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Abstract. We present the first spatial-spectral joint consistency net-
work for self-supervised dense correspondence mapping between non-
isometric shapes. The task of alignment in non-Euclidean domains is one
of the most fundamental and crucial problems in computer vision. As 3D
scanners can generate highly complex and dense models, the mission of
finding dense mappings between those models is vital. The novelty of our
solution is based on a cyclic mapping between metric spaces, where the
distance between a pair of points should remain invariant after the full
cycle. As the same learnable rules that generate the point-wise descrip-
tors apply in both directions, the network learns invariant structures
without any labels while coping with non-isometric deformations. We
show here state-of-the-art-results by a large margin for a variety of tasks
compared to known self-supervised and supervised methods.

Keywords: Dense shape correspondence, Self-supervision, One-shot learn-
ing, Spectral decomposition, 3D alignment
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Fig. 1: TOSCA dataset results - similar colors represents correspondence mapping - we
show excellent generalization after training for a single epoch on the TOSCA dataset
with a pre-trained model on FAUST 6.5
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1 Introduction

Fig. 2: Self-supervised dense cor-
respondence using a cycle map-
ping architecture. By minimizing
the geodesic distortion only on the
source shape, we can learn complex
deformations between structures.

Alignment of non-rigid shapes is a fundamen-
tal problem in computer vision and plays an
important role in multiple applications such
as pose transfer, cross-shape texture mapping,
3D body scanning, and simultaneous localiza-
tion and mapping (SLAM). The task of find-
ing dense correspondence is especially chal-
lenging for non-rigid shapes, as the number
of variables needed to define the mapping is
vast, and local deformations might occur. To
this end, we have seen a variety of papers fo-
cusing on defining unique key-points. These
features capture the local uniqueness of the
models using curvature [31], normals [48],
or heat [45], for example, and further ex-
ploited for finding a dense mapping [12, 5].

A different approach used for alignment
is based on pair-wise distortions, where an-
gles [6, 24] or distances [15, 9, 35, 34], be-
tween pairs of points are minimized. Formu-
lating this as a linear [52] or quadratic [9, 47, 2] optimization scheme showed a
significant enhancement but with a painful time complexity even for small mod-
els. An interesting approach that addressed local deformations while still using
Riemannian geometry introduced new metrics. Specifically, scale invariant [4, 37],
equi-affine invariant [32] and affine-invariant [36] metric showed superior results
for alignment tasks. To confront the challenges in alignment between stretchable
shapes we recognize non-metric methods based on conformal mapping [24], ex-
perimenting with alternative metrics such as scale [4] or affine invariant metrics
[33], or attempts to embed the shapes into a plane or a cone [11, 9], for example.
A significant milestone named functional maps [30] has shown that such a map-
ping can be performed on the spectral domain, by aligning functions overlaid on
top of the shapes.

Recently, a substantial improvement in dense alignment emerged using data-
driven solutions, where axiomatic shape models and deformations were replaced
by learnable counterparts. Among those methods a highly successful research di-
rection was based on learning local features overlaid on the vertices of the shapes
[25], where ResNet [19] like architecture is used to update SHOT descriptors [48].

The main challenge new data-driven geometric alignment algorithms need to
face is the lack of data to train on or labeled data used for supervised learning.
In many cases, the labeled data is expensive to generate or even infeasible to
acquire, as seen, for example, in medical imaging.

A recent approach [18] showed that self-supervised learning could be applied
for non-rigid alignment between isometric shapes by preserving the pair-wise
distance measured on the source and on the target. While showing good re-
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sults, an isometric limitation is a strong constraint that is misused in many
scenarios. On a different note, self-supervised learning was recently addressed
in images, where a cyclic mapping between pictures, known as cyclic-GAN, was
introduced [53, 28, 51]. The authors showed that given unpaired collection of im-
ages from different domains, a cyclic-loss that measures the distortion achieves
robust state-of-the-art results in unsupervised learning for domain transfer. To
this end, some papers have even shown promising insights when linking cyclic-
constraints and alignment of the spectra [42, 20, 40, 21]. Here we show that using
the structure’s metric one can align the spectrum of non-isometric shapes.

