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1 Overview

In this supplementary document, we present additional results to complement
the main paper. Firstly, we provide the detailed configurations and parameters
of the proposed methods. Secondly, the quantitative ablation results, the result
on real world images and the comparisons of model size and performance are
added to verify the superiority of the facial rendered priors and proposed Spatial
Attention Mechanism. Thirdly, the reconstructed rendered faces of large pose
variations and occlusion are also presented here to show the stability and superior
performance of the face reconstruction. Lastly, more qualitative comparisons
with the state-of-the-art algorithms are added in the supplementary.

2 Results on Real-World Images

Quantitative and qualitative results: For real-world LR images, we provide
the quantitative analysis on 500 LR faces from the WiderFace (x4) dataset using
two no-reference image criteria (Perception Image Quality (PIQE) and Natural-
ness Image Quality (NIQE)). The results are sorted in Table 1 (the higher of
criteria, the worse of the image quality). These results demonstrate that the
proposed 3D priors boost the performance even in the real-world conditions by
capturing the good visual quality of facial components and restoring large pose
variations and partial occlusions. We add some visual comparisons shown in
Figure 1 to illustrate the effectiveness of our 3D priors on real-world faces.

Position deviation of rendered 3D faces: We conduct the pixel-offset
experiments on 32x32 input images (x4 scale) for the CelebA dataset to analyze
the accuracy and the robustness to the position deviation of inaccurate 3D priors.
We vertically shift the pixels of rendered 3D face priors from one pixel to twenty
pixels. The quantitative results (PSNR) are listed as: 0 pixel [29.69dB]; 1 pixel
[29.53dB]; 2 pixels [29.32dB]; 5 pixels [29.08dB]; 10 pixels [29.05dB]; 20 pixels
[29.03dB]. The performance of the inaccurate face priors also behaves better
even for 10 pixels-offset than without using the 3D facial priors (28.92dB).

∗ indicates the corresponding author.
† these authors contributed equally to this work.
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Table 1. Quantitative results (PIQE and NIQE) with different configurations. 3D
denotes the 3D rendered structure priors; ↓ means that the lower of criteria, the better
of the image quality.

Criteria Bicubic VDSR VDSR+3D Ours

NIQE ↓ 14.69 14.38 14.17 14.15

PIQE ↓ 41.65 45.92 34.86 33.64

3 Network Architectures

The proposed network consists of four branches: 1. Feature Extraction branch
uses a series of convolutional layers to extract the features of the priors. 2. Spatial
Attention branch employs SFT layers to well incorporate the facial rendered
priors. 3.Residual Channel Attention explores the knowledge and correlations
between the channels. 4.HR branch is to reconstruct HR images. Table 2 lists
the detailed configuration of the proposed method for the 4× scale factor.

4 Ablation Studies

Quantitative Results with Different Ablation Configurations: As shown
in Table 3, each block boosts the accuracy of baseline algorithms: the average
performance improvement stemming from 3D facial priors and from Spatial At-
tention Mechanism are 1.6db and 0.57db, respectively.

Advantage of 3D facial structure priors: To verify the advantage of 3D
facial structure priors in terms of the convergence and accuracy, three differ-
ent configurations are designed: basic methods (i.e., SRCNN and VDSR); basic
methods incorporating 3D facial priors (i.e., SRCNN+3D and VDSR+3D); the
proposed method using the Spatial Attention Module and 3D priors (SAM3D).
The validation accuracy curve of each configuration along the epochs is plotted
to show the effectiveness of each block. The priors are easy to insert into any net-
work. They only marginally increase the number of parameters, but significantly
improve the accuracy and convergence of the algorithms as shown in Figure 2.

