MoCap markers
(red); here we show 3 clusters for 5 objects. For fingers that contact markers we
render only the vertices, to allow to see the markers (best viewed on screen).
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Fig. S.11: Sensitivity analysis for contact heuristics. We follow the format of
Fig. 5 of the main manuscript, and show “heatmaps” and contact likelihoods in
percentages % for a subset of “all” sequences with different setups (columns), as
indicated in the labels. The symbol H denotes the minimum difference between
the object’s vertical position from its initial one (resting on a table). The symbol
C denotes the minimum number of object vertices that we require to be in
contact with each finger. The figure shows that threshold choices have minimal
effect when integrated over many frames to create “heatmaps”.


