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1 Practical Considerations

The current implementation is designed to favour usability and scalability, rather
than performance due to developmental reasons. Our framework converges on
average in 4-5 line-searches for rotational motion estimation considering 20000
events. These values may be different by running the code provided since the
initial conditions are far from the optimum. The time cost of evaluating the ap-
proximate entropy function and corresponding derivatives is ∼15ms and ∼25ms,
respectively, on a single-threaded 3.7Ghz CPU. For comparison, our implementa-
tion of the Variance cost function [1] and corresponding derivatives takes ∼12ms
and ∼21ms to be evaluated in the same settings, respectively. The framework is
highly parallelisable and further speed-ups can be achieved. This includes the ex-
act entropy, which can also achieve competitive computational costs for specific
problems where a few ∼ 1000 of events are processed.

2 Additional Results on Optical Flow Estimation

Fig. 9 presents additional plots regarding optical flow estimation using the pro-
posed framework. The optical flow is estimated between two consecutive frames
of the poster translation sequence [2]. In Fig. 9c, we show the original events,
that were produced by the motion between the frames, projected onto the IWE
without motion compensation. The resulting image is blurry exhibiting low con-
trast. By estimating the optical flow model parameters, if we project the mod-
elled events onto the IWE, we get a sharper image with higher contrast. Similar
results are obtained using the Contrast Maximisation (CMax) framework [1].
Distinctively, however, our framework does not directly optimise the contrast
measure of the IWE. Instead, it minimises the dispersion of the modelled events
in the feature space. Additionally, the measure profiles of the exact functions and
respective approximations in function of the optical flow parameters are almost
identical.
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(a) Frame 17 (b) Frame 18 (c) Original events

(d) Potential (e) Rényi (f) Shannon (g) Sharma Mittal (h) Tsallis
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(n) A. Potential (o) A. Rényi (p) A. Shannon (q) A. Sharma Mittal (r) A. Tsallis
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Fig. 9. Optical flow estimation between frames 17 and 18 of the poster translation

sequence [2]. The flow is dominated by the horizontal component: θ∗ ≈ (−150, 0)T.
All methods tend to maximise the IWE contrast, which is reflected in the motion-
compensated images (d)-(h) and (n)-(r). (i)-(m) Normalised profiles for the proposed
Potential energy and exact entropy loss functions. (s)-(w) Normalised profiles for the
proposed efficient approximate loss functions. The normalised profiles are plotted in
function of the optical flow parameters. We can see that all of the proposed functions
produce similar results, both in terms of contrast measures and model parameters
estimated
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(a) Approx. Potential entropy.
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(b) Approx. Rényi entropy.
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(c) Approx. Shannon entropy.
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(d) Approx. Sharma-Mittal entropy.
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(e) Approx. Tsallis entropy.
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(f) Variance [1].

Fig. 10. Angular velocity estimation errors using the proposed approximate entropy
functions and the variance [1] on the poster rotation sequence [2], considering batches
of 20000 events
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3 Additional Results on Rotational Estimation

Fig. 10 shows additional angular velocity estimation errors using the Approx-
imate Entropy Minimisation (AEMin) framework on the poster rotation se-
quence [2], considering batches of 20000 events. The errors are small compared
to the range of angular velocities undergone in the sequence. Table 4 provides
additional quantitative results.

Table 4. Accuracy comparison of the proposed entropy loss functions on the
poster rotation sequence [2]. The angular velocity errors for each component
(ewx , ewy , ewz ), their standard deviation (σew ) and RMS are presented in deg/s,
w.r.t. IMU measurements, considering batches of 20000 events. The RMS error com-
pared to the maximum excursions are also presented in percentage (RMS %), as well
as the absolute and relative maximum errors. The best value per column is highlighted
in bold

Function ewx ewy ewz σew RMS RMS % max max %

Approx. Potential 14.08 8.91 8.51 14.22 14.30 1.52 90.70 9.65
Approx. Rényi 14.31 9.16 8.34 14.24 14.30 1.52 88.16 9.38
Approx. Shannon 13.92 8.78 8.71 14.07 14.17 1.51 74.74 7.95
Approx. Sharma-Mittal 14.32 9.15 8.32 14.16 14.22 1.51 67.11 7.14
Approx. Tsallis 14.31 9.16 8.34 14.16 14.22 1.51 64.68 6.88

4 Additional Results on 6-DOF Estimation

In Fig. 11, we compare the estimated 6-DOF motion parameters and the re-
sulting modelled 3D events according to the Rényi entropy and its approximate
entropy, from events generated of the indoor flying1 sequence [3] (for illustra-
tion purposes, we consider the first 75000 events at the 24 second timestamp).
The resulting modelled 3D events are almost identical (Figs. 11d and 11e) and
the estimated 6-DOF parameters are also very similar. This corroborates that
the proposed efficient approximate entropy functions provide a valid trade-off
between accuracy and computational complexity. Table 5 provides additional
quantitative results.

