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Abstract. This paper considers the generic problem of dense alignment
between two images, whether they be two frames of a video, two widely
different views of a scene, two paintings depicting similar content, etc.
Whereas each such task is typically addressed with a domain-specific
solution, we show that a simple unsupervised approach performs surpris-
ingly well across a range of tasks. Our main insight is that parametric
and non-parametric alignment methods have complementary strengths.
We propose a two-stage process: first, a feature-based parametric coarse
alignment using one or more homographies, followed by non-parametric
fine pixel-wise alignment. Coarse alignment is performed using RANSAC
on off-the-shelf deep features. Fine alignment is learned in an unsuper-
vised way by a deep network which optimizes a standard structural
similarity metric (SSIM) between the two images, plus cycle-consistency.
Despite its simplicity, our method shows competitive results on a range
of tasks and datasets, including unsupervised optical flow on KITTI,
dense correspondences on Hpatches, two-view geometry estimation on
YFCC100M, localization on Aachen Day-Night, and, for the first time,
fine alignment of artworks on the Brughel dataset. Our code and data
are available at http://imagine.enpc.fr/~shenx/RANSAC-Flow/.
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1 Introduction

Dense image alignment (also known as image registration) is one of the funda-
mental vision problems underlying many standard tasks from panorama stitching
to optical flow. Classic work on image alignment can be broadly placed into
two camps: parametric and non-parametric. Parametric methods assume that
the two images are related by a global parametric transformation (e.g. affine,
homography, etc), and use robust approaches, like RANSAC, to estimate this
transformation. Non-parametric methods do not make any assumptions on the
type of transformation, and attempt to directly optimize some pixel agreement
metric (e.g. brightness constancy constraint in optical flow and stereo). How-
ever, both approaches have flaws: parametric methods fail (albeit gracefully) if
the parametric model is only an approximation for the true transform, while

http://imagine.enpc.fr/~shenx/RANSAC-Flow/


2 X. Shen et al.

Fig. 1: Overview of RANSAC-Flow. Stage 1: given a pair of images, we
compute sparse correspondences (using off-the-shelf deep features), use RANSAC
to estimate a homography, and warp second image using it. Stage 2: given two
coarsely aligned images, our self-supervised fine flow network generates flow
predictions in the matchable region. To compute further homographies, we can
remove matched correspondences, and iterate the process.

non-parametric methods have trouble dealing with large displacements and large
appearance changes (e.g. two photos taken at different times from different views).
It is natural, therefore, to consider a hybrid approach, combining the benefits of
parametric and non-parametric methods together.

In this paper, we propose RANSAC-flow, a two-stage approach integrating
parametric and non-parametric methods for generic dense image alignment.
Figure 1 shows an overview. In the first stage, a classic geometry-verification
method (RANSAC) is applied to a set of feature correspondences to obtain one
or more candidate coarse alignments. Our method is agnostic to the particular
choice of transformation(s) and features, but we’ve found that using multiple
homographies and off-the-shelf self-supervised deep features works quite well.
In the second non-parametric stage, we refine the alignment by predicting a
dense flow field for each of the candidate coarse transformations. This is achieved
by self-supervised training of a deep network to optimize a standard structural
similarity metric (SSIM) [85] between the pixels of the warped and the original
images, plus a cycle-consistency loss [93].

Despite its simplicity, the proposed approach turns out to be surprisingly
effective. The coarse alignment stage takes care of large-scale viewpoint and
appearance variations and, thanks to multiple homographies, is able to capture
a piecewise-planar approximation of the scene structure. The learned local flow
estimation stage is able to refine the alignment to the pixel level without relying
on the brightness constancy assumption. As a result, our method produces
competitive results across a wide range of different image alignment tasks, as
shown in Figure 2: (a) unsupervised optical flow estimation on KITTI [48]
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(a) Optical flow estimation. (b) Visual localization.

(c) 2-view geometry estimation. (d) Dense image alignment.

(e) Artwork alignment. (f) Texture transfer.

