
Pixel-Pair Occlusion Relationship Map
(P2ORM): Formulation, Inference & Application

Xuchong Qiu1, Yang Xiao1, Chaohui Wang1*, Renaud Marlet1,2

1 LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, ESIEE Paris, France
2 valeo.ai, Paris, France *Corresponding author: chaohui.wang@univ-eiffel.fr

Abstract. We formalize concepts around geometric occlusion in 2D im-
ages (i.e., ignoring semantics), and propose a novel unified formulation
of both occlusion boundaries and occlusion orientations via a pixel-pair
occlusion relation. The former provides a way to generate large-scale ac-
curate occlusion datasets while, based on the latter, we propose a novel
method for task-independent pixel-level occlusion relationship estimation
from single images. Experiments on a variety of datasets demonstrate
that our method outperforms existing ones on this task. To further il-
lustrate the value of our formulation, we also propose a new depth map
refinement method that consistently improve the performance of state-
of-the-art monocular depth estimation methods.

Keywords: occlusion relation, occlusion boundary, depth refinement

1 Introduction

Occlusions are ubiquitous in 2D images (cf. Fig. 1(a)) and constitute a major ob-
stacle to address scene understanding rigorously and efficiently. Besides the joint
treatment of occlusion when developing techniques for specific tasks [40, 19, 54,
36, 35, 37, 18], task-independent occlusion reasoning [42, 24, 49, 53, 51, 30] offers
valuable occlusion-related features for high-level scene understanding tasks.

In this work, we are interested in one most valuable but challenging scenario
of task-independent occlusion reasoning where the input is a single image and the
output is the corresponding pixel-level occlusion relationship in the whole image

(a) (b) (c) (d)

Fig. 1. Illustration of the proposed methods: (a) input image, (b) estimated horizontal
occlusion relationship (a part of P2ORM) where red (resp. blue) pixels occlude (resp.
are occluded by) their right-hand pixel, (c) depth estimation obtained by a state-of-
the-art method [40], (d) our depth refinement based on occlusion relationships.
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domain (cf. Fig. 1(b)); the goal is to capture both the localization and orientation
of the occlusion boundaries, similar to previous work such as [49, 53, 51, 30]. In
this context, informative cues are missing compared to other usual scenarios of
occlusion reasoning, in particular semantics [38], stereo geometry [62] and inter-
frame motion [10]. Moreover, the additional estimation of orientation further
increases the difficulty compared to usual occlusion boundary estimation [2, 14,
10]. Despite of recent progress achieved via deep learning [53, 51, 30], the study
on pixel-level occlusion relationship in monocular images is still relatively limited
and the state-of-the-art performance is still lagging.

Here, we formalize concepts around geometric occlusion in 2D images (i.e.,
ignoring semantics), and propose a unified formulation, called Pixel-Pair Occlu-
sion Relationship Map (P2ORM), that captures both localization and orienta-
tion information of occlusion boundaries. Our representation simplifies the de-
velopment of estimation methods, compared to previous works [49, 53, 51, 30]: a
common ResNet-based [13] U-Net [45] outperforms carefully-crafted state-of-the-
art architectures on both indoor and outdoor datasets, with either low-quality
or high-quality ground truth. Besides, thanks to the modularity regarding pixel-
level classification methods, better classifiers can be adopted to further improve
the performance of our method. In addition, P2ORM can be easily used in scene
understanding tasks to increase their performance. As an illustration, we develop
a depth map refinement module based on P2ORM for monocular depth estima-
tion (Fig. 1(c-d)). Experiments demonstrate that it significantly and consistently
sharpens the edges of depth maps generated by a wide range of methods [8, 28,
22, 25, 9, 27, 20, 40, 58], including method targeted at sharp edges [40].

Moreover, our representation derives from a 3D geometry study that involves
a first-order approximation of the observed 3D scene, offering a way to create
high-quality occlusion annotations from a depth map with given or estimated
surface normals. This allows the automated generation of large-scale, accurate
datasets from synthetic data [26] (possibly with domain adaptation [61] for more
realistic images) or from laser scanners [21]. Compared to manually annotated
dataset that is commonly used [42], we generate a high-quality synthetic dataset
of that is two orders of magnitude larger.

Our contributions are: (1) a formalization of geometric occlusion in 2D im-
ages; (2) a new formulation capturing occlusion relationship at pixel-pair level,
from which usual boundaries and orientations can be computed; (3) an occlu-
sion estimation method that outperforms the state-of-the-art on several datasets;
(4) the illustration of the relevance of this formulation with an application to
depth map refinement that consistently improves the performance of state-of-the-
art monocular depth estimation methods. We will release our code and datasets.

