
Supplementary Material

Yiwei Lu1[0000−0001−7872−3186], Frank Yu1[0000−0002−5620−8842], Mahesh Kumar
Krishna Reddy1[0000−0001−5645−4931], and Yang Wang1,2[0000−0001−9447−1791]

1 University of Manitoba, 2Huawei Technologies Canada
{luy2,kumark,ywang}@cs.umanitoba.ca

In this document, we give details of the backbone architectures used in the
experiments of the paper.

1 r-GAN

This backbone architecture is based on the model in [4]. The model in [4] is built
on a conditional GAN architecture with a modified U-Net [7]. Additionally, [4]
uses a Flownet [1] to capture temporal information of an image sequence. To
build an end-to-end model, we remove the Flownet and instead learn the spatial-
temporal feature of an image sequence using a ConvLSTM module. We call our
model r-GAN. Our proposed model consists of two major parts: a sequential
image generator and a discriminator. Fig 1 shows an overview of r-GAN.

1.1 Generator:

We apply the same modified U-Net with [4] as the backbone of our generator
G(·). Given an image sequence I1, ..., It (note that we choose t = 3 in our case),
we pass each image IT (T = 1, 2, ..., t) to the U-net to generate a prediction ÎT+1.
A ConvLSTM module then takes ÎT+1 and the last hidden state hT as input
and generate the current hidden state hT+1:

hT+1 = fConvLSTM (hT , ÎT+1) (1)

The hidden state in the ConvLSTM module is used to remember the previous
information of an image sequence.

To learn parameters in this module, we combine the least absolute deviation
(L1 loss) [6], multi-scale structural similarity measurement (Lssm loss) [8] and
gradient difference (Lgdl loss) [5] to define a loss that measures the quality of
the predicted frame:

L(Ît+1, It+1) = L1(Ît+1, It+1) + Lssm(Ît+1, It+1) + Lgdl(Ît+1, It+1) (2)

1.2 Discriminator:

The goal of the discriminator is to differentiate the output of the generator and
the ground-truth. Our discriminator in this network targets at classifying IT+1 as
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Fig. 1. An overview of our backbone architecture. Our anomaly detection model con-
sists of a Sequential Image Generator G(·) and a Discriminator D(·). Given an image
sequence I1, I2, ..., It as the input, G(·) outputs a prediction Ît+1 of the next frame.
A prediction loss is computed between Ît+1 and the actual frame It+1 for parameter
updating. D(·) takes both Ît+1 and It+1 as its input to classify which one is real and
which one is fake. These two networks are trained adversarially to obtain a good G(·)
that is able to fool D(·).

1 and ÎT+1 as 0. More specifically, we optimize our discriminator D(·) according
to the objective function below:

LDadv(Ît+1, It+1) =
1

2
LMSE(D(Ît+1), 0) +

1

2
LMSE(D(It+1), 1) (3)

where LMSE is the Mean Square Error loss function.

1.3 Anomaly Detection

Given an input sequence of frames I1, ..., It during testing, we use our model to
predict the next frame Ît+1 in the future. This predicted future frame Ît+1 is
compared with the ground-truth future frame It+1 by calculating L(Ît+1, It+1)
(see Eq. 2). Same as [4], after calculating the overall spatial loss of each testing
video, we normalize the losses to get a score S(t) in the range of [0, 1] for each
frame in the video by:

S(t) =
L(Ît+1, It+1)−minL(Ît+1, It+1)

maxL(Ît+1, It+1)−minL(Ît+1, It+1)
(4)

We then use S(t) as the score indicating how likely a particular frame is an
anomaly. Note that all of our variants share the same evaluation metrics.

2 r-GAN*

A possible variant of r-GAN is applying the ConvLSTM module in the latent
space of an autoencoder. We call this variant r-GAN*. The discriminator of this
module is identical to that of r-GAN, the only difference lies in the generator. The
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generator uses an autoencoder as its backbone network. In our implementation,
our autoencoder shares the same structure with the U-net in [4], but without the
skip connections. To capture the temporal information of the sequence, we apply
a ConvLSTM module to process the latent variables. Taking IT ∈ RH×W×3
as the input image at time T , the encoder generates a latent feature ϕ(IT ) ∈
RH′×W ′×F . Here we set H ′×W ′×F = 16× 16× 32. We use this latent feature
to generate the current hidden state hT at time T using the ConvLSTM module:

hT = fConvLSTM (ϕ(IT ), hT−1) (5)

Note that hT and ϕ(IT ) share the same dimension. By recursively updating the
hidden state, the output of the ConvLSTM module is ht+1. The decoder simply
upsamples ht+1 and predict the next frame Ît+1.

3 r-VAE

Variational autoencoder (VAE) [3] has been shown to be effective in reconstruct-
ing complex distributions. Given an input image IT , VAE applies an encoder
(also known as inference model) qθ(z|IT ) to generate the latent variable z that
captures the variation in IT . It uses a decoder pφ(ÎT+1|z) to predict the next
frame given the latent variable. The inference model represents the approxi-
mate posterior using the mean µ and variance σ2 calculated by a neural network
qθ(z|IT ) ∼ N (µ, σ2), where µ and σ2 are outputs of neural networks that take IT
as the input. In our implementation, we use VGG16 as backbone architecture. A
prior p(z) is chosen to be a simple Gaussian distribution. Similar to r-GAN, the
prediction ÎT+1 is then passed to a ConvLSTM module to remember temporal
information:

hT+1 = fConvLSTM (hT , ÎT+1) (6)

With the constraints of distribution on latent variables, the complete objective
function can be described as below:

L(I1:t|θ, φ) =

T∑
1

(−KL(qθ(z|IT )||p(z)) + Eqθ(z|IT )[logpφ(ÎT+1|z)]) (7)

where KL(qθ(z|IT )||p(z)) is the Kullback-Leibler divergence [2] between the
prior and the posterior.
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