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Abstract. Existing deep models predict 2D and 3D kinematic poses
from video that are approximately accurate, but contain visible errors
that violate physical constraints, such as feet penetrating the ground and
bodies leaning at extreme angles. In this paper, we present a physics-
based method for inferring 3D human motion from video sequences that
takes initial 2D and 3D pose estimates as input. We first estimate ground
contact timings with a novel prediction network which is trained without
hand-labeled data. A physics-based trajectory optimization then solves
for a physically-plausible motion, based on the inputs. We show this pro-
cess produces motions that are significantly more realistic than those
from purely kinematic methods, substantially improving quantitative
measures of both kinematic and dynamic plausibility. We demonstrate
our method on character animation and pose estimation tasks on dy-
namic motions of dancing and sports with complex contact patterns.

1 Introduction

Recent methods for human pose estimation from monocular video [1,17,30,43]
estimate accurate overall body pose with small absolute differences from the true
poses in body-frame 3D coordinates. However, the recovered motions in world-
frame are visually and physically implausible in many ways, including feet that
float slightly or penetrate the ground, implausible forward or backward body
lean, and motion errors like jittery, vibrating poses. These errors would prevent
many subsequent uses of the motions. For example, inference of actions, inten-
tions, and emotion often depends on subtleties of pose, contact and acceleration,
as does computer animation; human perception is highly sensitive to physical
inaccuracies [14,34]. Adding more training data would not solve these problems,
because existing methods do not account for physical plausibility.

Physics-based trajectory optimization presents an appealing solution to these
issues, particularly for dynamic motions like walking or dancing. Physics imposes
important constraints that are hard to express in pose space but easy in terms
of dynamics. For example, feet in static contact do not move, the body moves
smoothly overall relative to contacts, and joint torques are not large. However,
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Fig. 1. Our contact prediction and physics-based optimization corrects numerous phys-
ically implausible artifacts common in 3D human motion estimations from, e.g., Monoc-
ular Total Capture (MTC) [43] such as foot floating (top row), foot penetrations (mid-
dle), and unnatural leaning (bottom).

full-body dynamics is notoriously difficult to optimize [36], in part because con-
tact is discontinuous, and the number of possible contact events grows exponen-
tially in time. As a result, combined optimization of contact and dynamics is
enormously sensitive to local minima.

This paper introduces a new strategy for extracting dynamically valid full-
body motions from monocular video (Figure 1), combining learned pose estima-
tion with physical reasoning through trajectory optimization. As input, we use
the results of kinematic pose estimation techniques [4,43], which produce accu-
rate overall poses but inaccurate contacts and dynamics. Our method leverages
a reduced-dimensional body model with centroidal dynamics and contact con-
straints [7,42] to produce a physically-valid motion that closely matches these in-
puts. We first infer foot contacts from 2D poses in the input video which are then
used in a physics-based trajectory optimization to estimate 6D center-of-mass
motion, feet positions, and contact forces. We show that a contact prediction
network can be accurately trained on synthetic data. This allows us to separate
initial contact estimation from motion optimization, making the optimization
more tractable. As a result, our method is able to handle highly dynamic mo-
tions without sacrificing physical accuracy.
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We focus on single-person dynamic motions from dance, walking, and sports.
Our approach substantially improves the realism of inferred motions over state-
of-the-art methods, and estimates numerous physical properties that could be
useful for further inference of scene properties and action recognition. We pri-
marily demonstrate our method on character animation by retargeting captured
motion from video to a virtual character. We evaluate our approach using nu-
merous kinematics and dynamics metrics designed to measure the physical plau-
siblity of the estimated motion. The proposed method takes an important step
to incorporating physical constraints into human motion estimation from video,
and shows the potential to reconstruct realistic, dynamic sequences.

2 Related Work

We build on several threads of work in computer vision, computer animation,
and robotics, each with a long history [9]. Recent vision results are detailed here.