Related Work

Task-independent occlusion relationship in monocular images has long
been studied due to the importance of occlusion reasoning in scene understand-
ing. Early work often estimates occlusion relationship between simplified 2D
models of the underlying 3D scene, such as blocks world [44], line drawings [48,
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5] and 2.1-D sketches [34]. Likewise, [17] estimates figure/ground labels using an
estimated 3D scene layout. Another approach combines contour/junction struc-
ture and local shapes using a Conditional Random Field (CRF) to represent and
estimate figure/ground assignment [42]. Likewise, [49] learns border ownership
cues and impose a border ownership structure with structured random forests.
Specific devices, e.g., with multi-flash imaging [41], have also been developed.

Recently, an important representation was used in several deep models to
estimate occlusion relationship [53, 51, 30]: a pixel-level binary map encoding
the localization of the occlusion boundary and an angle representing the oriented
occlusion direction, indicating where the foreground lies w.r.t. the pixel.

This theme is also closely related to occlusion boundary detection, which
ignores orientation. Existing methods often estimate occlusion boundaries from
images sequences. To name a few, [2] detects T-junctions in space-time as a
strong cue to estimate occlusion boundaries; [46] adds relative motion cues to
detect occlusion boundaries based on an initial edge detector [31]; [10] further
exploits both spatial and temporal contextual information in video sequences.
Also, [59, 60, 29, 1] detect object boundaries between specific semantic classes.

Monocular depth estimation is extremely valuable for geometric scene
understanding, but very challenging due to its high ill-posedness. Yet significant
progress has been made with the development of deep learning and large labeled
datasets. Multi-scale networks better explore the global image context [8, 7, 22].
Depth estimation also is converted into an ordinal regression task to increase
accuracy [9, 23]. Other approaches propose a better regression loss [20] or the
inclusion of geometric constraints from stereo image pairs [15, 11].

Depth map refinement is often treated as a post-processing step, using
CRFs [52, 57, 16, 43]: an initial depth prediction is regularized based on pixel-
wise and pairwise energy terms depending on various guidance signals. These
methods now underperform state-of-the-art deep-learning-based methods with-
out refinement [20, 58] while being more computationally expensive. Recently,
[39] predicts image displacement fields to sharpen initial depth predictions.

2 Formalizing and representing geometric occlusion

In this section, we provide formal definitions and representations of occlusion in
single images based on scene geometry information. It enables the generation of
accurate datasets and the development of an efficient inference method.

We consider a camera located at C observing the surface S of a 3D scene.
Without loss of generality, we assume C = 0. We note L a ray from C, and LX
the ray from C through 3D point X. For any surface patch S on S intersecting L,
we note L ∩ S the closest intersection point to C, and ‖L ∩ S‖ it distance to C.

Approximating occlusion at order 0. Given two surface patches S1, S2 on
S and a ray L (cf. Fig. 2(a)), we say that S1 occludes S2 along L, noted S1 ≺L S2

(meaning S1 comes before S2 along L), iff L intersects both S1 and S2, and the
intersection X1 = L ∩ S1 is closer to C than X2 = L ∩ S2, i.e., ‖X1‖ < ‖X2‖.
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S1 ≺L S2

(a) surface occlusion

p ≺ q
(b) pixel occlusion

p ≺0 q

(c) order-0 occlusion

p⊀ q ∧ p� q

(d) order-0 wrong occlusion
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p ≺1 q

(e) order-1 occlusion

p⊀1q ∧ p�1q

(f) salient angle

p⊀1q ∧ p�1q

(g) reentrant angle

p⊀1q ∧ p�1q

(h) small step

Fig. 2. Occlusion configurations (solid lines represent real or tangent surfaces, dotted
lines are imaginary lines): (a) S1 occludes S2 along L; (b) p occludes q as Sp occludes Sq

along Lp; (c) p occludes q at order 0 as ‖Xq‖−‖Xp‖≥ δ > 0, cf. Eq. (1); (d) no occlusion
despite order-0 occlusion as Πp, Πq do not occlude one another; (e) p occludes q at
order 1 as tangent plane Πp occludes tangent plane Πq in the [Lp, Lq] cone, cf. Eq. (2);
no occlusion for a (f) salient or (g) reentrant angle between tangent planes Πp, Πq, cf.
Eq. (2); (h) tangent plane occlusion superseded by order-0 non-occlusion, cf. Eq. (2).