5 Entropy Minimisation Profiles

Up to this point, all the loss functions profiles in function of the parameter
models seem to suggest that there is a close similarity between the exact loss
functions and respective approximations profiles. In Fig. 12, we show the pro-
jected normalised loss functions profiles for a synthetic data sequence, which
simulates the corners of a square moving perpendicularly to the image plane.
We can observe that, even though all profiles exhibit a clear minimum at the
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(a) Greyscale image (b) Depth image

24 24.05 24.1 24.15 24.2 24.25 24.3 24.35 24.4
time	(s)

(c) Original 3D events

24 24.05 24.1 24.15 24.2 24.25 24.3 24.35 24.4
time	(s)

(d) 3D events modelled by Rényi

24 24.05 24.1 24.15 24.2 24.25 24.3 24.35 24.4
time	(s)

(e) 3D events modelled by A. Rényi

Fig. 11. 6-DOF estimation from 75000 events in 3D space of the indoor flying1

sequence [3]. (a) Example greyscale image of the scene and (b) corresponding
depth. (c) Original 3D events generated from the moving camera. (d)-(e) The
events can be modelled directly in 3D to retrieve the 6-DOF motion parameters,
as well as to recover the 3D shape of the objects. According to the Rényi en-
tropy, the estimated 6-DOF parameters are: w = (0.003,−0.174, 0.027)T, v =
(−0.017,−0.102, 0.095)T. Similar parameters are obtained according to its approximate
entropy: w = (0.007,−0.172, 0.025)T, v = (−0.023,−0.093, 0.096)T
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Table 5. Accuracy comparison of the proposed entropy loss functions on the
indoor flying1 and indoor flying4 and outdoor driving night1 sequences [3]. The
average angular and linear velocity errors (ew, ev), their standard deviation (σew , σev )
and RMS (RMSew , RMSev ) are presented in deg/s and m/s, respectively. The RMS
errors compared to the maximum excursions are also presented in percentage (RMSew

%, RMSev %). For each sequence, the best value per column is highlighted in bold

Sequence Function ew ev σew σev RMSew RMSev RMSew % RMSev %

indoor flying1

Potential 2.45 0.14 3.19 0.18 3.34 0.19 8.23 22.12
Rényi 2.23 0.13 2.89 0.16 3.06 0.17 7.53 19.83
Shannon 2.25 0.13 2.90 0.16 3.06 0.17 7.55 19.82
Sharma-Mittal 2.25 0.13 2.90 0.16 3.06 0.17 7.53 19.97
Tsallis 2.22 0.13 2.87 0.16 3.03 0.17 7.47 19.88
Approx. Potential 2.20 0.10 2.79 0.12 3.02 0.13 7.44 15.31
Approx. Rényi 2.16 0.09 2.71 0.11 2.93 0.12 7.22 14.37
Approx. Shannon 2.24 0.10 2.80 0.12 3.04 0.13 7.50 15.60
Approx. Sharma-Mittal 2.17 0.09 2.76 0.12 2.97 0.13 7.31 14.75
Approx. Tsallis 2.08 0.10 2.40 0.12 2.70 0.12 6.66 14.80

indoor flying4

Potential 4.38 0.28 5.50 0.34 5.52 0.35 22.11 18.79
Rényi 4.28 0.25 5.31 0.30 5.30 0.30 21.25 16.37
Shannon 4.18 0.23 5.24 0.29 5.21 0.29 20.89 15.66
Sharma-Mittal 4.10 0.24 5.24 0.30 5.21 0.30 20.90 16.30
Tsallis 4.08 0.25 5.16 0.30 5.12 0.30 20.53 16.38
Approx. Potential 4.65 0.23 5.40 0.28 5.70 0.29 22.85 15.97
Approx. Rényi 4.69 0.23 5.68 0.29 5.93 0.30 23.78 16.08
Approx. Shannon 5.18 0.24 6.07 0.30 6.57 0.31 26.34 16.69
Approx. Sharma-Mittal 4.67 0.23 5.42 0.28 5.82 0.29 23.30 15.86
Approx. Tsallis 4.43 0.23 5.30 0.29 5.56 0.30 22.28 16.35