Fig. 2: RANSAC-Flow provides competitive results on a wide variety of tasks
and enables new challenging applications.

and Hpatches [5], (b) visual localization on Aachen Day-Night [69], (c) 2-
view geometry estimation on YFCC100M [79], (d) dense image alignment, and
applications to (e) detail alignment in artwork and (f) texture transfer. Our code
and data are available at http://imagine.enpc.fr/~shenx/RANSAC-Flow/.

2 Related Work

Feature-based image alignment. The classic approach to align images with
very different appearances is to use sparse local image features, such as SIFT [40],
which are designed to deal with large viewpoint and illumination differences as
well as clutter and occlusion. These features have to be used together with a
geometric regularization step to discard false matches. This is typically done
using RANSAC [18,58,6,8] to fit a simple geometric transformation (e.g. affine or
homography) [78]. Recently, many works proposed to learn better local features
[42,14,80,49,43,64]. Differentiable and trainable version of RANSAC have also
been developed [88,56,54,59].

Using mid-level features [76,29,28,30] instead of local keypoints, proved to
be beneficial for matching visual content across modalities, e.g. 3D models and
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paintings [3]. Recently, [73] learned deep mid-level features for matching across
different visual media (drawings, oil paintings, frescoes, sketches, etc), and used
them together with spatial verification to discover copied details in a dataset
of thousands of artworks. [66] used deep feature map correlations as input to a
regression network on synthetic image deformations to predict the parameters
of an affine or thin-plate spline deformation. Finally, transformer networks [26]
can also learn parametric alignment typically as a by-product of optimizing a
classification task.

Direct image alignment. Direct, or pixel-based, alignment has its roots in
classic optical flow methods, such as Lucas-Kanade [41], who solve for a dense
flow field between a pair of images under a brightness constancy assumption. The
main drawback is these methods tend to work only for very small displacements.
This has been partially addressed with hierarchical flow estimation [78], as well
as using local features in addition to pixels to increase robustness [9,62,4,22].
However, all such methods are still limited to aligning very similar images, where
the brightness constancy assumption mostly holds. SIFT-Flow [38] was an early
method that aimed at expanding optical flow-style approaches for matching
pairs of images across physically distinct, and visually different scenes (and later
generalized to joint image set alignment using cycle consistency [92]). Some
approaches such as SCV [11] and MODS [50], were proposed to grow matches
around initial warping. In the deep era, [39] showed that ConvNet activation
features can be used for correspondence, achieving similar performance to SIFT-
Flow. [12] proposed to learn matches with a Correspondence Contrastive loss,
producing semi-dense matches. [67] introduced the idea of using 4D convolutions
on the feature correlations to learn to filter neighbour consensus. Note that these
latter works target semantic correspondences, whereas we focus on the case when
all images depict the same physical scene.

Deep Flow methods. Deep networks can be trained to predict optical
flow and to be robust to drastic appearance changes, but require adapted loss
and architectures. Flows can be learned in a completely supervised way using
synthetic data, e.g. in [15,23], but transfer to real data remains a difficult problem.
Unsupervised training through reconstruction has been proposed in several
works, targeting brightness consistency [2,84], gradient consistency [60] or high
SSIM [27,87]. This idea of learning correspondences through reconstruction has
been applied to video, reconstructing colors [82], predicting weights for frame
reconstruction [32,34], or directly optimizing feature consistency in the warped
images [83]. Several papers have introduced cycle consistency as an additional
supervisory signal for image alignment [93,83]. Recently, feature correlation
became a key part of several architectures [23,77] aiming at predicting dense
flows. Particularly relevant to us is the approach of [47] which includes a feature
correlation layer in a U-Net [68] architecture to improve flow resolution. A similar
approach has been used in [36] which predicts dense correspondences. Recently,
Glu-Net [55] learns dense correspondences by investigating the combined use of
global and local correlation layers.
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Hybrid parametric/non-parametric image alignment. Classic “plane
+ parallax” approaches [71,33,25,86] aimed to combine parametric and non-
parametric alignment by first estimating a homography (plane) and then consid-
ering the violations from that homography (parallax). Similar ideas also appeared
in stereo, e.g. model-based stereo [13]. Recently, [87,10] proposed to learn optical
flow by jointly optimizing with depth and ego-motion for stereo videos. Our
RANSAC-Flow is also related to the methods designed for geometric multi-model
fitting, such as RPA [45], T-linkage [46] and Progressive-X [7].