Recent progress in pose estimation can accurately detect 2D human key-
points [4,12,27] and infer 3D pose [1,17,30] from a single image. Several recent
methods extract 3D human motions from monocular videos by exploring various
forms of temporal cues [18,26,44,43]. While these methods focus on explaining
human motion in pixel space, they do not account for physical plausibility. Sev-
eral recent works interpret interactions between people and their environment
in order to make inferences about each [6,11,45]; each of these works uses only
static kinematic constraints. Zou et al. [46] infer contact constraints to opti-
mize 3D motion from video. We show how dynamics can improve inference of
human-scene interactions, leading to more physically plausible motion capture.

Some works have proposed physics constraints to address the issues of kine-
matic tracking. Brubaker et al. [3] propose a physics-based tracker based on a
reduced-dimensional walking model. Wei and Chai [41] track body motion from
video, assuming keyframe and contact constraints are provided. Similar to our
own work, Brubaker and Fleet [2] perform trajectory optimization for full-body
motion. To jointly optimize contact and dynamics, they use a continuous ap-
proximation to contact. However, soft contact models introduce new difficulties,
including inaccurate transitions and sensitivity to stiffness parameters, while still
suffering from local minima issues. Moreover, their reduced-dimensional model
includes only center-of-mass positional motion, which does not handle rotational
motion well. In contrast, we obtain accurate contact initialization in a prepro-
cessing step to simplify optimization, and we model rotational inertia.

Li et al. [23] estimate dynamic properties from videos. We share the same
overall pipeline of estimating pose and contacts, followed by trajectory opti-
mization. Whereas they focus on the dynamics of human-object interactions,
we focus on videos where the human motion itself is much more dynamic, with
complex variation in pose and foot contact; we do not consider human-object
interaction. They use a simpler data term, and perform trajectory optimization
in full-body dynamics unlike our reduced representation. Their classifier training
requires hand-labeled data, unlike our automatic dataset creation method.
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Fig. 2. Method overview. Given an input video, our method starts with initial estimates
from existing 2D and 3D pose methods [4,43]. The lower-body 2D joints are used to
infer foot contacts (orange box). Our optimization framework contains two parts (blue
boxes). Inferred contacts and initial poses are used in a kinematic optimization that
refines the 3D full-body motion and fits the ground. These are given to a reduced-
dimensional physics-based trajectory optimization that applies dynamics.

Prior methods learn character animation controllers from video. Vondrak et
al. [38] train a state-machine controller using image silhouette features. Peng et
al. [32] train a controller to perform skills by following kinematically-estimated
poses from input video sequences. They demonstrate impressive results on a va-
riety of skills. They do not attempt accurate reconstruction of motion or contact,
nor do they evaluate for these tasks, rather they focus on control learning.

Our optimization is related to physics-based methods in computer animation,
e.g., [8,16,20,24,25,33,40]. Two unique features of our optimization are the use of
low-dimensional dynamics optimization that includes 6D center-of-mass motion
and contact constraints, thereby capturing important rotational and footstep
quantities without requiring full-body optimization, and the use of a classifier
to determine contacts before optimization.

3 Physics-Based Motion Estimation

This section describes our approach, which is summarized in Figure 2. The core
of our method is a physics-based trajectory optimization that enforces dynam-
ics on the input motion (Section 3.1). Foot contact timings are estimated in a
preprocess (Section 3.2), along with other inputs to the optimization (Section
3.3). Similar to previous work [23,43], in order to recover full-body motion we
assume there is no camera motion and that the full body is visible.

3.1 Physics-Based Trajectory Optimization

The core of our framework is an optimization which enforces dynamics on an ini-
tial motion estimate given as input (see Section 3.3). The goal is to improve the
plausibility of the motion by applying physical reasoning through the objective
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and constraints. We aim to avoid common perceptual errors, e.g., jittery, unnat-
ural motion with feet skating and ground penetration, by generating a smooth
trajectory with physically-valid momentum and static feet during contact.