outdoor driving night1

Potential 4.75 1.86 15.18 1.88 15.30 2.42 4.10 23.85
Rényi 4.20 1.72 14.75 1.70 14.87 2.21 3.98 21.76
Shannon 4.13 1.73 13.83 1.68 13.98 2.21 3.74 21.80
Sharma-Mittal 4.21 1.73 14.76 1.72 14.88 2.22 3.99 21.85
Tsallis 4.18 1.73 14.73 1.71 14.85 2.22 3.98 21.85
Approx. Potential 6.18 1.77 16.42 1.84 16.44 2.36 4.40 23.26
Approx. Rényi 7.18 1.83 17.86 1.93 17.85 2.40 4.78 23.66
Approx. Shannon 5.91 1.77 15.71 1.74 15.75 2.30 4.22 22.64
Approx. Sharma-Mittal 7.29 1.93 17.79 2.02 17.79 2.54 4.76 25.04
Approx. Tsallis 7.27 1.82 17.97 1.94 17.97 2.41 4.81 23.71
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(a) Original events (b) Modelled events
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(c) Contrast
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(d) Variance [1]
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(f) Rényi
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(g) Shannon
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(h) Sharma-Mittal
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(i) Tsallis
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(j) A. Potential
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(k) A. Rényi
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(m) A. Sharma-Mittal
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Fig. 12. Projected normalised loss functions profiles at v̄z = −1 (m/s) and n =
(0, 0, 1)T using the translational model on a synthetic data sequence. (a) Original events
projected onto the IWE, which simulate the corners of a square moving perpendicularly
to the image plane with vz = −1 (m/s). (b) Modelled events projected onto the IWE,
according to the optimal parameters v̄ = (0, 0,−1)T (m/s) and n = (0, 0, 1)T. (c) IWE
contrast profile, which exhibits a clear peak at v̄ = (0, 0,−1)T (m/s); however, due
to the image discretisation, the profile is not smooth and not suitable to be used in
the optimisation framework. In contrast, the rest of the profiles shown are smooth and
exhibit a clear minimum at the optimal model parameters. We can also observe that
the profiles of the proposed approximate functions are not as smooth as the profiles of
the respective exact loss functions. Interestingly, the (d) variance profile [1] is similar
to the profiles of the proposed approximate entropy functions, e.g . (k) A. Rényi
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optimal model parameters, there is a clear distinction between the profiles of
the exact loss functions and respective proposed approximations, i.e. the former
exhibit a smoother landscape. Additionally, the variance loss function profile
in Fig. 12d closely matches the proposed approximate entropy loss functions
profiles, e.g . A. Rényi entropy function profile shown in Fig. 12k.

6 Additional Models

In this section, we provide additional models that are useful for common tasks
in computer vision, which can be estimated using the proposed framework.

Isometry Transformation Estimation: The isometry transformation has 3-
DOF and can be parameterised by the 2D linear velocity on the image plane
v = (vx, vy)T and the angular velocity w, being expressed as

fk =M(ek;θ) ∝ I−1(tk;θ)

(
xk
1

)
, (27)

where θ = (w,vT)T are the model parameters. The isometry matrix I can be
written in function of the model parameters θ as

I(tk;θ) =

[
R(tk;w) ∆tkv

0T 1

]
, R(tk;w) =

[
cosφ − sinφ
sinφ cosφ

]
∈ SO(2), (28)

where φ = ∆tkw.