3 Method

Our two-stage RANSAC-Flow method is illustrated in Figure 1. In this section,
we describe the coarse alignment stage, the fine alignment stage, and how they
can be iterated to use multiple homographies.

3.1 Coarse alignment by feature-based RANSAC

Our coarse parametric alignment is performed using RANSAC to fit a homography
on a set of candidate sparse correspondences between the source and target images.
We use off-the-shelf deep features (conv4 layer of a ResNet-50 network) to obtain
these correspondences. We experimented with both pre-trained ImageNet features
as well as features learned via MoCo self-supervision [20], and obtained similar
results. We found it was crucial to perform feature matching at different scales.
We fixed the aspect ratio of each image and extracted features at seven scales:
0.5, 0.6, 0.88, 1, 1.33, 1.66 and 2. Matches that were not symmetrically consistent
were discarded. The estimated homography is applied to the source image and
the result is given together with the target image as input to our fine alignment.
We report coarse-only baselines in Experiments section for both features as
“ImageNet [21]+H ” and “MoCo [20]+H ”.

3.2 Fine alignment by local flow prediction

Given a source image Is and a target image It which have already been coarsely
aligned, we want to predict a fine flow Fs→t between them. We write Fs→t as
the mapping function associated to the flow Fs→t . Since we only expect the fine
alignment to work in image regions where the homography is a good approx-
imation of the deformation, we predict a matchability mask Ms→t , indicating
which correspondences are valid. In the following, we first present our objective
function, then how and why we optimize it using a self-supervised deep network.

Objective function. Our goal is to find a flow that warps the source into an
image similar to the target. We formalize this by writing an objective function
composed of three parts: a reconstruction loss Lrec, a matchability loss Lm and
a cycle-consistency loss Lc. Given the pair of images(Is, It) the total loss is:
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L(Is, It) = Lrec(Is, It) + λLm(Is, It) + µLc(Is, It) (1)

with λ and µ hyper-parameters weighting the contribution of the matchability
and cycle loss. We detail these three components in the following paragraphs.
Each loss is defined pixel-wise.

Matchability loss. Our matchability mask can be seen as pixel-wise weights for
the reconstruction and cycle-consistency losses. These losses will thus encourage
the matchability to be zero. To counteract this effect, the matchability loss
encourages the matchability mask to be close to one. Since the matchabiliy
should be consistent between images, we define the cycle-consistent matchability
at position (x,y) in It, (x’,y’) in Is with (x, y) = Fs→t(x

′, y′) as:

M cycle
t (x, y) = Mt→s(x, y)Ms→t(x

′, y′) (2)

where Ms→t is the matchability predicted from source to target and Mt→s the one
predicted from target to source. M cycle

t will be high only if both the matchability
of the corresponding pixels in the source and target are high. The matchability
loss encourages this cycle-consistent matchability to be close to 1:

Lm(Is, It) =
∑

(x,y)∈It

|M cycle
t (x, y)− 1| (3)

Note that directly encouraging the matchability to be 1 leads to similar quantita-
tive results, but using the cycle consistent matchability helps to identify regions
that are not matchable in the qualitative results.