5 Model Size and Running Time

We evaluate the proposed method and state-of-the-art super-resolution methods
on the same server with an Intel Xeon W-2123 CPU and an NVIDIA TITAN X
GPU. Figure 3 (a) shows comparisons of model size and PSNR performance on
the CelebA dataset with ×8 magnification factor. Our proposed SAM3D as well
as VDSR+3D, embedded with 3D priors, is more lightweight while still achieving
the best performance even compared with the recent state-of-the-art SR methods
(e.g., RCAN and RDN) and face priors based SR methods (e.g., FSRNet and
PSRFAN). In addition, as shown in Figure 3 (b), our proposed method Spatial
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Table 2. Detailed configurarion of the proposed network for the 4 × scale factor.

Block name Input Output (Size,Channel,Stride) Repeated Block Number

LR images Conv0 (3,64,1) 1

Feature

Extraction

Priors CondNet (1,128,1)/ReLU;

1

CondNet CondNet1 (1,128,1)/ReLU;

CondNet1 CondNet2 (1,128,1)/ReLU;

CondNet2 CondNet3 (1,32,1)

Spatial

Attention

Block

Conv0 and

CondNet3
SFT Layer 1

(1,32,1)/Relu

(1,64,1)

(1,32,1)/Relu

(1,64,1)

8

SFT Layer 1 Conv1 (3,64,1)

Conv1 SFT Layer 2

(1,32,1)/Relu

(1,64,1)

(1,32,1)/Relu

(1,64,1)

SFT Layer 2 Conv2 8 (3,64,1)

Conv2 8 SFT Layer 3

(1,32,1)/Relu

(1,64,1)

(1,32,1)/Relu

(1,64,1)

Residual

Channel

Attention

Block

SFT Layer 3 Conv3
(3,64,1)/Relu

(3,64,1)

32

Conv3 CA layer32

(1,64/16,1)/Relu

(1,64,1)/Relu

Sigmoid

CA layer32 Conv4 (3,64,1)

HR

Branch

Conv4 Up1 upsampling(x2)

1

Up1 Conv5 (3,64,1)/Relu

Conv5 Up2 upsampling(x2)

Up2 Conv6 (3,64,1)/Relu

Conv6 Conv7 (3,64,1)/Relu

Conv7 Conv8 (3,3,1)

Attention Module incorporating 3D priors (SAM3D) and VDSR+3D improves
PSNR for scale factor ×8 on the dataset CelebA in comparison to the state-
of-the-art methods. Our methods outperform the other approaches by a large
margin while maintaining comparable running times to face SR methods with
2D priors. Our test running time includes the time required for ResNet-50.
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Table 3. Quantitative results (PSNR/SSIM) with different ablation configurations.
Priors denotes the 3D rendered structure priors; SAM denotes the Spatial Attention
Mechanism.

Factor SRCNN VDSR SRCNN+prior VDSR+prior ours (+prior+SAM)

4scale 27.57/0.8452 28.13/0.8554 28.66/0.8501 29.29/0.8727 29.69/0.8817

8scale 22.51/0.6659 22.76/0.6618 24.18/0.6959 24.66/0.7127 25.39/0.7551

6 Coefficients Feature Transform

The output of ResNet-50 is the representative feature vector of x = (α,β, δ,γ,ρ) ∈
R239, where α ∈ R80,β ∈ R64, δ ∈ R80,γ ∈ R9, and ρ ∈ R6 represent the iden-
tity, facial expression, texture, illumination, and face pose, respectively. The fea-
ture transformation procedure is described as follows shown in Figure 4: firstly,
the coefficients of identity, expression, texture, and the element-concatenation
of illumination and face pose (γ + ρ) are reshaped to four matrices by setting
extra elements to zeros. Afterwards, it is expanded to the same size as the LR
images (16×16 or 32×32) by zero-padding, and then scaled to the interval [0,1].

7 Rendered Face Generation

In order to evaluate the quality of rendered face generation, we present plenty of
rendered face images to judge whether the rendered faces grasp the gender and
pose variations priors. Given the low-resolution images, the generated 3D face
rendered reconstructions of the gender (male and female) are shown in Figure
5. The 3D face rendered reconstructions of the large pose variations are shown
in Figure 6. The rendered face predictions contain the clear spatial knowledge
and good visual quality of facial components which are very close to the infor-
mation of the ground-truths. The 3D priors grasp very well the pose variations
and skin color, and further embed pose variations into the super-resolution net-
works which improve the accuracy and stability in face images with large pose
variations. The algorithm is stable and robust to well-reconstruct the rendered
faces even for the face images which are partly occluded by glasses, hairs, etc.,
as shown in Figure 7.