The optimization is performed on a reduced-dimensional body model that
captures overall motion, rotation, and contacts, but avoids the difficulty of op-
timizing all joints. Modeling rotation is necessary for important effects like arm
swing and counter-oscillations [13,20,25], and the reduced-dimensional centroidal
dynamics model can produce plausible trajectories for humanoid robots [5,7,28].
Our method is based on a recent robot motion planning algorithm from Winkler
et al. [42] that leverages a simplified version of centroidal dynamics, which treats
the robot as a rigid body with a fixed mass and moment of inertia. Their method
finds a feasible trajectory by optimizing the position and rotation of the center-
of-mass (COM) along with feet positions, contact forces, and contact durations
as described in detail below. We modify this algorithm to suit our computer vi-
sion task: we use a temporally varying inertia tensor which allows for changes in
mass distribution (swinging arms) and enables estimating the dynamic motions
of interest, we add energy terms to match the input kinematic motion and foot
contacts, and we add new kinematics constraints for our humanoid skeleton.

Inputs. The method takes initial estimates of: COM position r̄(t) ∈ R3 and
orientation θ̄(t) ∈ R3 trajectories, body-frame inertia tensor trajectory Ib(t) ∈
R3×3, and trajectories of the foot joint positions p̄1:4(t) ∈ R3. There are four
foot joints: left toe base, left heel, right toe base, and right heel, indexed as
i ∈ {1, 2, 3, 4}. These inputs are at discrete timesteps, but we write them here as
functions for clarity. The 3D ground plane height hfloor and upward normal is
provided. Additionally, for each foot joint at each time, a binary label is provided
indicating whether the foot is in contact with the ground. These labels determine
initial estimates of contact durations for each foot joint T̄i,1, T̄i,2, . . . , T̄i,ni

as
described below. The distance from toe to heel `foot and maximum distance
from toe to hip `leg are also provided. All quantities are computed from video
input as described in Sections 3.2 and 3.3, and are used to both initialize the
optimization variables and as targets in the objective function.

Optimization Variables. The optimization variables are the COM position and
Euler angle orientation r(t),θ(t) ∈ R3, foot joint positions pi(t) ∈ R3 and con-
tact forces fi(t) ∈ R3. These variables are continuous functions of time, rep-
resented by piece-wise cubic polynomials with continuity constraints. We also
optimize contact timings. The contacts for each foot joint are independently pa-
rameterized by a sequence of phases that alternate between contact and flight.
The optimizer cannot change the type of each phase (contact or flight), but it
can modify their durations Ti,1, Ti,2, . . . , Ti,ni

∈ R where ni is the number of
total contact phases for the ith foot joint.

Objective. Our complete formulation is shown in Figure 3. Edata and Edur seek
to keep the motion and contacts as close as possible to the intial inputs, which
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min
∑T

t=0

(
Edata(t) + Evel(t) + Eacc(t)

)
+ Edur

s.t. mr̈(t) =
∑4

i=1
fi(t) +mg (dynamics)

Iw(t)ω̇(t) + ω(t)× Iw(t)ω(t) =
∑4

i=1
fi(t)× (r(t)− pi(t))

ṙ(0) = ṙ(0), ṙ(T ) = ṙ(T ) (velocity boundaries)

||p1(t)− p2(t)|| = ||p3(t)− p4(t)|| = `foot (foot kinematics)

for every foot joint i :

||pi(t)− phip,i(t)|| ≤ `leg (leg kinematics)∑ni

j=1
Ti,j = T (contact durations)

for foot joint i in contact at time t :

ṗi(t) = 0 (no slip)

p
z
i (t) = hfloor(p

xy
i ) (on floor)

0 ≤ fi(t)
T
n̂ ≤ fmax (pushing/max force)

|fi(t)T t̂1,2| < µfi(t)
T
n̂ (friction pyramid)

for foot joint i in flight at time t :

p
z
i (t) ≥ hfloor(p

xy
i ) (above floor)

fi(t) = 0 (no force in air)

Fig. 3. Physics-based trajectory optimization formulation. Please see text for details.

are derived from video, at discrete steps over the entire duration T :

Edata(t) = wr||r(t)− r(t)||2 + wθ||θ(t)− θ(t)||2

+ wp

4∑
i=1

||pi(t)− pi(t)||2 (1)