Now given neighbor pixels p, q ∈P, that are also 3D points in the image plane,
we say that p occludes q, noted p ≺ q, iff there are surface patches Sp, Sq on S
containing respectively Xp, Xq such that Sp occludes Sq along Lp, (cf. Fig. 2(b)).
Assuming Lp ∩Sq exists and ‖Lp ∩Sq‖ can be approximated by ‖Lq ∩Sq‖ =
‖Xq‖, it leads to a common definition that we qualify as “order-0”. We say that
p occludes q at order 0, noted p ≺0 q iff Xq is deeper than Xp (cf. Fig. 2(c)):

p ≺0 q iff ‖Xp‖ < ‖Xq‖. (1)

The depth here is w.r.t. the camera center (dp = ‖Xp‖), not to the image plane.
This definition is constructive (can be tested) and the relation is antisymmetric.
The case of a minimum margin ‖Xq‖ − ‖Xp‖ ≥ δ > 0 is considered below.

However, when looking at the same continuous surface patch Sp = Sq, the
incidence angles of Lp, Lq on Sp, Sq may be such that order-0 occlusion is satisfied
whereas there is no actual occlusion, as Sq does not pass behind Sp (cf. Fig. 2(d)).
This yields many false positives, e.g., we observing planar surfaces such as walls.

Approximating occlusion at order 1. To address this issue, we consider an
order-1 approximation of the surface. We assume the scene surface S is regular
enough for a normal nX to be defined at every point X on S. For any pixel p,
we consider Πp the tangent plane at Xp with normal np = nXp

. Then to assess
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if p occludes q at order 1, noted p ≺1 q, we approximate locally Sp by Πp and
Sq by Πq, and study the relative occlusion of Πp and Πq, cf. Fig. 2(d-h).

Looking at a planar surface as in Fig. 2(d), we now have p≺0q as ‖Xp‖< ‖Xq‖,
but p⊀ 1q because Πp does not occlude Πq, thus defeating the false positive at
order 0. A question, however, is on which ray L to test surface occlusion, cf.
Fig. 2(a). If we choose L=Lp, cf. Fig. 2(b), only Πq (approximating Sq) is ac-
tually considered, which is less robust and can lead to inconsistencies due to
the asymmetry. If we choose L = L(p+q)/2, which passes through an imaginary
middle pixel (p+ q)/2, the formulation is symmetrical but there are issues when
Πp, Πq form a sharp edge (salient or reentrant) lying between Lp and Lq, cf.
Fig. 2(f-g), which is a common situation in man-made environments. Indeed, the
occlusion status then depends on the edge shape and location w.r.t. L(p+q)/2,
which is little satisfactory. Besides, such declared occlusions are false positives.

To solve this problem, we define order-1 occlusion p≺1q as a situation where
Πp occludes Πq along all rays L between Lp and Lq, which can simply be tested
as ‖Xp‖< ‖Πq ∩Lp‖ and ‖Xq‖> ‖Πp ∩Lq‖. However, it raises yet another issue:
there are cases where ‖Xp‖< ‖Xq‖, thus p≺0q, and yet ‖Πp ∩L‖> ‖Πq ∩L‖ for
all L between Lp and Lq, implying the inverse occlusion p�1q, cf. Fig. 2(h). This
small-step configuration exists ubiquitously (e.g., book on a table, frame on a
wall) but does not correspond to an actual occlusion. To prevent this paradoxical
situation and also to introduce some robustness, as normals can be wrong due
to estimation errors, we actually define order-1 occlusion so that it also implies
order-0 occlusion. In the end, we say that p occlude q at order 1 iff (i) p occludes
q at order 0, (ii) Πp occludes Πq along all rays L between Lp and Lq, i.e.,

p ≺1 q iff ‖Xp‖< ‖Xq‖ ∧ ‖Xp‖< ‖Πq ∩ Lp‖ ∧ ‖Xq‖> ‖Πp ∩ Lq‖. (2)

Discretized occlusion. In practice, we resort to a discrete formulation where
p, q are neighboring pixels in image P and Lp passes through the center of p. We
note Np the immediate neighbors of p, considering either only the 4 horizontal
and vertical neighbors N 4

p , or including also in N 8
p the 4 diagonal pixels.