In this work, we claim that one can learn dense correspondence in a self-
supervised manner in between non-isometric structures. We present a new learn-
able cyclic mechanism, where the same model is used both for forward and
backward mapping learning to compensate for deformed parts. We measure the
pair-wise distance distortion of the cyclic mapping on randomly chosen pair of
points only from the source manifold. We show here state-of-the-art-results by
a large margin for a variety of tasks compared to self-supervised and supervised
methods, in isometric and non-isometric setups.

2 Contribution

We present an unsupervised learning scheme for dense 3D correspondence be-
tween shapes, based on learnable self similarities between metric spaces. The
proposed approach has multiple advantages over other known methods. First,
there is no need to define a model for the shapes or the deformations; Second,
it has no need for labeled data with dense correspondence mappings. Third,
the proposed method can handle isometric or non-isometric deformations and
partial matching. The cyclic mapping approach allows our system to learn the
geometric representation of manifolds by feeding it pairs of matching shapes,
even without any labels, by measuring a geometric criterion (pair-wise distance)
only on the source.

Our main contribution is based on the understanding that a cyclic mapping
between metric spaces which follows the same rules, forces the network to learn
invariant parts. We built the cyclic mapping using the functional maps frame-
work [30], optimizing for a soft correspondence between shapes on the spectral
domains by updating a local descriptor per point. The proposed approach can
be adapted to any dimension, and here we provide state-of-the-art results on
surfaces. We show results that are comparable to supervised learning [25, 17, 23]
methods in the rare case we possess dense correspondence labels, and outper-
forms self-supervised learning approaches [17, 18] when the shapes are isometric.
Once the deformations are not isometric, our method stands out, and outper-
forms other methods by a large margin.
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Fig. 3: Alignment between non-isometric shapes, where similar parts appear in similar
colors. The shapes were locally scaled and stretched while changing their pose. Our
approach learns the correct matching while [18] fails under local stretching.

3 Background

Our cyclic mapping is built on top of functional maps architecture. To explain the
foundations of this approach, we must elaborate on distance matrices, functional
maps and how to weave deep learning into functional maps. Finally, we discuss
an isometric unsupervised approach for the alignment task and its limitations,
which motivated this work.

3.1 Riemannian 2-Manifolds

We model 3D shapes as a Riemannian 2-manifold (X , g), where X is a real
smooth manifold, equipped with an inner product gp on the tangent space TpX
at each point p that varies smoothly from point to point in the sense that if U
and V are differentiable vector fields on X , then p → gp(U|p,V|p) is a smooth
function.

We equip the manifolds with a distance function dX : X × X → < induced
by the standard volume form dX . We state the distance matrix DX , as a square
symmetric matrix, represents the manifold’s distance function dX such that

DX ij = dX (Xi, Xj). (1)

3.2 Functional maps

Functional maps [30] stands for matching real-valued functions in between man-
ifolds instead of performing a straight forward point matching. Using a spectral
basis, one can extract a compact representation for a match on the spectral do-
main. The clear advantage here is that many natural constraints on the map
become linear constraints on the functional map. Given two manifolds X and Y,
and functional spaces on top F (X ) and F (Y), we can define a functional map
using orthogonal bases φ and ψ
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Tf = T
∑
i≥1

〈f, φi〉Xφi =
∑
i≥1

〈f, φi〉XTφi

=
∑
i,j≥1

〈f, φi〉X 〈Tφi, ψj〉Y︸ ︷︷ ︸
cji

ψj ,
(2)

where C ∈ Rk×k represents the mapping in between the domains given k
matched functions, and every pair of corresponding functions on-top of the man-
ifolds impose a linear constraint on the mapping. The coefficient matrix C is
deeply dependent on the choice of the bases φ, ψ, and as shown in prior works
[30, 38, 18] a good choice for such bases is the Laplacian eigenfunctions of the
shapes.