Reconstruction loss. Reconstruction is the main term of our objective and is based
on the idea that the source image warped with the predicted flow Fs→t should
be aligned to the target image It. We use the structural similarity (SSIM) [85] as
a robust similarity measure:

LSSIM
rec (Is, It) =

∑
(x,y)∈It

M cycle
t (x, y) (1− SSIM (Is(x

′, y′), It(x, y))) (4)

Cycle consistency loss. We enforce cycle consistency of the flow for 2-cycles:

Lc(Is, It) =
∑

(x,y)∈It

M cycle
t (x, y)‖(x′, y′),Ft→s(x, y)‖2 (5)

Optimization with self-supervised network. Optimizing objective functions
similar to the one described above is common to most optical flow approaches.
However, this is known to be an extremely difficult task because of the highly non-
convex nature of the objective which typically has many bad local minima. Recent
works on the priors implicit within deep neural network architectures [74,81]
suggest that optimizing the flow as the output of a neural network might overcome
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these problems. Unfortunately, our objective is still too complex to obtain good
result from optimization on just a single image pair. We thus built a larger
database of image pairs on which we optimize the neural network parameters
in a self-supervised way (i.e. without need for any annotations). The network
could then be fine-tuned on the test image pair itself, but we have found that
this single-pair optimization leads to unstable results. However, if several pairs
similar to the test pair are available (i.e. we have access to the entire test set),
the network can be fine-tuned on this test set which leads to some improvement,
as can be seen in our experiments where we systematically report our results
with and without fine-tuning.

To collect image pairs for the network training, we simply sample pairs of
images representing the same scene and applied our coarse matching procedure.
If it led to enough inliers, we added the pair to our training image set, if not
we discarded it. For all the experiments, we sampled image pairs from the
MegaDepth [37] scenes, using 20, 000 image pairs from 100 scenes for training
and 500 pairs from 30 different scenes for validation.

3.3 Multiple Homographies

The overall procedure described so far provides good results on image pairs where
a single homography serves as a good (if not perfect) approximation of the overall
transformation (e.g. planar scenes). This is, however, not the case for many image
pairs with strong 3D effects or large objects displacements. To address this, we
iterate our alignment algorithm to let it discover more homography candidates.
At each iteration, we remove feature correspondences that were inliers for the
previous homographies as well as from locations inside the previously predicted
matchability masks, and recompute RANSAC again. We stop the procedure
when not enough candidate correspondences remain. The full resulting flow is
obtained by simply aggregating the estimated flows from each iteration together.
The number of homographies considered depends on the input image pairs. For
example, the average number of homographies we obtain from pairs for two-
view geometry estimation in the YFCC100M [79] dataset is about five. While
more complex combinations could be considered, this simple approach provides
surprisingly robust results. In our experiments, we quantitatively validate the
benefits of using these multiple homographies (“multi-H”).

3.4 Architecture and Implementation Details

In our fine-alignment network, the input source and target images (Is, It) are
first processed separately by a fully-convolutional feature extractor which outputs
two feature maps (fs, ft). Each feature from the source image is then compared
to features in a (2K + 1)× (2K + 1) square neighbourhood in the target image
using cosine similarity, similar to [15,23]. This results in a W ×H × (2K + 1)2

similarity tensor s defined by:

s(i, j, (m+K + 1)(n+K + 1)) =
fs(i, j).ft(i−m, j − n)

‖fs(i, j)‖‖ft(i−m, j − n)‖
(6)



8 X. Shen et al.

(a) Input (b) Predicted (c) Ground truth (d) Error map

Fig. 3: Visual results on KITTI [48]. We show the predicted flow, ground-truth
flow and the error map in (b), (c) and (d) respectively.

where m,n ∈ [−K, ...,K] and “.” denotes dot product. In all our experiments, we
used K = 3. This similarity tensor is taken as input by two fully-convolutional
prediction networks which predict flow and matchability.

Our feature extractor is similar to the Conv3 feature extractor in ResNet-
18 [21] but with minor modifications: the first 7× 7 convolutional kernel of the
network is replaced by a 3 × 3 kernel without stride and all the max-poolings
and strided-convolution are replaced by their anti-aliasing versions proposed
in [89]. These changes aim at reducing the loss of spatial resolution in the
network, the output feature map being 1/8th of the resolution of the input
images. The flow and matchability prediction networks are fully convolutional
networks composed of three Conv+Relu+BN blocks (Convolution, Relu activation
and Batch Normalization [24]) with 512, 256, 128 filters respectively and a final
convolutional layer. The output flows and matchability are bilinearly upsampled
to the resolution of the input images. Note we tried using up-convolutions, but
this slightly decreased the performance while increasing the memory footprint.