As distances (depths) dp = ‖Xp‖ can only be measured approximately, we
require a minimum discontinuity threshold δ > 0 to test any depth difference.
A condition dp<dq thus translates as dq − dp≥ δ. However, to treat equally all
pairs of neighboring pixels p, q, the margin δ has to be relative to the pixel dis-
tance ‖p− q‖, which can be 1 or

√
2 due to the diagonal neighbors. Extending the

first-order approximation, the relation dp<dq is thus actually tested as dpq >δ
where dpq

def
= (dq − dp)/‖q − p‖, making δ a pixel-wise depth increasing rate.

Occlusion relationship and occlusion boundary. Most of the literature
on occlusion in images focuses on occlusion boundaries, that are imaginary lines
separating locally a foreground (fg) from a background (bg). A problem is that
they are often materialized as rasterized, 1-pixel-wide contours, that are not
well defined, cf. Fig. 3(a). The fact is that vectorized occlusion delineations are
not generally available in existing datasets, except for handmade annotations,
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(a) oriented occlusion boundary (b) oriented occlusion boundary (c) P2ORM: pixel-pair occlusion
(red curve, fg-on-left convention) with per-pixel orientation relation (arrows from occluder to

and boundary rasterization information (from fg to bg) occludee, one color per orientation)

fg

bg

fg

bg

fg

bg

(d) oriented boundary based on (e) line-segment-based boundary (f) line-segment-based boundary
annotated line segments (green), pixels oriented from line orient. pixels orient. as average direction
yielding a different rasterization (alt. orientation representation) of (here) bg neighbors (mauve)

fg

bg

fg

bg

fg

bg

(g) segmentation into layers (h) fg/bg occlusion relationship: (i) oriented border pixels (here fg)
with depth ordering, occlusion with all fg (yellow)→ bg (blue) from fg boundary pixel to average

at relative fg/bg pixel boundary arrows between neighbor pixels direction of all bg neighbors

Fig. 3. Some representations of occlusion and oriented occlusion.

that are coarse as they are made with line segments, with endpoints at discrete
positions, only approximating the actual, ideal curve, cf. Fig. 3(d). An alternative
representation [42, 17, 53] considers occlusion boundaries at the border pixels of
two relative fg/bg segments (regions) rather than on a separating line (Fig. 3(g)).

Inspired by this pixel-border representation but departing from the notion
of fg/bg segments, we model occlusion at pixel-level between a fg and a bg
pixel, yielding pixel-pair occclusion relationship maps (P2ORM) at image level,
cf. Fig. 3(c). An important advantage is that it allows the generation of relatively
reliable occlusion information from depth maps, cf. Eq. (2), assuming the depth
maps are accurate enough, e.g., generated from synthetic scenes or obtained by
high-end depth sensors. Together with photometric data, this occlusion informa-
tion can then be used as ground truth to train an occlusion relationship estimator
from images (see Section 3). Besides, it can model more occlusion configurations,
i.e., when a pixel is both occluder and occludee (of different neighbor pixels).

Still, to enable comparison with existing methods, we provide a way to con-
struct traditional boundaries from P2ORM. Boundary-based methods represent
occlusion as a mask (ωp)p∈P such that ωp = 1 if pixel p is on an occlusion bound-
ary, and ωp = 0 otherwise, with associated predicate ω̇p

def
= (ωp = 1). We say that

a pixel p is on an occlusion boundary, noted ω̇p, iff it is an occluder or occludee:

ω̇p iff ∃q ∈ Np, p ≺ q ∨ p � q. (3)
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This defines a 2-pixel-wide boundary, illustrated as the grey region in Fig. 3(c).
As we actually estimate occlusion probabilities rather than certain occlusions,
this width may be thinned by thresholding or non-maximum suppression (NMS).

Occlusion relationship and oriented occlusion boundary. Related to the
notions of segment-level occlusion relationship, figure/ground representation and
boundary ownership [42, 53], occlusion boundaries may be oriented to indicate
which side is fg vs bg, cf. Fig. 3(b). It is generally modeled as the direction of the
tangent to the boundary, conventionally oriented [17] (fg on the left, Fig. 3(a)).
In practice, the boundary is modeled with line segments (Fig. 3(d)), whose ori-
entation θ is transferred to their rasterized pixels [53] (Fig. 3(e)). Inaccuracies
matter little here as the angle is only used to identify a boundary side.