3.3 Deep Functional Maps

Deep functional maps were first introduced in [25], where the mapping C between
shapes was refined by learning new local features per point. The authors showed
that using a ResNet [19] like architecture on-top of SHOT [48] descriptors, they
can revise the local features in such a way that the global mapping is more
accurate. The mapping is presented as a soft correspondence matrix P where
Pji is the probability Xi corresponds to Yj . The loss of the network is based
on the geodesic distortion between the corresponding mapping and the ground
truth, reading

Lsup(X ,Y) =
1

|X |

∥∥∥∥∥
(
P ◦ (DYΠ∗)

)∥∥∥∥∥
2

F

, (3)

where |X | is the number of vertices of shape X , and if |X | = n, and |Y| = m,
then Π∗ ∈ <m×n is the ground-truth mapping between X and Y, DY ∈ <m×m
is the geodesic distance matrix of Y , ◦ denote a point-wise multiplication, and
||F is the Frobenius norm. For each target vertex, the loss penalizes the distance
between the actual corresponding vertex and the assumed one, multiplied by the
amount of certainty the network has in that correspondence. Hence the loss is
zero if

Pji = 1⇔ Π∗(Xi) = Yj , (4)

as D(y, y) = 0 ∀y ∈ Y.

3.4 Self-Supervised Deep Functional Maps

The main drawback of deep functional maps is the need for ground truth labels.
Obtaining alignment maps for domains such as ours is a strong requirement,
and is infeasible in many cases either due to the cost to generate those datasets,
or even impractical to collect. In a recent paper [18], the authors showed that
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for isometric deformations, we can replace the ground truth requirement with
a different geometric criterion based on pair-wise distances. In practice, they
married together the Gromov-Hausdorff framework with the deep functional
maps architecture.

The Gromov-Hausdorff distance which measures the distance between metric
spaces, reads

dGH(X ,Y) =
1

2
inf
π

(dis(π)), (5)

where the infimum is taken over all correspondence distortions of a given map-
ping π : X → Y. This distortion can be translated to a pair-wise distance [15, 22]
notation, which was used by [18] as a geometric criterion in the cost function of
a deep functional map setup. Unfortunately, the pair-wise distance constraint is
an extreme demand, forcing the models to be isometric, and can not be fulfilled
in many practical scenarios.

4 Cyclic Self-Supervised Deep Functional Maps

The main contribution of this paper is the transition from the pair-wise distance
comparison between source and target manifolds to a method that only exam-
ines the metric in the source manifold. Every pair of distances are mapped to
the target and re-mapped back to the source. We use the same model for the
forward and backward mapping to avoid a mode collapse, and we measure the
distortion once a cyclic map has been completed, forcing the model to learn how
to compensate for the deformations.

4.1 Correspondence Distortion

A mapping π : X → Y between two manifolds generates a pair-wise distortion

disπ(X ,Y) =
∑

x1,x2∈X
ρ(dX (x1, x2), dY(π(x1), π(x2)), (6)

where ρ is usually an Lp norm metric, and p = 2 is a useful choice of the
parameter.

As isometric mapping preserves pair-wise distances, minimizing the distances
between those pairs provides a good metric-dependent correspondence. Specifi-
cally,

πiso(X ,Y) = argmin
π:X→Y

disπ(X ,Y). (7)

Solving 7 takes the form of a quadratic assignment problem. The main drawback
of this criterion, as the name suggests, is the isometric assumption. While it is
a powerful tool for isometric mappings, natural phenomena do not follow that
convention as stretching exists in the data. To overcome those limitations, we
present here the cyclic distortion criterion.
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4.2 Cyclic Distortion

We define a cyclic distortion1 πcyc as a composition of two mappings π→ :
X → Y and π← : Y → X , which leads to a cyclic distortion

discyc(π→,π←)(X ,Y) = (8)∑
x1,x2∈X

ρ(dX (x1, x2), dX (x̃1, x̃2)),

where x̃1 = π←(π→(x1)) and x̃2 = π←(π→(x2)).
π→ and π← are being optimized using the same sub-network, implemented

as shared weights in the learning process. Every forward mapping π→ induce a
backward mapping π← and vice-versa. We call this coupled pair π = (π→, π←)
a conjugate mapping, and denote the space of all conjugate mappings by S. We
define the cyclic mapping as

πcyc(X ,Y) = argmin
π:(X→Y,Y→X )∈S

discycπ (X ,Y). (9)

4.3 Deep Cyclic Mapping

Following the functional map convention, given C,Φ, Ψ the soft correspondence
matrix mapping between X to Y reads [25]

P =
∣∣ΦCΨT ∣∣Fc

, (10)

where each entry Pji is the probability point j in X corresponds to point i in
Y. We further use |·|Fc

notation for column normalization, to emphasize the
statistical interpretation of P .

