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Abstract. Object detection using an oriented bounding box (OBB) can
better target rotated objects by reducing the overlap with background
areas. Existing OBB approaches are mostly built on horizontal bounding
box detectors by introducing an additional angle dimension optimized
by a distance loss. However, as the distance loss only minimizes the
angle error of the OBB and that it loosely correlates to the IoU, it is
insensitive to objects with high aspect ratios. Therefore, a novel loss,
Pixels-IoU (PIoU) Loss, is formulated to exploit both the angle and IoU
for accurate OBB regression. The PIoU loss is derived from IoU metric
with a pixel-wise form, which is simple and suitable for both horizontal
and oriented bounding box. To demonstrate its effectiveness, we evaluate
the PIoU loss on both anchor-based and anchor-free frameworks. The
experimental results show that PIoU loss can dramatically improve the
performance of OBB detectors, particularly on objects with high aspect
ratios and complex backgrounds. Besides, previous evaluation datasets
did not include scenarios where the objects have high aspect ratios, hence
a new dataset, Retail50K, is introduced to encourage the community to
adapt OBB detectors for more complex environments.
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1 Introduction

Object detection is a fundamental task in computer vision and many detec-
tors [34, 25, 21, 17] using convolutional neural networks have been proposed in re-
cent years. In spite of their state-of-the-art performance, those detectors have in-
herent limitations on rotated and densely crowded objects. For example, bound-
ing boxes (BB) of a rotated or perspective-transformed objects usually contain
a significant amount of background that could mislead the classifiers. When
bounding boxes have high overlapping areas, it is difficult to separate the densely
crowded objects. Because of these limitations, researchers have extended existing
detectors with oriented bounding boxes (OBB). In particular, as opposed to the
BB which is denoted by (cx, cy, w, h), an OBB is composed by (cx, cy, w, h, θ)
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Fig. 1. Comparison between PIoU and SmoothL1 [34] losses. (a) Loss values between
IoU and SmoothL1 are totally different while their SmoothL1 loss values are the same.
(b) The proposed PIoU loss is consistent and correlated with IoU.

where (cx, cy), (w, h) and θ are the center point, size and rotation of an OBB,
respectively. As a result, OBBs can compactly enclose the target object so that
rotated and densely crowded objects can be better detected and classified.

Existing OBB-based approaches are mostly built on anchor-based frame-
works by introducing an additional angle dimension optimized by a distance
loss [24, 18, 19, 6, 41, 43] on the parameter tuple (cx, cy, w, h, θ). While OBB has
been primarily used for simple rotated target detection in aerial images [18, 50,
31, 26, 23, 1, 39], the detection performance in more complex and close-up envi-
ronments is limited. One of the reasons is that the distance loss in those ap-
proaches, e.g. SmoothL1 Loss [34], mainly focus on minimizing the angle error
rather than global IoU. As a result, it is insensitive to targets with high aspect
ratios. An intuitive explanation is that object parts far from the center (cx, cy)
are not properly enclosed even though the angle distance may be small. For ex-
ample, [19, 6] employ a regression branch to extract rotation-sensitive features
and thereby the angle error of the OBB can be modelled in using a transformer.
However, as shown in Figure 1(a), the IoU of predicted boxes (green) and that
of the ground truth (red) are very different while their losses are the same.

To solve the problem above, we introduce a novel loss function, named Pixels-
IoU (PIoU) Loss, to increase both the angle and IoU accuracy for OBB regres-
sion. In particular, as shown in Figure 1(b), the PIoU loss directly reflects the
IoU and its local optimum compared to standard distance loss. The rationale
behind this is that the IoU loss normally achieves better performance than the
distance loss [45, 35]. However, the IoU calculation between OBBs is more com-
plex than BBs since the shape of intersecting OBBs could be any polygon of less
than eight sides. For this reason, the PIoU, a continuous and derivable function,
is proposed to jointly correlate the five parameters of OBB for checking the po-
sition (inside or outside IoU) and the contribution of each pixel. The PIoU loss
can be easily calculated by accumulating the contribution of interior overlap-
ping pixels. To demonstrate its effectiveness, the PIoU loss is evaluated on both
anchor-based and anchor-free frameworks in the experiments.