Edur = wd

4∑
i=1

ni∑
j=1

(Ti,j − T̄i,j)2 (2)

We weigh these terms with wd = 0.1, wr = 0.4, wθ = 1.7, wp = 0.3.
The remaining objective terms are regularizers that prefer small velocities

and accelerations resulting in a smoother optimal trajectory:

Evel(t) = γr||ṙ(t)||2 + γθ||θ̇(t)||2 + γp

4∑
i=1

||ṗi(t)||2 (3)

Eacc(t) = βr||r̈(t)||2 + βθ||θ̈(t)||2 + βp

4∑
i=1

||p̈i(t)||2 (4)

with γr = γθ = 10−3, γp = 0.1 and βr = βθ = βp = 10−4.

Constraints. The first set of constraints strictly enforce valid rigid body mechan-
ics, including linear and angular momentum. This enforces important properties
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of motion, for example, during flight the COM must follow a parabolic arc ac-
cording to Newton’s Second Law. During contact, the body motion acceleration
is limited by the possible contact forces e.g., one cannot walk at a 45◦ lean.

At each timestep, we use the world-frame inertia tensor Iw(t) computed from
the input Ib(t) and the current orientation θ(t). This assumes that the final out-
put poses will not be dramatically different from those of the input: a reasonable
assumption since our optimization does not operate on upper-body joints and
changes in feet positioning are typically small (though perceptually important).
We found that using a constant inertia tensor (as in Winkler et al. [42]) made
convergence difficult to achieve. The gravity vector is g = −9.8n̂, where n̂ is the
ground normal. The angular velocity ω is a function of the rotations θ [42].

The contact forces are constrained to ensure that they push away from the
floor but are not greater than fmax = 1000 N in the normal direction. With 4 feet
joints, this allows 4000 N of normal contact force: about the magnitude that a 100
kg (220 lb) person would produce for extremely dynamic dancing motion [19]. We
assume no feet slipping during contact, so forces must also remain in a friction
pyramid defined by friction coefficient µ = 0.5 and floor plane tangents t̂1, t̂2.
Lastly, forces should be zero at any foot joint not in contact.

Foot contact is enforced through constraints. When a foot joint is in contact,
it should be stationary (no-slip) and at floor height hfloor . When not in contact,
feet should always be on or above the ground. This avoids feet skating and
penetration with the ground.

In order to make the optimized motion valid for a humanoid skeleton, the
toe and heel of each foot should maintain a constant distance of `foot . Finally, no
foot joint should be farther from its corresponding hip than the length of the leg
`leg . The hip position phip,i(t) is computed from the COM orientation at that
time based on the hip offset in the skeleton detailed in Section 3.3.

Optimization Algorithm. We optimize with IPOPT [39], a nonlinear interior
point optimizer, using analytical derivatives. We perform the optimization in
stages: we first use fixed contact phases and no dynamics constraints to fit the
polynomial representation for COM and feet position variables as close as possi-
ble to the input motion. Next, we add in dynamics constraints to find a physically
valid motion, and finally we allow contact phase durations to be optimized to
further refine the motion if possible.

Following the optimization, we compute a full-body motion from the physically-
valid COM and foot joint positions using Inverse Kinematics (IK) on a desired
skeleton Stgt (see supplement for details).

3.2 Learning to Estimate Contacts

Before performing our physics-based optimization, we need to infer when the
subject’s feet are in contact with the ground, given an input video. These con-
tacts are a target for the physics optimization objective and their accuracy is
crucial to its success. To do so, we train a network that, for each video frame,
classifies whether the toe and heel of each foot are in contact with the ground.
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The main challenge is to construct a suitable dataset and feature represen-
tation. There is currently no publicly-available dataset of videos with labeled
foot contacts and a wide variety of dynamic motions. Manually labeling a large,
varied dataset would be difficult and costly. Instead, we generate synthetic data
using motion capture (mocap) sequences. We automatically label contacts in the
mocap and then use 2D joint position features from OpenPose [4] as input to
our model, rather than image features from the raw rendered video frames. This
allows us to train on synthetic data but then apply the model to real inputs.