Let P represents the forward mapping π→ soft correspondence and P̃ the
backward mapping π←. The cyclic distortion is defined by

Lcyclic(X ,Y) =
1

|X |2

∥∥∥∥∥
(
DX − (P̃P )DX (P̃P )T

)∥∥∥∥∥
2

F

, (11)

where |X | is the number of samples point pairs on X .
Note that if we assumed the shapes were isometric, then we would have ex-

pected DY to be similar or even identical to PDXP
T , which yields once plugged

into (11) the isometric constraint

Lisometric(X ,Y) =
1

|X |2

∥∥∥∥∥
(
DX − P̃DY P̃

T

)∥∥∥∥∥
2

F

. (12)

The cyclic distortion (11) is self-supervised, as no labels are required, and only
use the pair-wise distances on the source manifold X . The conjugate mappings
are based on the functional maps architecture and use the geometry of both
spaces, source and target. Since we constrain the mapping on the source’s ge-
ometry, the mapping copes with stretching, and thus learning invariant repre-
sentations.
1 An illustration of the distortion process is shown in figure 2
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5 Implementation

5.1 Hardware

The network was developed in TensorFlow [1], running on a GeForce GTX 2080
Ti GPU. The SHOT descriptor [48] was implemented in MATLAB, while the
Laplace Beltrami Operator (LBO) [41] and geodesic distances were calculated
in Python.

5.2 Pre-processing

We apply a sub-sampling process for shapes with more than 10,000 points us-
ing qSlim [16] algorithm. SHOT descriptor was computed on the sub-sampled
shapes, generating a descriptor of length s = 350 per vertex. Finally, the LBO
eigenfunctions corresponding to the most significant 70 eigenvalues (lowest by
magnitude) were computed for each shape. The distance matrices were computed
using the Fast Marching algorithm [43]. In order to initialize the conjugate map-
ping, we found that a hard constraint on P and P̃ coupling provides good results.
Specifically we minimized in the first epoch the cost function ||PP̃ − I||2F before
applying the soft cyclic criterion (11). Equation 11 consists of four probabil-
ity matrices multiplication which leads to low values in the cost function and its
derivatives. Hence, we found an advantage to start the optimization process with
a simpler cost function in the first epoch. We examined several configurations of
loss functions, including pre-training on non-cyclic loss, yet, we did not observe
any improvement over direct optimization of equation (9).

5.3 Network Architecture

The architecture is motivated by [25, 18] and shown in Figure 4. The input to the
first layer is the raw 3D triangular mesh representations of the two figures given
by a list of vertices and faces. We apply a multi-layer SHOT [48] descriptor
by evaluating the SHOT on m ∼ 5 global scaled versions of the input. The
figures vary from 0.2 to 2 times the size of the original figures, followed by a 1x1
convolution layers with 2m filters, to a 1 × 1 convolution layer with one filter,
generating an output of n × s descriptor to the network. Besides, the relevant
eigenfunctions and pair-wise distance matrix of the source shape are provided
as parameters to the network.

The next stage is the ResNet [19] layers with the shared weights applied to
both figures. Subsequently, the non-linear descriptors are multiplied by the n×k
LBO eigenfunctions. We calculate the forward and backward mappings C and C̃
using the same network and evaluate the corresponding forward and backward
mappings P and P̃ , which are fed into the soft cyclic loss (11).
The fact we do not use geodesic distance metric on the target shape DY con-
tributed to faster inference time, and lighter training batches, which accelerated
the learning with comparison to [18, 25].
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Fig. 4: Cyclic functional mapper in between two manifolds X and Y (left and right
sides). The multi-scaled descriptors (top left, marked MS) based on shot [48] are passed
to a ResNet like network, resulting in two corresponding coefficient matrices F and G.
By projecting the refined descriptors onto the spectral space, two mappings, C and C̃,
are computed. The two soft correspondence matrices P and P̃ are further used as part
of the network cyclic loss Lcyclic as shown in equation 11.

6 Experiments

In this section, we present multiple experiments in different settings; synthetic
and real layouts, transfer learning tasks, non-isometric transformations, partial
matching and one-shot learning. We show benchmarks, as well as comparisons
to state-of-the-art solutions, both for axiomatic and learned algorithms.