To overcome the limitations of existing OBB-based approaches, we encourage
the community to adopt more robust OBB detectors in a shift from conventional
aerial imagery to more complex domains. We collected a new benchmark dataset,
Retail50K, to reflect the challenges of detecting oriented targets with high aspect
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ratios, heavy occlusions, and complex backgrounds. Experiments show that the
proposed frameworks with PIoU loss not only have promising performances on
aerial images, but they can also effectively handle new challenges in Retail50K.

The contributions of this work are summarized as follows: (1) We propose
a novel loss function, PIoU loss, to improve the performance of oriented object
detection in highly challenging conditions such as high aspect ratios and complex
backgrounds. (2) We introduce a new dataset, Retail50K, to spur the computer
vision community towards innovating and adapting existing OBB detectors to
cope with more complex environments. (3) Our experiments demonstrate that
the proposed PIoU loss can effectively improve the performances for both anchor-
based and anchor-free OBB detectors in different datasets.

2 Related Work

2.1 Oriented Object Detectors

Existing oriented object detectors are mostly extended from generic horizontal
bounding box detectors by introducing an additional angle dimension. For in-
stance, [24] presented a rotation-invariant detector based on one-stage SSD [25].
[18] introduced a rotated detector based on two-stage Faster RCNN [34]. [6] de-
signed an RoI transformer to learn the transformation from BB to OBB and
thereafter, the rotation-invariant features are extracted. [12] formulated a gener-
ative probabilistic model to extract OBB proposals. For each proposal, the loca-
tion, size and orientation are determined by searching the local maximum likeli-
hood. Other possible ways of extracting OBB include, fitting detected masks [3,
10] and regressing OBB with anchor-free models [49], two new concepts in litera-
ture. While these approaches have promising performance on aerial images, they
are not well-suited for oriented objects with high aspect ratios and complex envi-
ronments. For this reason, we hypothesize that a new kind of loss is necessary to
obtain improvements under challenging conditions. For the purpose of compara-
tive evaluation, we implement both anchor-based and anchor-free frameworks as
baselines in our experiments. We later show how these models, when equipped
with PIoU Loss, can yield better results in both retail and aerial data.

2.2 Regression Losses

For bounding box regression, actively used loss functions are Mean Square Er-
ror [29] (MSE, L2 loss, the sum of squared distances between target and predicted
variables), Mean Absolute Error [38] (MAE, L1 loss, the sum of absolute differ-
ences between target and predicted variables), Quantile Loss [2] (an extension of
MAE, predicting an interval instead of only point predictions), Huber Loss [13]
(basically absolute error, which becomes quadratic when error is small) and Log-
Cosh Loss (the logarithm of the hyperbolic cosine of the prediction error) [30].
In practise, losses in common used detectors [32, 25, 34] are extended from the
base functions above. However, we can not directly use them since there is an
additional angle dimension involved in the OBB descriptor.
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Fig. 2. Our proposed PIoU is a general concept that is applicable to most OBB-based
frameworks. All possible predicted (green) and g/t (red) OBB pairs are matched to
compute their PIoU. Building on that, the final PIoU loss is calculated using Eq. 14.

Besides the base functions, there have been several works that introduce IoU
losses for horizontal bounding box. For instance, [45] propose an IoU loss which
regresses the four bounds of a predicted box as a whole unit. [35] extends the
idea of [45] by introducing a Generalized Intersection over Union loss (GIoU loss)
for bounding box regression. The main purpose of GIoU is to get rid of the case
that two polygons do not have an intersection. [37] introduce a novel bounding
box regression loss based on a set of IoU upper bounds. However, when using
oriented bounding box, those approaches become much more complicated thus
are hard to implement, while the proposed PIoU loss is much simpler and suitable
for both horizontal and oriented box. It should be noted that the proposed
PIoU loss is different from [48] in which the IoU is computed based on axis
alignment and polygon intersection, our method is more straightforward, i.e. IoU
is calculated directly by accumulating the contribution of interior overlapping
pixels. Moreover, the proposed PIoU loss is also different from Mask Loss in
Mask RCNN [10]. Mask loss is calculated by the average binary cross-entropy
with per-pixel sigmoid (also called Sigmoid Cross-Entropy Loss). Different from
it, our proposed loss is calculated based on positive IoU to preserve intersection
and union areas between two boxes. In each area, the contribution of pixels are
modeled and accumulated depending on their spatial information. Thus, PIoU
loss is more general and sensitive to OBB overlaps.