The occlusion border formulation, based on fg/bg pixels (Fig. 3(g)), implicitly
captures orientation information: from each fg pixel to each neighbor bg pixel
(Fig. 3(h)). So does our modeling (Fig. 3(c)). To compare with boundary-based
approaches, we define a notion of pixel occlusion orientation (that could apply
to occlusion borders too (Fig. 3(i)), or even boundaries (Fig. 3(f)). We say that a
pixel p is oriented as the sum vp of the unitary directions of occluded or occluding
neighboring pixels q, with angle θp = atan2(uyp, u

x
p)− π

2 where up = vp/‖vp‖ and

vp =
∑
q∈Np

(1(p ≺ q)− 1(p � q)) q − p
‖q − p‖

. (4)

3 Pixel-pair occlusion relationship estimation

Modeling the pixel-pair occlusion relation. The occlusion relation is a
binary property that is antisymmetric: p ≺ q ⇒ q ⊀ p. Hence, to model the oc-
clusion relationship of neighbor pair pq, we use a random variable ωp,q with only
three possible values r∈{−1, 0, 1} representing respectively: p� q (p is occluded
by q), p⊀ q ∧ p � q (no occlusion between p and q), and p≺ q (p occludes q).

Since ωp,q =−ωq,p, a single variable per pair is enough. We assume a fixed
total ordering < on pixels (e.g., lexicographic order on image coordinates) and
note ωpq = ωqp = if p < q then ωp,q else ωq,p. We also define ωpqr = P(ωpq = r).

Concretely, we consider 4 inclinations, horizontal, vertical, diagonal, antidi-
agonal, with canonical displacements h= (1, 0), v= (0, 1), d= (1, 1), a= (1,−1),
and we call Qi = {pq | p, q ∈P, q= p+ i} the set of pixel pairs with inclination
i∈I4 = {h, v, d, a}. For the the 4-connectivity, we only consider i ∈ I2 = {h, v}.

Estimating the occlusion relation. For occlusion relationship estimation, we
adopt a segmentation approach: we classify each valid pixel pair pq by scoring
its 3 possible statuses r∈{−1, 0, 1}, from which we extract estimated probabil-
ities ω̂pqr. The final classification map is obtained as ω̂pq = argmaxr ω̂pqr.

Our architecture is sketched on Fig. 4 (left). The P2ORM estimator (named
P2ORNet) takes an RGB image as input, and outputs its pixel-pair occlusion re-
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Fig. 4. Overview of our method. Left: a encoder-decoder structure followed by softmax
takes an RGB image as input and outputs 4 classification maps (ωi

p) where each pixel
p in a map for inclination i actually represents a pair of pixels pq with q= p+ i. The
map ωi

pq =ωi
p = r classifies p as occluded (r=−1), not involved in occlusion (r= 0)

or occluding (r= 1), with probability ωi
pqr. (If N =N 4, only 2 inclination maps are

generated.) Colors blue, white and red represent respectively r=−1, 0 or 1. The top
two images presents occlusion relationships along inclinations horizontal (i= h) and
vertical (i= v); the bottom two, along inclinations diagonal (i= d) and antidiagonal
(i= a). Right: A direct use of the occlusion relationship for depth map refinement.

lationship map for the different inclinations. We use a ResNet-based [13] U-Net-
like auto-encoder with skip-connections [45], cf. supplementary material (SM).
It must be noted that this architecture is strikingly simple compared to more
complex problem-specific architectures that have been proposed in the past [53,
51, 30]. Besides, our approach is not specifically bound to U-Net or ResNet; in
the future, we may benefit from improvements in general segmentation methods.

We train our model with a class-balanced cross-entropy loss [56], taking into
account the low probability for a pair pq to be labeled 1 (p occludes q) or −1 (q
occludes p), given that most pixel pairs do not feature any occlusion. Our global
loss Loccrel is a sum of |I| losses for each kind of pair inclination i∈I, averaged
over the number of pairs |Qi| to balance each task i∈I:

Loccrel =
∑
i∈I

1

|Qi|
∑
pq∈Qi

r∈{−1,0,1}

−αr ωpqr log(ω̂pqr). (5)

where ω̂pqr is the estimated probability that pair pq has occlusion status r,
ωpqr = 1(ωpq = r) where ωpq is the ground truth (GT) occlusion status of pair
pq, αr = 1(r= 0)+α1(r 6= 0) and α accounts for the disparity in label frequency.