6.1 Mesh Error Evaluation

The measure of error for the correspondence mapping between two shapes will be
according to the Princeton benchmark [22], that is, given a mapping π→(X ,Y)
and the ground truth π∗→(X ,Y) the error of the correspondence matrix is the
sum of geodesic distances between the mappings for each point in the source
figure, divided by the area of the target figure.

ε(π→) =
∑
x∈X

DY(π→(x), π∗→(x))√
area(Y)

, (13)

where the approximation of area(•) for a triangular mesh is the sum of its
triangles area.

6.2 Synthetic FAUST

We compared our alignment on FAUST dataset [7] versus supervised [25] and
unsupervised [18] methods. We followed the experiment as described in [25] and
used the synthetic human shapes dataset, where the first 80 shapes (8 subjects
with 10 different poses each) are devoted to training, and 20 shapes made of 2
different unseen subjects are used for testing.
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Fig. 5: Scale-Invariant Attributes -
Network performance under global-
scaling transformations

For a fair comparison between meth-
ods, we did not run the PMF cleanup filter
[50] as this procedure is extremely slow
and takes about 15 minutes for one shape
built of ∼ 7k vertices on an i9 desktop.

We do not perform any triangular
mesh preprocessing on the dataset, that
is, we learn on the full resolution of 6890
vertices.

Each mini-batch is of size 4 (i.e 4 pairs
of figures), using k = 120 eigenfunctions,
and 10 bins in SHOT with a radius set
to be 5% of the geodesic distance from
each vertex. We report superior results
for inter-subject and intra-subject tasks in
Table 1, while converging faster (see Fig-
ure 6).
As shown in figure [5] global scaling is transparent to our cyclic consistent loss.
We provide several evaluations on the Synthetic FAUST dataset where the target
shape was global scaled by different factors during training. While we converge
to the same result in each experiment, unsupervised methods as [18] that assume
isometry fail to learn in such frameworks.

Method
Loss during

their training
Loss during
our training

Litany
et al.[25]

∼ 180 ∼ 150

Halimi
et al.[18]

∼ 20 ∼ 15

Fig. 6: We visualize our cyclic loss, the isometric constrained unsupervised loss [18],
and the supervised loss [25] during the training of our cyclic loss on the synthetic
FAUST dataset. We show that minimization of the cyclic loss on isometric structures
provides lower loss values on previous architectures, without any geometric assumption.

6.3 Real Scans

We tested our method on real 3D scans of humans from the FAUST [7] dataset.
While the synthetic samples had ∼ 6k vertices, each figure in this set has ∼ 150k
vertices, creating the amount of plausible cyclic mappings extremely high. The
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dataset consists of multiple subjects in a variety of poses, where none of the poses
(e.g., women with her hands up) in the test set were present in the training set.
The samples were acquired using a full-body 3D stereo capture system, resulting
in missing vertices, and open-end meshes.

Table 1: Average error on the FAUST dataset mea-
sured as distance between mapped points and the
ground truth. We compared between our approach
and other supervised and unsupervised methods.

Method Scans[cm] Synthetic[cm]
inter intra inter intra

Ours 4.068 2.12 2.327 2.112
Litany et al.[25] 4.826 2.436 2.452 2.125
Halimi et al.[18] 4.883 2.51 3.632 2.213
Groueixa et al.[17] 4.833 2.789 — —
Li et al.[23] 4.079 2.161 — —
Chen et al.[13] 8.304 4.86 — —

a Unsupervised training.

The dataset is split into
two test cases as before, the
intra and inter subjects (60
and 40 pairs respectively),
and ground-truth correspon-
dences is not given. Hence,
the geodesic error evaluation
is provided as an online ser-
vice. As suggested in [25], af-
ter evaluating the soft corre-
spondence mappings, we in-
put our map to the PMF algo-
rithm [50] for a smoother bi-
jective correspondence refined
map. We report state of the
art results on both inter and intra class mappings in comparison to all the unsu-
pervised techniques. We provide visualization in Figure 7 and qualitative results
in table 1.

Fig. 7: Correspondence on FAUST real scans dataset, where similar colors represent
the same correspondence. This dataset contains shapes made of ∼ 100k vertices with
missing information in various poses. We use a post-matching PMF filter [50], and
show qualitative results in Table 1. We outperform both supervised and unsupervised
methods.