Dataset. To construct our dataset, we obtained 65 mocap sequences for the
13 most human-like characters from www.mixamo.com, ranging from dynamic
dancing motions to idling. Our set contains a diverse range of mocap sequences,
retargeted to a variety of animated characters. At each time of each motion
sequence, four possible contacts are automatically labeled by a heuristic: a toe
or heel joint is considered to be in contact when (i) it has moved less than 2
cm from the previous time, and (ii) it is within 5 cm from the known ground
plane. Although more sophisticated labeling [15,21] could be used, we found this
approach sufficiently accurate to learn a model for the videos we evaluated on.

We render these motions (see Figure 5(c)) on their rigged characters with
motion blur, randomized camera viewpoint, lighting, and floor texture. For each
sequence, we render two views, resulting in over 100k frames of video with labeled
contacts and 2D and 3D poses. Finally, we run a 2D pose estimation algorithm,
OpenPose [4], to obtain the 2D skeleton which our model uses as input.

Model and Training. The classification problem is to map from 2D pose in each
frame to the four contact labels for the feet joints. As we demonstrate in Section
4.1, simple heuristics based on 2D velocity do not accurately label contacts due
to the ambiguities of 3D projection and noise.

For a given time t, our labeling neural network takes as input the 2D poses
over a temporal window of duration w centered on the target frame at t. The 2D
joint positions over the window are normalized to place the root position of the
target frame at (0, 0), resulting in relative position and velocity. We set w = 9
video frames and use the 13 lower-body joint positions as shown in Figure 4.
Additionally, the OpenPose confidence c for each joint position is included as
input. Hence, the input to the network is a vector of (x, y, c) values of dimension
3 ∗ 13 ∗ 9 = 351. The model outputs four contact labels (left/right toe, left/right
heel) for a window of 5 frames centered around the target. At test time, we use
majority voting at overlapping predictions to smooth labels across time.

We use a five-layer multilayer perceptron (MLP) (sizes 1024, 512, 128, 32, 20)
with ReLU non-linearities [29]. We train the network entirely on our synthetic
dataset split 80/10/10 for train/validation/test based on motions per character,
i.e., no motion will be in both train and test on the same character, but a
training motion may appear in the test set retargeted to a different character.
Although 3D motions may be similar in train and test, the resulting 2D motions
(the network input) will be very different after projecting to differing camera
viewpoints. The network is trained using a standard binary cross-entropy loss.

www.mixamo.com
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3.3 Kinematic Initialization

Along with contact labels, our physics-based optimization requires as input a
ground plane and initial trajectories for the COM, feet, and inertia tensor. In
order to obtain these, we compute an initial 3D full-body motion from video.
Since this stage uses standard elements, e.g., [10], we summarize the algorithm
here, and provide full details in the supplement.

First, Monocular Total Capture [43] (MTC) is applied to the input video to
obtain an initial noisy 3D pose estimate for each frame. Although MTC accounts
for motion through a texture-based refinement step, the output still contains a
number of artifacts (Figure 1) that make it unsuitable for direct use in our
physics optimization. Instead, we initialize a skeleton Ssrc containing 28 body
joints from the MTC input poses, and then use a kinematic optimization to solve
for an optimal root translation and joint angles over time, along with parameters
of the ground plane. The objective for this optimization contains terms to smooth
the motion, ensure feet are stationary and on the ground when in contact, and
to stay close to both the 2D OpenPose and 3D MTC pose inputs.

We first optimize so that the feet are stationary, but not at a consistent
height. Next, we use a robust regression to find the ground plane which best fits
the foot joint contact positions. Finally, we continue the optimization to ensure
all feet are on this ground plane when in contact.

The full-body output motion of the kinematic optimization is used to extract
inputs for the physics optimization. Using a predefined body mass (73 kg for
all experiments) and distribution [22], we compute the COM and inertia tensor
trajectories. We use the orientation about the root joint as the COM orientation,
and the feet joint positions are used directly.