From probabilistic occlusion relations to occlusion boundaries. As dis-
cussed with Eq. (3), occlusion boundaries can be generated from an occlusion re-
lation. In case the relation is available with probabilities, as for an estimated ω̂pqr,
we define a probabilistic variant ωp ∈ [0, 1]: ω̂p = 1

|Np|
∑
q∈Np

(ω̂pq,−1 + ω̂pq,1).
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As proposed in [6] and performed in many other methods, we operate a non-
maximum suppression to get thinner boundaries. The final occlusion boundary
map is given by thresholding NMS((ωp)p∈P) with a probability, e.g., 0.5.

Boundary orientations can then be generated as defined in Eq. (4). Given our
representation, it has the following simpler formulation: vp =

∑
q∈Np

ω̂pq
q−p
‖q−p‖ .

4 Application to depth map refinement

Given an image, a depth map (d̃p)p∈P estimated by some method, and an occlu-
sion relationship (ω̂p,p+i)p∈P,i∈I as estimated in Sect. 3, we produce a refined,
more accurate depth map (dp)p∈P with sharper edges. To this end, we propose a

U-Net architecture [45] (Fig. 4 (right)), named DRNet, where (d̃p)p∈P and the 8
maps ((ω̂p,p+i)p∈P)i∈I∪(−I) are stacked as a multi-channel input of the network.

As a pre-processing, we first use the GT depth map (dgt
p )p∈P and normals

(ngt
p )p∈P to compute the ground-truth occlusion relationship (p≺gt q)p∈P, q∈Np .

We then train the network via the following loss:

Lrefine = Locconsist + λLregul (6)

Locconsist =
1

N

∑
p∈P

∑
q∈N 8

p

B(log δ, log dpq) if p ≺gt q and dpq < δ
B(log δ, logDpq) if p 6≺gt q and Dpq ≥ δ
0 otherwise

(7)

Lregul =
1

|P|
∑
p∈P

(
B(log d̃p, log dp) + ‖∇ log d̃p −∇ log dp‖2

)
(8)

where B is the berHu loss [22], δ is the depth discontinuity threshold introduced
in Section 2, N is the number of pixels p having a non-zero contribution to
Locconsist, and Dpq is the order-1 depth difference at mid-pixel (p + q)/2, i.e.,
Dpq = min(dpq,mpq) where mpq = (‖Πq ∩L(p+q)/2‖−‖Πp ∩L(p+q)/2‖)/‖q− p‖ is
the signed distance between tangent planes Πp, Πq along L(p+q)/2.
Locconsist penalizes refined depths dp that are inconsistent with GT occlusion

relationship ≺gt, i.e., when p occludes q in the GT but not in the refinement, or
when p does not occlude q in the GT but does it in the refinement. Lregul penalizes
differences between the rough input depth and the refined output depth, which
makes refined depths conditioned on input depths. The total loss Lrefine tends to
change depths only close to occlusion boundaries, preventing excessive drifts.

To provide occlusion information that has the same size as the depth map, as
pixel-pair information is not perfectly aligned on the pixel grid, we turn pixel-pair
data (ωp,p+i)p∈P,i∈I,p+i∈P into a pixelwise information: for a given inclination
i∈I, we define ωip = ωp,p+i. Thus, e.g., if p ≺ p+ i, then ωip = 1 and ωip+i = −1.

At test time, given the estimated occlusion relationships, we use NMS to
sharpen depth edges. For this, we first generate pixelwise occlusion boundaries
from the estimated P2ORM (ω̂p,p+i)p∈P,i∈I , pass them through NMS [6] and do
thresholding to get a binary occlusion boundary map (ωp)p∈P where ωp ∈{0, 1}.
We then thin the estimated directional maps (ωip)p∈P by setting ωip ← 0 if ωp = 0.
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Table 1. Used and created occlusion datasets. (a) We only use 500 scenes and 20 images
per scene (not all 500M images). (b) Training on NYUv2-OR uses all InteriorNet-OR
images adapted using [61] with the 795 training images of NYUv2 as target domain.
(c) Training on iBims-1-OR uses all InteriorNet-OR images w/o domain adaptation.