8 Visualization Quality of Super-Resolution

High Magnification Factor × 8 Visualization: It is still a challenge to gener-
ate the sharp super-resolution images for a large magnification factor (×8). The
3D rendered facial priors provide extra facial structure knowledge that is crucial
for SR problems. As shown in Figures 8-12, the proposed method generates a
high visible quality of SR images even for the large magnification factor.
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Semi-Frontal Facial Pose Visualization: For the semi-frontal pose, the
SR results of RCAN, RDN and Wavelet-SRNet have a lot of artifacts around
facial components (e.g., eyes, teeth, nose and mouth). Fortunately, after incor-
porating the rendered face priors, it largely avoids the appearance of ghosting
artifacts, seen in Figures 13-17.

Left Facial Pose Visualization: For the left pose, the high-resolution re-
sults of the proposed method perform much better. Ours (VDSR+) which ex-
ploits the 3D facial priors can grasp the facial structure knowledge and restore
the high-resolution facial components (e.g., mouth) much closer to the ground-
truth compared with the basic VDSR method without priors shown in Figures
18-21.

Right Facial Pose Visualization: For the right pose, the high-resolution
results of the proposed method are still the best. Adding the facial structure
priors can help the network learn the location of facial components even for the
large pose variations shown in Figures 22-26.
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Input VDSR VDSR+3D Ours

Fig. 1. Visual comparison of real world images with state-of-the-art methods (×4).
Best viewed by zooming in the screen.
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(a) ×4 scale

(b) ×8 scale

Fig. 2. Test accuracy curves with different configurations along the training epochs.
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PSRNet

VDSR+3D

Wavelet-Net
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Fig. 3. (a) Performance vs. number of parameters. Results are evaluated on the CelebA
dataset: ×8 scale. (b) Average running time on CelebA.
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Fig. 4. Coefficients (the identity, facial expression, texture, illumination, and face pose)
Feature Transform: Coefficients are reshaped, zero-padded, expanded and scaled into
[0,1].
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(a) Input (b) GT (c) Rendered (d) Input (e) GT (f) Rendered

Fig. 5. The rendered prior by our method. (a) and (d) inputs. (b) and (e) ground-
truths. (c) and (f) our rendered face structures. The reconstructed facial structures
provide clear gender knowledge (male and female).
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(a) Input (b) GT (c) Rendered (d) Input (e) GT (f) Rendered

Fig. 6. The rendered prior by our method. (a) and (d) inputs. (b) and (e) ground-
truths. (c) and (f) our rendered face structures. The reconstructed facial structures
provide clear spatial locations and sharp visualization of facial components even for
large pose variations (e.g., left and right facial pose positions)
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(a) Input (b) GT (c) Rendered (d) Input (e) GT (f) Rendered

Fig. 7. The rendered prior by our method. (a) and (d) inputs. (b) and (e) ground-
truths. (c) and (f) our rendered face structures. Our method can recover the occluded
parts of face images and grasp the clear spatial location.
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Bicubic VDSR VDSR+3D RDN SRCNN SRCNN+3D TDAE

Wavelet RCAN PSR-FAN FSR-GAN FSR-Net Ours Ground truth

Fig. 8. Visual comparison with state-of-the-art methods (×8). The results by the pro-
posed method have fewer visual artifacts and sharper facial structures. Best viewed by
zooming in the screen.