We use Kornia [65] for homography warping. All images were resized so that
their minimum dimension is 480 pixels. The hyper-parameters of our objective
are set to λ = 0.01, µ = 1. We provide a study of λ and µ in the supplementary
material. The entire fine alignment model is learned from random initialization
using the Adam optimizer [31] with a learning rate of 2e-4 and momentum terms
β1, β2 set to 0.5, 0.999. We trained only with Lrec for the first 150 epochs then
added Lc for another 50 epochs and finally trained with all the losses (Equation 1)
for the final 50 epochs. We use a mini-batch size of 16 for all the experiments. The
whole training converged in approximately 30 hours using a single GPU Geforce
GTX 1080 Ti for the 20k image pairs from the MegaDepth. For fine-tuning on
the target dataset, we used a learning rate of 2e-4 for another 10K iterations.

4 Experiments

In this section, we evaluate our approach in terms of resulting correspondences
(Sec 4.1), downstream tasks (Sec 4.2), as well as applications to texture transfer
and artwork analysis (Sec 4.3). We provide more visual results at http://

imagine.enpc.fr/~shenx/RANSAC-Flow/.

4.1 Direct correspondences evaluation

Optical flow. We evaluate the quality of our dense flow on the KITTI 2015
flow [48] and Hpatches [5] datasets and report the results in Table 1.

http://imagine.enpc.fr/~shenx/RANSAC-Flow/
http://imagine.enpc.fr/~shenx/RANSAC-Flow/
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Table 1: (a) Dense correspondences evaluation on KITTI 2015 [48] and
Hpatches [5]. We report the AEE (Average Endpoint Error) and Fl-all (Ra-
tio of pixels where flow estimate is wrong by both 3 pixels and ≥ 5%). The
computational time for EpicFlow and FlowField is 16s and 23s respectively, while
our approach takes 4s. (b) Sparse correspondences evaluation on RobotCar [44,35]
and MegaDepth [37]. We report the accuracy over all annotated alignments for
pixel error smaller than d pixels. All the images are resized to have minimum
dimension 480 pixels.

Method
KITTI 2015 [48] Hpatches [5]

Train (AEE ↓) Test (Fl-all ↓) Viewpoint (AEE ↓)
noc all noc all 1 2 3 4 5

Supervised Approaches
FlowNet2 [23,47,87] 4.93 10.06 6.94 10.41 5.99 15.55 17.09 22.13 30.68

PWC-Net [77,47] - 10.35 6.12 9.60 4.43 11.44 15.47 20.17 28.30
Rocco [66,47] - - - - 9.59 18.55 21.15 27.83 35.19
DGC-Net [47] - - - - 1.55 5.53 8.98 11.66 16.70

DGC-Nc-Net [36] - - - - 1.24 4.25 8.21 9.71 13.35
Glu-Net [55] 6.86 9.79 - - 0.59 4.05 7.64 9.82 14.89

Weakly Supervised Approaches
ImageNet [21] + H 13.49 17.26 - - 1.33 3.34 3.71 6.04 10.07

Cao et al. [10] 4.19 5.13 - - - - - - -
Unsupervised Approaches

Moco [20] + H 13.86 17.60 - - 1.47 2.96 3.43 7.73 10.53
DeepMatching [63,47] - - - - 5.84 4.63 12.43 12.17 22.55

DSTFlow [61] 6.96 16.79 - 39 - - - - -
GeoNet [87] 6.77 10.81 - - - - - - -

EpicFlow [62,87] 4.45 9.57 16.69 26.29 - - - - -
FlowField [4] - - 10.98 19.80 - - - - -

Moco Feature
Ours 4.15 12.63 14.60 26.16 0.52 2.13 4.83 5.13 6.36

w/o fine-tuning 4.67 13.51 - - 0.53 2.04 2.32 6.54 6.79
w/o Multi-H 7.04 14.02 - - - - - - -

ImageNet Feature
Ours 3.87 12.48 14.12 25.76 0.51 2.36 2.91 4.41 5.12

w/o fine-tuning 4.55 13.51 - - 0.51 2.37 2.64 4.49 5.16
w/o Multi-H 6.74 13.77 - - - - - - -

(a) Dense correspondences evaluation on KITTI 2015 [48] and Hpatches [5].