6.4 Non-Isometric Deformations

An even bigger advantage of the proposed method is its ability to cope with local
stretching. Due to the cyclic mapping approach, we learn local matching features
directly between the models and are not relying on a base shape in the latent
space or assume isometric consistency. We experimented with models generated
in Autodesk Maya that were locally stretched and bent. We remark that none
of the stretched samples was present during training, which was done on the
”standard” FAUST real scans dataset. We show visual results in Figure 3. The
proposed approach successfully handles large non-isometric deformations.
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6.5 TOSCA

Fig. 8: Geodesic error on
TOSCA dataset. We report
superior results against other
supervised and unsupervised
learnable methods. Note that
the compared methods did
not run a post-processing
optimization-based filter, or
received partial matching as
input.

Fig. 9: Geodesic error on
SCAPE dataset. Our network
was trained on FAUST dataset
and used to predict the map-
ping on SCAPE. We provide
superior results on all unsper-
vised and almost all super-
vised methods showing good
generalization properties.

The TOSCA dataset [10] consists of 80 objects from different domains as animals
and humans in different poses. Although the animals are remarkably different
in terms of LBO decomposition, as well as geometric characteristics, our model
achieves excellent performance in terms of a geodesic error on the dataset after
training for a single epoch on it, using the pre-trained model from the real scans
FAUST dataset [1].

In Figure 8, we show a comparison between our and other supervised and
unsupervised approaches and visualize a few samples in Figure 1. Compared
methods results were taken from [18]. Our network was trained for a single
epoch on the dataset, with a pre-trained model of the real scans FAUST data
and yet, shows great performance. We report state of the art results, compared
to axiomatic, supervised, and unsupervised methods. Also note that while other
methods mention training on each class separately, we achieve state-of-the-art
results while training jointly.

6.6 SCAPE

To further emphasize the generalization capabilities of our network, we present
our results on the SCAPE dataset [46], which is an artificial human shape
dataset, digitally generated, with completely different properties from the FAUST
dataset in any aspect (geometric entities, scale, ratio, for example). Nevertheless,
our network that was trained on the real scan FAUST dataset performs remark-
ably well. See Figure 9. Compared methods results were taken from [18].

6.7 One-shot Single Pair Learning

Following the experiment shown in [18], we demonstrate that we can map in
between two shapes seen for the first time without training on a large dataset.
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Compared to optimization approaches we witness improved running time due
to optimized hardware and software dedicated to deep learning in recent years.
In Figure 10 we show such a mapping in between highly deformed shapes, and
we found it intriguing that a learning method based on just two samples can
converge to a feasible solution even without strong geometric assumptions. Note
that in that case methods based on isometric criterion fail to converge due to
the large non-isometric deformation. Running multiple epochs on two shapes
not only converged to a pleasing mapping, but we found it to work well without
any priors on the shapes or a need to engineer the initialization process. That
is true for inter-class as well as highly deformed shapes (See figure 10) In this
experiment we used our multi-SHOT pre-trained weights before we ran our cyclic
mapper.

Fig. 10: Left - Highly deformed single pair, inter-class experiment.
Right - Single pair (one shot) learning on deformable non-isometric shapes. Supervised
methods as [25] are irrelevant, where isometric self-learning approach fails [18].

6.8 Partial Shapes Correspondence

Fig. 11: Partial to
Full correspondence
- Although the map-
ping is ill-posed by
nature in the missing
segments, the cyclic
mapper acheives
near-perfect results
within the valid areas
of the source shape.

The partial shapes correspondence task is inherently
more complicated than the full figure alignment prob-
lems. While in most experiments shown above, the num-
ber of vertices in both shapes differed by less than 5%,
in the partial shapes task, we consider mappings be-
tween objects that differ by a large margin of up to
75% in their vertex count. To this end, numerous bi-
jective solutions, such as [44, 49, 50] show degraded per-
formance on the partial challenge, resulting in targeted
algorithms [38, 26] for the mission. With that in mind,
we show our results on the SHREC 2016 [14] par-
tial shapes dataset [12][11]. We remark that our for-
mulation does not require the map to be bijective. As
P ∈ Rn1×n2 ,P̃ ∈ Rn2×n1 where n1, n2 are the num-
ber of vertices in the shapes no bijection is enforced,
rather than the composition is close to the identity.
Thus, the distortion minimization function finds the
best mapping it can even for partial to full correspon-
dence.
We use the same architecture as described earlier, given
hyperparameters and trained weights from the TOSCA 6.5 experiment, showing
our network’s generalization capabilities. As before, we have trained the network
on this dataset only for a single epoch.
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Fig. 12: Partial shapes correspondence on SHREC 16 [14] dataset after removing sub-
stantial parts (up to 75%). In every pair, we mapped the left shape into the right
one, where similar mapped points share the color. Our method is robust to missing
information.