Dataset InteriorNet-OR BSDS ownership NYUv2-OR iBim-1-OR

Origin [26] [42] [33] [21]

Type synthetic real real real

Scene indoor outdoor indoor indoor

Resolution 640× 480 481× 321 640× 480 640× 480

Depth synthetic N/A Kinect v1 laser scanner

Normals synthetic N/A N/A computed [4]

Relation annot.
ours from

depth
and normals

ours from
manual

fig./ground [42]

ours from
boundaries
and depth

ours from
depth

and normals

Boundary annot. from relation manual [42] manual [39] from relation

Orient. annot. from relation manual [53] manual (ours) from relation

Annot. quality high low medium high

# train img. (orig.) 10,000(a) 100 795(b) 0(c)

# train images 10,000(a) 100 10,000(b) 10,000(c)

# testing images 0 100 654 100

α in Loccrel N/A 50 10 10

5 Experiments

Oriented occlusion boundary estimation. Because of the originality of our
approach, there is no other method to directly compare with. Yet to demonstrate
its significance in task-independent occlusion reasoning, we translate our rela-
tion maps into oriented occlusion boundaries (cf. Sect. 3) to compare with SRF-
OCC [49], DOC-DMLFOV [53], DOC-HED [53], DOOBNet [51]1, OFNet [30]1.

To disentangle the respective contributions of the P2ORM formulation and
the network architecture, we also evaluate a “baseline” variant of our architec-
ture, that relies on the usual paradigm of estimating separately boundaries and
orientations [53, 51, 30]: we replace the last layer of our pixel-pair classifier by two
separate heads, one for classifying the boundary and the other one for regressing
the orientation, and we use the same loss as [51, 30].

We evaluate on 3 datasets: BSDS ownership [42], NYUv2-OR, iBims-1-OR
(cf. Tab. 1). We keep the original training and testing data of BSDS. NYUv2-
OR is tested on a subset of NYUv2 [33] with occlusion boundaries from [39] and

1 As DOOBNet and OFNet are coded in Caffe, in order to have an unified platform for
experimenting them on new datasets, we carefully re-implemented them in PyTorch
(following the Caffe code). We could not reproduce exactly the same quantitative
values provided in the original papers (ODS and OIS metrics are a bit less while AP
is a bit better), probably due to some intrinsic differences between frameworks Caffe
and PyTorch, however, the difference is very small (less than 0.03, cf. Tab. 2).
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(a) (b) (c) (d)

Fig. 5. iBims-1-OR: (a) RGB images, (b) GT depth (invalid is black), (c) provided
“distinct depth transitions” [21], (d) our finer and more complete occlusion boundaries.

Table 2. Oriented occlusion boundary estimation. *Our re-implementation.

Method BSDS ownership NYUv2-OR iBims-1-OR
Metric ODS OIS AP ODS OIS AP ODS OIS AP

SRF-OCC [49] .419 .448 .337 - - - - - -
DOC-DMLFOV [53] .463 .491 .369 - - - - - -
DOC-HED [53] .522 .545 .428 - - - - - -
DOOBNet [51] .555 .570 .440 - - - - - -
OFNet [30] .583 .607 .501 - - - - - -

DOOBNet* .529 .543 .433 .343 .370 .263 .421 .440 312
OFNet* .553 .577 .520 .402 .431 .342 .488 .513 .432

baseline .571 .605 .524 .396 .428 .343 .482 .507 .431
ours (4-connectivity) .590 .612 .512 .500 .522 .477 .575 .599 .508
ours (8-connectivity) .607 .632 .598 .520 .540 .497 .581 .603 .525

our labeled orientation. iBims-1-OR is tested on iBims-1 [21] augmented with
occlusion ground truth we generated automatically (cf. Sect. 2 and SM). As il-
lustrated on Fig. 5, this new accurate ground truth is much more complete than
the “distinct depth transitions” offered by iBims-1 [21], that are first detected
on depth maps with [6], then manually selected. For training, a subset of Interi-
orNet [26] is used for NYUv2-OR and iBims-1-OR. For NYUv2-OR, because of
the domain gap between sharp InteriorNet images and blurry NYUv2 images,
the InteriorNet images are furthermore adapted with [61] using NYUv2 training
images (see SM for the ablation study related to domain adaption).

We use the same protocol as [51, 30] to compute 3 standard evaluation met-
rics, based on the Occlusion-Precision-Recall graph (OPR): F-measure with best
fixed occlusion probability threshold over the all dataset (ODS), F-measure with
best occlusion probability threshold for each image (OIS), and average precision
over all occlusion probability thresholds (AP). Recall (R) is the proportion of
correct boundary detections, while Precision (P) is the proportion of pixels with
correct occlusion orientation w.r.t. all pixels detected as occlusion boundary.
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(a) (b) (c) (d)

Fig. 6. Occlusion estimation on BSDS ownership dataset: (a) input RGB image,
(b) ground-truth occlusion orientation, (c) OFNet estimation [30], (d) our estimation.
green: correct boundary and orientation; red: correct boundary, incorrect orientation;
blue: missed boundaries; gray: incorrect boundaries.