Method
RobotCar [44,35] MegaDepth [37]
Acc(≤ d pixels ↑) Acc(≤ d pixels ↑)

1 3 5 1 3 5
ImageNet [21]+H 1.03 8.12 19.21 3.49 23.48 43.94

Moco [20]+H 1.08 8.77 20.05 3.70 25.12 45.45
SIFT-Flow [38] 1.12 8.13 16.45 8.70 12.19 13.30
NcNet [67]+H 0.81 7.13 16.93 1.98 14.47 32.80
DGC-Net [47] 1.19 9.35 20.17 3.55 20.33 34.28
Glu-Net [55] 2.16 16.77 33.38 25.2 51.0 56.8

Moco Feature
Ours 2.10 16.07 31.66 53.47 83.45 86.81

w/o Multi-H 2.06 15.77 31.05 50.65 78.34 81.59
w/o Fine-tuning 2.09 15.94 31.61 52.60 83.46 86.80

ImageNet Feature
Ours 2.10 16.09 31.80 53.15 83.34 86.74

w/o Multi-H 2.06 15.84 31.30 50.08 77.84 81.08
w/o Fine-tuning 2.09 16.00 31.90 52.80 83.31 86.64

(b) Sparse correspondences evaluation on the Robot-
Car [44,35] and MegaDepth [37].

On KITTI [48], we evaluated both on the training and the test set since other
approaches report results on one or the other. Note we could not perform an
ablation study on the test set since the number of submissions to the online
server is strictly limited. We report results both on non-occluded (noc) and all
regions. Our results are on par with state of the art unsupervised and weakly
supervised results on non-occluded regions, outperforming for example the recent
approach [10,55]. Unsurprisingly, our method is much weaker on occluded regions
since our algorithm is not designed specifically for optical flow performances
and has no reason to handle occluded regions in a good way. We find that the
largest errors are actually in occluded regions and image boundaries (Figure 3).
Interestingly, our ablations show that the multiple homographies is critical to
our results even if the input images appear quite similar.

For completeness, we also present results on the Hpatches [5]. Note that
Hpatches dataset is synthetically created by applying homographies to a set of
real images, which would suggest that our coarse alignment alone should be
enough. However, in practice, we have found that, due to the lack of feature
correspondences, adding the fine flow network significantly boosts the results
compared to using only our coarse approach.

While these results show that our approach is reasonable, these datasets only
contain very similar and almost aligned pairs while the main goal of our approach
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(a) Source (b) Target (c) Coarse align. (d) Fine align. (e) Flows

Fig. 4: Visual results on RobotCar [44] (1st row), Megadepth [37] (2nd row) and
Hpatches [5] (3rd row) using one homography. We show the source and target in
(a), (b). The overlapped images after coarse and fine alignment are in (c) and (d)
with zoomed details. The coarse (top) and fine (bottom) flows are in (e).

is to be able to handle challenging cases with strong viewpoint and appearance
variations.

Sparse correspondences. Dense correspondence annotations are typically
not available for extreme viewpoint and imaging condition variations. We thus
evaluated our results on sparse correspondences available on the RobotCar [44,35]
and MegaDepth [37] datasets. In Robotcar, we evaluated on the correspondences
provided by [35], which leads to approximately 340M correspondences. The task
is especially challenging since the images correspond to different and challenging
conditions (dawn, dusk, night, etc.) and most of the correspondences are on
texture-less region such as roads where the reconstruction objective provides
very little information. However, viewpoints in RobotCar are still very similar.
To test our method on pairs of images with very different viewpoints, we used
pairs of images from scenes of the MegaDepth [37] dataset that we didn’t use for
training and validation. Note that no real ground truth is available and we use
as reference the result of SfM reconstructions. More precisely, we take 3D points
as correspondences and randomly sample 1 600 pairs of images that shared more
than 30 points, which results in approximately 367K correspondences.