Similarity Transformation Estimation: The similarity transformation is an
isometry transformation with an additional isotropic scaling λ = 1+∆tks, being
expressed as

fk =M(ek;θ) ∝ S−1(tk;θ)

(
xk
1

)
, (29)

where θ = (w, s,vT)T are the model parameters. The similarity matrix S can
be written in function of the model parameters θ as

S(tk;θ) =

[
(1 +∆tks)R(tk;w) ∆tkv

0T 1

]
. (30)

Affine Transformation Estimation: The affinity is a similarity transfor-
mation with non-isotropic scaling, which is accounted by two additional DOF,
namely, the angle γ = ∆tkwγ that specifies the scaling direction and the ratio
between the scaling parameters λ1/λ2 = (1+∆tks1)/(1+∆tks2). It is expressed
as

fk =M(ek;θ) ∝ A−1(tk;θ)

(
xk
1

)
, (31)
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where θ = (w,wγ , s1, s2,v
T)T are the model parameters. The affinity matrix A

can be written in function of the model parameters θ as

A(tk;θ) =

[
R(tk;w)R(tk;wγ)TDR(tk;wγ) ∆tkv

0T 1

]
, (32)

where D is a diagonal matrix, whose entries are the scaling parameters λ1 and
λ2.

Translational Motion Estimation: By not considering the rotational part
of the homography model (i.e. letting w = (0, 0, 0)T), we can just consider
estimating the translational motion. This model has 5-DOF and can be expressed
as

fk =M(ek;θ) ∝ T −1(tk;θ)

(
xk
1

)
, (33)

where θ = (v̄T,nT)T are the model parameters and the translation matrix T
can be written in function of the model parameters θ as

T (tk;θ) = I−∆tkv̄nT, (34)

where I corresponds to the identity matrix.
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Fig. 13. Example of iterations of the proposed framework optimisation procedure using
the A. Rényi entropy. On the top row (from left to right), we show the evolution of the
resultant IWE, according to the parameters being estimated. On the bottom row, we
can see the projection of the normalised A. Rényi entropy profile at the value presented
in the caption and n = (0, 0, 1)T. The profile is smooth and has one clear minimum,
which corresponds to the optimal parameters

In Fig. 13, we exemplify some iterations of the proposed framework optimi-
sation procedure. By solving for the optimal model parameters, the framework
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minimises the modelled events’ dispersion according to the entropy measure (bot-
tom row). As presented, the Approximate Rényi entropy profile is also smooth
and has one clear minimum, which corresponds to the optimal parameters.

7 Truncated Kernel Size

Table 6. Accuracy comparison of the proposed efficient Approximate Tsallis loss func-
tion on the poster rotation sequence [2] in function of the truncated kernel size. The
angular velocity errors for each component (ewx , ewy , ewz ), their standard deviation
(σew ) and RMS are presented in deg/s, w.r.t. IMU measurements, considering batches
of 20000 events. The RMS error compared to the maximum excursions are also pre-
sented in percentage (RMS %), as well as the absolute and relative maximum errors.
The best value per column and per function is highlighted in bold

Size ewx ewy ewz σew RMS RMS % max max %

3 14.31 9.16 8.34 14.16 14.22 1.51 64.68 6.88
5 14.31 9.17 8.43 14.44 14.51 1.54 130.98 13.93
7 14.30 9.15 8.45 14.34 14.40 1.53 81.52 8.67
9 14.29 9.16 8.35 14.22 14.28 1.52 71.79 7.64

The truncated kernel size affects how each event’s influence is spread across
the discretised space. For example, a larger size means that each event can influ-
ence a larger region in space. Table 6 presents quantitative results regarding the
performance of the proposed approximate measures, in function of the truncated
kernel size. These results show that the truncated kernel size does not signifi-
cantly influence the performance of the proposed optimisation framework using
the proposed AEMin. Thus, fixing it to 3 lowers the computational complex-
ity of the overall framework, without performance degradation (the framework’s
complexity using AEMin is O(Neκ

d), where κ is the truncated kernel size which
may be fixed to 3).

8 Mathematical Utilities

8.1 Skew-symmetric matrices

A skew-symmetric matrix is a square matrix whose transpose equals its negative

AT = −A. (35)

In particular, given a 3D vector a = (a1, a2, a3)T, we can construct a 3 × 3
skew-symmetric matrix as

â :=

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 . (36)
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8.2 Spherical Coordinates

Spherical coordinates are a system of coordinates that naturally describe po-
sitions on a sphere. These are defined by the longitude ψ ∈ [0, 2π], latitude
φ ∈ [0, π] and radius r ≥ 0. The spherical coordinates (r, ψ, φ) are related to the
Cartesian coordinates (x, y, z) by

r =
√
x2 + y2 + z2

ψ = arctan y
x

φ = arccos zr

⇔


x = r cosψ sinφ

y = r sinψ sinφ

z = r cosφ

. (37)
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