7 Limitations

Our method uses functional maps architecture, which requires us to pre-compute
sets of bases functions. To that end, this process can not be done in real-time
in the current setup, and there might be an inconsistency in bases functions
between shapes due to noise or large non-isometric deformations. While this
method works well for isometric or stretchable domains, once the deformations
are significantly large, we found that the current system does not converge to
a reasonable geodesic error in terms of a pleasant visual solution, which makes
it challenging to use in cross-domain alignments. We believe that the proposed
approach can be used as part of semantic-correspondence to overcome those
limitations. Furthermore, experimenting with mappings between partial shapes
showed us (see Figure 11), that missing parts can suffers from ambiguity and
can appear as a non-smooth mapping.

8 Summary

We presented here a cyclic architecture for dense correspondence between shapes.
In the heart of our network is the bidirectional mapper, which jointly learns the
mapping from the source to the target and back via a siamese-like architecture.
We introduced a novel loss function which measures the distortion only on the
source, while still using both geometries, allowing us to cope with non-isometric
deformations. This approach is self-supervised, can cope with local stretching as
well as non-rigid isometric deformations. While our concept specifically addresses
the wrong assumption of isometry for inter-class subjects, we see superior results
even for intra-class datasets. Our method outperforms other unsupervised and
supervised approaches on tested examples, and we report state-of-the-art results
in several scenarios, including real 3D scans and partial matching task.
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39. Rodolà, E., Rota Bulo, S., Windheuser, T., Vestner, M., Cremers, D.: Dense Non-
Rigid Shape Correspondence using Random Forests. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 4177–4184 (2014)

40. Roufosse, J.M., Sharma, A., Ovsjanikov, M.: Unsupervised deep learning for struc-
tured shape matching. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1617–1627 (2019)

41. Rustamov, R.M.: Laplace-beltrami eigenfunctions for deformation invariant shape
representation. In: Proceedings of the Fifth Eurographics Symposium on Geometry
Processing. pp. 225–233. SGP ’07, Eurographics Association, Aire-la-Ville, Switzer-
land, Switzerland (2007), http://dl.acm.org/citation.cfm?id=1281991.1282022

42. Rustamov, R.M., Ovsjanikov, M., Azencot, O., Ben-Chen, M., Chazal, F., Guibas,
L.: Map-based exploration of intrinsic shape differences and variability. ACM
Transactions on Graphics (TOG) 32(4), 1–12 (2013)

43. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences 93(4), 1591–1595 (1996)

44. Starck, J., Hilton, A.: Spherical Matching for Temporal Correspondence of Non-
Rigid Surfaces. In: Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1. vol. 2, pp. 1387–1394. IEEE (2005)

45. Sun, J., Ovsjanikov, M., Guibas, L.: A Concise and Provably Informative Multi-
Scale Signature Based on Heat Diffusion. In: Computer graphics forum. vol. 28,
pp. 1383–1392. Wiley Online Library (2009)

46. Szeliski, R., Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., Davis,
J.: SCAPE: shape completion and animation of people, vol. 24 (2005)

47. Tevs, A., Berner, A., Wand, M., Ihrke, I., Seidel, H.P.: Intrinsic shape matching by
planned landmark sampling. In: Computer Graphics Forum. vol. 30, pp. 543–552.
Wiley Online Library (2011)

48. Tombari, F., Salti, S., Di Stefano, L.: Unique Signatures of Histograms for Local
Surface Description. In: Computer Vision – ECCV 2010. pp. 356–369 (2010)

49. Vestner, M., Lähner, Z., Boyarski, A., Litany, O., Slossberg, R., Remez, T., Rodola,
E., Bronstein, A., Bronstein, M., Kimmel, R., et al.: Efficient deformable shape cor-
respondence via kernel matching. In: 2017 International Conference on 3D Vision
(3DV). pp. 517–526. IEEE (2017)
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