On both datasets, we evaluated several baselines which provide dense cor-
respondences and were designed to handle large viewpoint changes, inluding
SIFT-Flow [38], variants of NcNet [67], DGC-Net [47] and the very recent, con-
currently developed Glu-Net [55]. In the results provided in Table 1, we can see
that our approach is comparable to Glu-Net on RobotCar [44,35] but largely
improves performances on MegeDepth [37]. We believe this is because by the
large viewpoint variations on MegeDepth is better handled by our method. This
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Table 2: (a) Two-view geometric estimation on YFCC100M [79,88]. (b) Visual
Localization on Aachen night-time [69,70].

Method mAP @5◦ mAP@10◦ mAP@20◦

SIFT [40] 46.83 68.03 80.58
Contextdesc [42] 47.68 69.55 84.30
Superpoint [14] 30.50 50.83 67.85
PointCN [52,88] 47.98 - -

PointNet++ [57,88] 46.23 - -
N3Net [54,88] 49.13 - -
DFE [59,88] 49.45 - -
OANet [88] 52.18 - -

Moco Feature
Ours 64.88 73.31 81.56

w/o multi-H 61.10 70.50 79.24
w/o fine-tuning 63.48 72.93 81.59

ImageNet Feature
Ous 62.45 70.84 78.99

w/o multi-H 59.90 68.8 77.31
w/o fine-tuning 62.10 70.78 79.07

(a) Two-view geometry, YFCC100M [79]

Method 0.5m,2◦ 1m,5◦ 5m,10◦

Upright RootSIFT [40] 36.7 54.1 72.5
DenseSfM [69] 39.8 60.2 84.7

HAN + HN++ [49,51] 39.8 61.2 77.6
Superpoint [14] 42.8 57.1 75.5

DELF [53] 39.8 61.2 85.7
D2-net [16] 44.9 66.3 88.8
R2D2 [64] 45.9 66.3 88.8

Moco Feature
Ours 44.9 68.4 88.8

w/o Multi-H 42.9 68.4 88.8
w/o Fine-tuning 41.8 68.4 88.8

ImageNet Feature
Ous 44.9 68.4 88.8

w/o Multi-H 43.9 66.3 88.8
w/o Fine-tuning 44.9 68.4 88.8

(b) Localization, Aachen night-time [69,70]

(a) Source (b) Target (c) Texture transfer

Fig. 5: Texture transfer : (a) source, (b) target and (c) texture transferred result.

qualitative difference between the datasets can be seen in the visual results in
Figure 4. Note that we can clearly see the effect of fine flows on the zoomed
details.

4.2 Evaluation for downstream tasks.

Given the limitations of the correspondence benchmarks discussed in the previous
paragraph, and to demonstrate the practical interest of our results, we now
evaluate our correspondences on two standard geometry estimation benchmarks
where many results from competing approaches exist. Note that competing
approaches typically use only sparse matches for these tasks, and being able to
perform them using dense correspondences is a demonstration of the strength
and originality of our method.