4 Results

Here we present extensive qualitative and quantitative evaluations of our contact
estimation and motion optimization.

4.1 Contact Estimation

We evaluate our learned contact estimation method and compare to baselines
on the synthetic test set (78 videos) and 9 real videos with manually-labeled
foot contacts. The real videos contain dynamic dancing motions and include
700 labeled frames in total. In Table 1, we report classification accuracy for our
method and numerous baselines.

We compare to using a velocity heuristic on foot joints, as described in Sec-
tion 3.2, for both the 2D OpenPose and 3D MTC estimations. We also compare
to using different subsets of joint positions. Our MLP using all lower-body joints
is substantially more accurate on both synthetic and real videos than all base-
lines. Using upper-body joints down to the knees yields surprisingly good results.

In order to test the benefit of contact estimation, we compared our full op-
timization pipeline on the synthetic test set using network-predicted contacts
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Table 1. Classification accuracy of estimating foot contacts from video. Left: compar-
ison to various baselines, Right: ablations using subsets of joints as input features.

Baseline Synthetic Real MLP Synthetic Real
Method Accuracy Accuracy Input Joints Accuracy Accuracy

Random 0.507 0.480 Upper down to hips 0.919 0.692
Always Contact 0.677 0.647 Upper down to knees 0.935 0.865

2D Velocity 0.853 0.867 Lower up to ankles 0.933 0.923
3D Velocity 0.818 0.875 Lower up to hips 0.941 0.935

Fig. 4. Foot contact estimation on a video using our learned model compared to a 2D
velocity heuristic. All visualized joints are used as input to the network which outputs
four contact labels (left toes, left heel, right toes, right heel). Red joints are labeled as
contacting. Key differences are shown with orange boxes.

versus contacts predicted using a velocity heuristic on the 3D joints from MTC
input. Optimization using network-predicted contacts converged for 94.9% of
the test set videos, compared to 69.2% for the velocity heuristic. This illustrates
how contact prediction is crucial to the success of motion optimization.

Qualitative results of our contact estimation method are shown in Figure 4.
Our method is compared to the 2D velocity baseline which has difficulty for
planted feet when detections are noisy, and often labels contacts for joints that
are stationary but off the ground (e.g. heels).

4.2 Qualitative Motion Evaluation

Our method provides key qualitative improvements over prior kinematic ap-
proaches. We urge the reader to view the supplementary video in order to
fully appreciate the generated motions. For qualitative evaluation, we demon-
strate animation from video by retargeting captured motion to a computer-
animated character. Given a target skeleton Stgt for a character, we insert an
IK retargeting step following the kinematic optimization as shown in Figure 2
(see supplement for details), allowing us to perform the usual physics-based op-
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Fig. 5. Qualitative results on synthetic and real data. a) results on a synthetic test
video with a ground truth alternate view. Two nearby frames are shown for the input
video and the alternate view. We fix penetration, floating and leaning prevalent in our
method’s input from MTC. b) dynamic exercise video (top) and the output full-body
motion (middle) and optimized COM trajectory and contact forces (bottom).

timization on this new skeleton. We use the same IK procedure to compare to
MTC results directly targeted to the character.

Figure 1 shows that our proposed method fixes artifacts such as foot floating
(top row), foot penetrations (middle), and unnatural leaning (bottom). Figure
5(a) shows frames comparing the MTC input to our final result on a synthetic
video for which we have a ground truth alternate view. For this example only,
we use the true ground plane as input to our method for a fair comparison (see
Section 4.3). From the input view, our method fixes feet floating and penetration.
From the first frame of the alternate view, we see that the MTC pose is in fact
extremely unstable, leaning backward while balancing on its heels; our method
has placed the contacting feet in a stable position to support the pose, better
matching the true motion.

Figure 5(b) shows additional qualitative results on a real video. We faithfully
reconstruct dynamic motion with complex contact patterns in a physically accu-
rate way. The bottom row shows the outputs of the physics-based optimization
stage of our method at multiple frames: the COM trajectory and contact forces
at the heel and toe of each foot.