Qualitative results are shown in Fig. 6, while Table 2 summarizes quantita-
tive results. Our baseline is on par with the state-of-the-art on the standard
BSDS ownership benchmark as well as on the two new datasets, hinting that
complex specific architectures maybe buy little as a common ResNet-based U-
Net is at least as efficient. More importantly, our method with 8-connectivity
outperforms existing methods on all metrics by a large margin (up to 15 points),
demonstrating the significance of our formulation on higher-quality annotations,
as opposed to BSDS whose lower quality levels up performances. It could also be
an illustration that classification is often superior to regression [32] as it does not
average ambiguities. Lastly, the 4-connectivity variant shows that the ablation
of diagonal neighbors decreases the performance, thus assessing the relevance of
8-connectivity. (See SM for more results and ablation studies.)

Depth map refinement. To assess our refinement approach, we compare with
[39], which is the current state-of-the-art for depth refinement on boundaries.

We evaluate based on depth maps estimated by methods that offer results
on depth-edge metrics: [8, 22, 9, 40, 20, 58] on NYUv2, and [8, 28, 25, 22, 40, 27]
on iBims-1. We train our network on InteriorNet-OR for ground truth, with
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Fig. 7. Gain in edge quality after depth refinement for metrics εacc (left) and εcomp

(right) on NYUv2 (top) for respectively [8, 22, 40, 9, 20, 58] and on iBimis-1 (bottom)
for [8, 22, 40, 27, 28, 25]: metric on input depth maps (blue), after refining with [39]
(orange), and after our refinement (green). Lower metric value is better.

input depth maps to refine estimated by SharpNet [40]. For a fair comparison,
we follow the evaluation protocol of [39]. To assess general depth accuracy, we
measure: mean absolute relative error (rel), mean log10 error (log10), Root Mean
Squared linear Error (RMSE(lin)), Root Mean Squared log Error (RMSE(log)),
and accuracy under threshold (σi< 1.25i)i=1,2,3. For depth-edge, following [21],
we measure the accuracy εacc and completion εcomp of predicted boundaries.

Fig. 7 summarizes quantitative results. We significantly improve edge metrics
εacc, εcomp on NYUv2 and iBims-1, systematically outperforming [39] and show-
ing consistency across the two different datasets. Not shown on the figure (see
SM), the differences on general metrics after refinement are negligible (< 1%),
i.e., we improve sharpness without degrading the overall depth. Fig. 8 illustrates
the refinement on depth maps estimated by SharpNet [40]. We also outperform
many methods based on image intensity [50, 12, 3, 55, 47] (see SM), showing the
superiority of P2ORM for depth refinement w.r.t. image intensity.

In an extensive variant study (see SM), we experiment with possible alterna-
tives: adding as input in the architecture (1) the original image, (2) the normal
map, (3) the binary edges; (4) adding an extra loss term Lgtdepth that regularizes
on the ground truth depths rather than on the estimated depth, or substituting
Lgtdepth (5) for Locconsist or (6) for Lregul; using (7) dpq only, or (8) Dpq only in
Eq. (8). The alternative proposed here performs the best.
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(a) (b) (c) (d)

Fig. 8. Depth refinement: (a) input RGB image from iBims-1, (b) ground truth depth,
(c) SharpNet depth prediction [40], (d) our refined depth.

6 Conclusion

In this paper, we propose a new representation of occlusion relationship based on
pixel pairs and design a simple network architecture to estimate it. Translating
our results into standard occlusion boundaries for comparison, we significantly
outperform the state-of-the-art for both occlusion boundary and oriented occlu-
sion boundary estimation. To illustrate the potential of our representation, we
also propose a depth map refinement model that exploits our estimated occlu-
sion relationships. It also consistently outperforms the state-of-the-art regarding
depth edge sharpness, without degrading accuracy in the rest of the depth im-
age. These results are made possible thanks to a new method to automatically
generate accurate occlusion relationship labels from depth maps, at a large scale.

Acknowledgements. We thank Yuming Du and Michael Ramamonjisoa for
helpful discussions and for offering their GT annotations of occlusion boundaries
for a large part of NYUv2, which we completed (NYUv2-OC++) [39]. This work
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