Two-view geometry estimation. Given a pair of views of the same scene,
two-view geometry estimation aims at recovering their relative pose. To validate
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(a) Source (b) Coarse align. (c) Fine align. (d) Animation

Fig. 6: Aligning a group of Internet images from the Medici Fountain, similar
to [75]. We show the source images (a), the average image after coarse (b) and
fine alignment (c). The animation (view with Acrobat Reader) is in (d).

our approach, we follow the standard setup of [88] evaluating on 4× 1000 image
pairs for 4 scenes from YFCC100M [79] dataset and reporting mAP for different
thresholds on the angular differences between ground truth and predicted vectors
for both rotation and translation as the error metric. For each image pair, we
use the flow we predict in regions with high matchability (> 0.95) to estimate
an essential matrix with RANSAC and the 5-point algorithm [19]. To avoid
correspondences in the sky, we used the pre-trained the segmentation network
provided in [90] to remove them. While this require some supervision, this is
reasonable since most of the baselines we compare to have been trained in a
supervised way. As can be seen in Table 2, our method outperforms all the
baselines by a large margin including the recent OANet [88] method which is
trained with ground truth calibration of cameras. Also note that using multiple
homographies consistently boosts the performance of our method.

Once the relative pose of the cameras has been estimated, our correspondences
can be used to perform stereo reconstruction from the image pair as illustrated
in Figure 2(c) and in the project webpage. Note that contrary to many stereo
reconstruction methods, we can use two very different input images.

Day-Night Visual Localization. Another task we performed is visual local-
ization. We evaluate on the local feature challenge of the Visual Localization
benchmark [69,70]. For each of the 98 night-time images contained in the dataset,
up to 20 relevant day-time images with known camera poses are given. We
followed evaluation protocol from [69] and first compute image matching for a
list of image pairs and then give them as input to COLMAP [72] that provides a
localisation estimation for the queries. To limit the number of correspondences we
use only correspondences on a sparse set of keypoints using the Superpoint [14].
Our results are reported in Table 2(b) and are on par with state of the art results.

4.3 Applications

One of the most exciting aspect of our approach is that it enables new applications
based on the fine alignment of historical, internet or artistic images.
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(a) Inputs (b) W/o align. (c) Coarse align. (d) Fine align. (e) Flows

Fig. 7: Aligning pairs of similar artworks from the Brueghel [1]: We show the pairs
in (a). The average images without alignment, after coarse and fine alignment
are in (b), (c) and (d). The coarse (top) and fine (bottom) flows are in (e).

Texture transfer. Our approach can be used to transfer texture between
images. In Figure 5 and 2(f) we show results using historical and modern images
from the LTLL dataset [17]. We use the pre-trained segmentation network of [91],
and transfer the texture from the source to the target building regions.

Internet images alignment. As visualized in Figures 2(d) and 6, we can
align sets of internet images, similar to [75]. Even if our image set is not precisely
the same, much more details can be seen in the average of our fine-aligned images.

Artwork analysis. Finding and matching near-duplicate patterns is an
important problem for art historians. Computationally, it is difficult because the
duplicate appearance can be very different [73]. In Figure 7, we show visual results
of aligning different versions of artworks from the Brueghel dataset [73] with our
coarse and fine alignment. We can clearly see that a simple homography is not
sufficient and that the fine alignment improves results by identifying complex
displacements. The fine flow can thus be used to provide insights on Brueghel’s
copy process. Indeed, we found that some artworks were copied in a spatially
consistent way, while in others, different parts of the picture were not aligned
with each other. This can be clearly seen in the flows in Figure 9, which are
either very regular or very discontinuous. The same process can be applied to
more than a single pair of images, as illustrated in Figure 2(e) and 8 where we
align together many similar details identified by [73]. Visualizing the succession
of the finely aligned images allows to identify their differences.
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(a) Source (b) [73] (c) Coarse align. (d) Fine align. (e) Animation

Fig. 8: Aligning details discovered by [73]: (a) sources; average from [73] (b), with
coarse (c) and fine (d) alignment; (e) animation (view with Acrobat Reader).

Fig. 9: Analyzing copy process from flow. The flow is smooth from the middle to
the right one, while it is irregular from the middle to the left one.

5 Conclusion

We have introduced a new unsupervised method for generic dense image alignment
which performs well on a wide range of tasks. Our main insight is to combine
the advantages of parametric and non-parametric methods in a two-stage ap-
proach and to use multiple homography estimations as initializations for fine flow
prediction. We also demonstrated it allows new applications for artwork analysis.
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