4.3 Quantitative Motion Evaluation

Quantitative evaluation of high-quality motion estimation presents a significant
challenge. Recent pose estimation work evaluates average positional errors of
joints in the local body frame up to various global alignment methods [31]. How-
ever, those pose errors can be misleading: a motion can be pose-wise close to
ground truth on average, but produce extremely implausible dynamics, including
vibrating positions and extreme body lean. These errors can be perceptually ob-
jectionable when remapping the motion onto an animated character, and prevent
the use of inferred dynamics for downstream vision tasks.
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Fig. 6. Contact forces from our physics-
based optimization for a walking and danc-
ing motion. The net contact forces around
1000 N are 140% of the assumed body
weight (73 kg), a reasonable estimate com-
pared to prior force plate data [2].

Therefore, we propose to use a
set of metrics inspired by the biome-
chanics literature [2,13,16], namely, to
evaluate plausibility of physical quan-
tities based on known properties of
human motion.

We use two baselines: MTC, which
is the state-of-the-art for pose esti-
mation, and our kinematic-only ini-
tialization (Section 3.3), which trans-
forms the MTC input to align with
the estimated contacts from Section
3.2. We run each method on the syn-
thetic test set of 78 videos. For these
quantitative evaluations only, we use
the ground truth floor plane as input to our method to ensure a fair comparison.
Note that our method does not need the ground truth floor, but using it ensures
a proper evaluation of our primary contributions rather than that of the floor
fitting procedure, which is highly dependent on the quality of MTC input (see
supplement for quantitative results using the estimated floor).

Dynamics Metrics. To evaluate dynamic plausibility, we estimate net ground
reaction forces (GRF), defined as fGRF (t) =

∑
i fi(t). For our full pipeline, we

use the physics-based optimized GRFs which we compare to implied forces from
the kinematic-only initialization and MTC input. In order to infer the GRFs
implied by the kinematic optimization and MTC, we estimate the COM trajec-
tory of the motion using the same mass and distribution as for our physics-based
optimization (73 kg). We then approximate the acceleration at each time step
and solve for the implied GRFs for all time steps (both in contact and flight).

We assess plausibility using GRFs measured in force plate studies, e.g.,
[2,13,35]. For walking, GRFs typically reach 80% of body weight; for a dance
jump, GRFs can reach up to about 400% of body weight [19]. Since we do not
know body weights of our subjects, we use a conservative range of 50kg–80kg
for evaluation. Figure 6 shows the optimized GRFs produced by our method for
a walking and swing dancing motion. The peak GRFs produced by our method
match the data: for the walking motion, 115–184% of body weight, and 127–204%
for dancing. In contrast, the kinematic-only GRFs are 319–510% (walking) and
765–1223% (dancing); these are implausibly high, a consequence of noisy and
unrealistic joint accelerations.

We also measure GRF plausibility across the whole test set (Table 2(left)).
GRF values are measured as a percentage of the GRF exerted by an idle 73
kg person. On average, our estimate is within 1% of the idle force, while the
kinematic motion implies GRFs as if the person were 24.4% heavier. Similarly,
the peak force of the kinematic motion is equivalent to the subject carrying
an extra 830 kg of weight, compared to only 174 kg after physics optimization.
The Max GRF for MTC is even less plausible, as the COM motion is jittery
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Table 2. Physical plausibility evaluation on synthetic test set. Mean/Max GRF are
contact forces as a proportion of body weight; see text for discussion of plausible
values. Ballistic GRF are unexplained forces during flight; smaller values are better.
Foot position metrics measure the percentage of frames containing typical foot contact
errors per joint; smaller values are better.

Dynamics (Contact forces) Kinematics (Foot positions)

Method Mean GRF Max GRF Ballistic GRF Floating Penetration Skate

MTC [43] 143.0% 9055.3% 115.6% 58.7% 21.1% 16.8%
Kinematics (ours) 124.4% 1237.5% 255.2% 2.3% 2.8% 1.6%

Physics (ours) 99.0% 338.6% 0.0% 8.2% 0.3% 3.6%

before smoothing during kinematic and dynamics optimization. Ballistic GRF
measures the median GRF on the COM when no feet joints should be in contact
according to ground truth labels. The GRF should be exactly 0%, meaning there
are no contact forces and only gravity acts on the COM; the kinematic method
obtains results of 255%, as if the subject were wearing a powerful jet pack.