Bicubic VDSR VDSR+3D RDN SRCNN SRCNN+3D TDAE

Wavelet RCAN PSR-FAN FSR-GAN FSR-Net Ours Ground truth

Fig. 9. Visual comparison with state-of-the-art methods (×8). The results by the pro-
posed method have fewer visual artifacts and sharper facial structures. Best viewed by
zooming in the screen.
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Bicubic VDSR VDSR+3D RDN SRCNN SRCNN+3D TDAE

Wavelet RCAN PSR-FAN FSR-GAN FSR-Net Ours Ground truth

Fig. 10. Visual comparison with state-of-the-art methods (×8). The results by the
proposed method have fewer visual artifacts and sharper facial structures. Best viewed
by zooming in the screen.

Bicubic VDSR VDSR+3D RDN SRCNN SRCNN+3D TDAE

Wavelet RCAN PSR-FAN FSR-GAN FSR-Net Ours Ground truth

Fig. 11. Visual comparison with state-of-the-art methods (×8). The results by the
proposed method have fewer visual artifacts and sharper facial structures. Best viewed
by zooming in the screen.
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Bicubic VDSR VDSR+3D RDN SRCNN SRCNN+3D TDAE

Wavelet RCAN PSR-FAN FSR-GAN FSR-Net Ours Ground truth

Fig. 12. Visual comparison with state-of-the-art methods (×8). The results by the
proposed method have fewer visual artifacts and sharper facial structures. Best viewed
by zooming in the screen.

VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 13. Comparison of state-of-the-art methods on semi-frontal facial
pose:magnification factor ×4 and the input resolution 32×32. Best viewed by
zooming in the screen.
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VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 14. Comparison of state-of-the-art methods on semi-frontal facial
pose:magnification factor ×4 and the input resolution 32×32. Best viewed by
zooming in the screen.

VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 15. Comparison of state-of-the-art methods on semi-frontal facial
pose:magnification factor ×4 and the input resolution 32×32. Best viewed by
zooming in the screen.
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VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 16. Comparison of state-of-the-art methods on semi-frontal facial
pose:magnification factor ×4 and the input resolution 32×32. Best viewed by
zooming in the screen.

VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 17. Comparison of state-of-the-art methods on semi-frontal facial
pose:magnification factor ×4 and the input resolution 32×32. Best viewed by
zooming in the screen.
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Ours (SAM3D) Ground truth

SRCNN RDNRCAN

VDSR

Wavelet

Ours (VDSR+3D)

Fig. 18. Comparison of state-of-the-art methods on left facial pose:magnification fac-
tor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.

Ours (SAM3D) Ground truth

SRCNN RDNRCAN

VDSR

Wavelet

Ours (VDSR+3D)

Fig. 19. Comparison of state-of-the-art methods on left facial pose:magnification fac-
tor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.
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VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 20. Comparison of state-of-the-art methods on left facial pose:magnification fac-
tor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.
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Ours (SAM3D) Ground truth

SRCNN RDNRCAN

VDSR

Wavelet

Ours (VDSR+3D)

Fig. 21. Comparison of state-of-the-art methods on left facial pose:magnification fac-
tor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.

VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 22. Comparison of state-of-the-art methods on right facial pose:magnification
factor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.
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VDSR

RCAN RDN  Wavelet

Ours (SAM3D) Ground truth

SRCNN

Ours (VDSR+3D)

Fig. 23. Comparison of state-of-the-art methods on right facial pose:magnification
factor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.

Ours (SAM3D) Ground truth

SRCNN RDNRCAN

VDSR

Wavelet

Ours (VDSR+3D)

Fig. 24. Comparison of state-of-the-art methods on right facial pose:magnification
factor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.
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Ours (SAM3D) Ground truth

SRCNN RDNRCAN

VDSR

Wavelet

Ours (VDSR+3D)

Fig. 25. Comparison of state-of-the-art methods on right facial pose:magnification
factor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.

Ours (SAM3D) Ground truth

SRCNN RDNRCAN

VDSR

Wavelet

Ours (VDSR+3D)

Fig. 26. Comparison of state-of-the-art methods on right facial pose:magnification
factor ×4 and the input resolution 32×32. Best viewed by zooming in the screen.
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