Kinematics Metrics. We consider three kinematic measures of plausibility (Ta-
ble 2(right)). These metrics evaluate accuracy of foot contact measurements.
Specifically, given ground truth labels of foot contact we compute instances of
foot Floating, Penetration, and Skate for heel and toe joints. Floating is the
fraction of foot joints more than 3 cm off the ground when they should be in
contact. Penetration is the fraction penetrating the ground more than 3 cm at
any time. Skate is the fraction moving more than 2 cm when in contact.

After our kinematics initialization, the scores on these metrics are best (lower
is better for all metrics) and degrade slightly after adding physics. This is due
to the IK step which produces full-body motion following the physics-based
optimization. Both the kinematic and physics optimization results substantially
outperform MTC, which is rarely at a consistent foot height.

Positional Metrics. For completeness, we evaluate the 3D pose output of our
method on variations of standard positional metrics. Results are shown in Ta-
ble 3. In addition to our synthetic test set, we evaluate on all walking sequences
from the training split of HumanEva-I [37] using the known ground plane as
input. We measure the mean global per-joint position error (mm) for ankle and
toe joints (Feet in Table 3) and over all joints (Body). We also report the error
after aligning the root joint of only the first frame of each sequence to the ground
truth skeleton (Body-Align 1 ), essentially removing any spurious constant offset
from the predicted trajectory. Note that this differs from the common practice
of aligning the roots at every frame, since this would negate the effect of our
trajectory optimization and thus does not provide an informative performance
measure. The errors between all methods are comparable, showing at most a
difference of 5 cm which is very small considering global joint position. Though
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Table 3. Pose evaluation on synthetic and HumanEva-I walking datasets. We measure
mean global per-joint 3D position error (no alignment) for feet and full-body joints.
For full-body joints, we also report errors after root alignment on only the first frame
of each sequence. We remain competitive while providing key physical improvements.

Synthetic Data HumanEva-I Walking

Method Feet Body Body-Align 1 Feet Body Body-Align 1

MTC [43] 581.095 560.090 277.215 511.59 532.286 402.749
Kinematics (ours) 573.097 562.356 281.044 496.671 525.332 407.869

Physics (ours) 571.804 573.803 323.232 508.744 499.771 421.931

the goal of our method is to improve physical plausibility, it does not negatively
affect the pose on these standard measures.

5 Discussion

Contributions. The method described in this paper estimates physically-valid
motions from initial kinematic pose estimates. As we show, this produces motions
that are visually and physically much more plausible than the state-of-the-art
methods. We show results on retargeting to characters, but it could also be used
for further vision tasks that would benefit from dynamical properties of motion.

Estimating accurate human motion entails numerous challenges, and we have
focused on one crucial sub-problem. There are several other important unknowns
in this space, such as motion for partially-occluded individuals, and ground plane
position. Each of these problems and the limitations discussed below are an
enormous challenge in their own right and are therefore reserved for future work.
However, we believe that the ideas in this work could contribute to solving these
problems and open multiple avenues for future exploration.

Limitations. We make a number of assumptions to keep the problem manage-
able, all of which can be relaxed in future work: we assume that feet are unoc-
cluded, there is a single ground plane, the subject is not interacting with other
objects, and we do not handle contact from other body parts like knees or hands.
These assumptions are permissible for the character animation from video mocap
application, but should be considered in a general motion estimation approach.
Our optimization is expensive. For a 2 second (60 frame) video clip, the physical
optimization usually takes from 30 minutes to 1 hour. This runtime is due pri-
marily to the adapted implementation from prior work [42] being ill-suited for
the increased size and complexity of human motion optimization. We expect a
specialized solver and optimized implementation to speed up execution.
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