3 Pixels-IoU (PIoU) Loss

In this section, we present in detail the PIoU Loss. For a given OBB b encoded
by (cx, cy, w, h, θ), an ideal loss function should effectively guide the network
to maximize the IoU and thereby the error of b can be minimized. Towards
this goal, we first explain the IoU method. Generally speaking, an IoU function
should accurately compute the area of an OBB as well as its intersection with
another box. Since OBB and the intersection area are constructed by pixels
in image space, their areas are approximated by the number of interior pixels.
Specifically, as shown in Figure 3(a), ti,j (the purple point) is the intersection
point between the mid-vertical line and its perpendicular line to pixel pi,j (the
green point). As a result, a triangle is constructed by OBB center c (the red
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Fig. 3. General idea of the IoU function. (a) Components involved in determining the
relative position (inside or outside) between a pixel p (green point) and an OBB b (red
rectangle). Best viewed in color. (b) Distribution of the kernelized pixel contribution
F (pi,j |b) with different distances between pi,j and box center c. We see that F (pi,j |b)
is continuous and differentiable due to Eq. 9. Moreover, it approximately reflects the
value distribution in Eq. 1 when the pixels pi,j are inside and outside b.

point), pi,j and ti,j . The length of each triangle side is denoted by dwi,j , d
h
i,j and

di,j . To judge the relative location (inside or outside) between pi,j and b, we
define the binary constraints as follows:

δ(pi,j |b) =

 1, dwi,j ≤
w

2
, dhi,j ≤

h

2
0, otherwise

(1)

where dij denotes the L2-norm distance between pixel (i, j) and OBB cen-
ter (cx, cy), dw and dh denotes the distance d along horizontal and vertical
direction respectively:

dij = d(i, j) =
√

(cx − i)2 + (cy − j)2 (2)

dwij = |dij cosβ| (3)

dhij = |dij sinβ| (4)

β =


θ + arccos

cx − i
dij

, cy − j ≥ 0

θ − arccos
cx − i
dij

, cy − j<0

(5)

Let Bb,b′ denotes the smallest horizontal bounding box that covers both b
and b′. We can then compute the intersection area Sb∩b′ and union area Sb∪b′

between two OBBs b and b′ using the statistics of all pixels in Bb,b′ :

Sb∩b′ =
∑

pi,j∈Bb,b′

δ(pi,j |b)δ(pi,j |b′) (6)

Sb∪b′ =
∑

pi,j∈Bb,b′

δ(pi,j |b)+δ(pi,j |b′)− δ(pi,j |b)δ(pi,j |b′) (7)



6 Z. Chen et al.

The final IoU of b and b′ can be calculated by dividing Sb∩b′ and Sb∪b′ .
However, we observe that Eq. 1 is not a continuous and differentiable function.
As a result, back propagation (BP) cannot utilize an IoU-based loss for training.
To solve this problem, we approximate Eq. 1 as F (pi,j |b) taking on the product
of two kernels:

F (pi,j |b) = K(dwi,j , w)K(dhi,j , h) (8)

Particularly, the kernel function K(d, s) is calculated by:

K(d, s) = 1− 1

1 + e−k(d−s)
(9)

where k is an adjustable factor to control the sensitivity of the target pixel
pi,j . The key idea of Eq. 8 is to obtain the contribution of pixel pi,j using the
kernel function in Eq. 9. Since the employed kernel is calculated by the relative
position (distance and angle of the triangle in Figure 3(a)) between pi,j and b,
the intersection area Sb∩b′ and union area Sb∪b′ are inherently sensitive to both
OBB rotation and size. In Figure 3(b), we find that F (pi,j |b) is continuous and
differentiable. More importantly, it functions similarly to the characteristics of
Eq. 1 such that F (pi,j |b) is close to 1.0 when the pixel pi,j is inside and otherwise
when F (pi,j |b) ∼ 0. Following Eq. 8, the intersection area Sb∩b′ and union area
Sb∪b′ between b and b′ are approximated by:

Sb∩b′ ≈
∑

pi,j∈Bb,b′

F (pi,j |b)F (pi,j |b′) (10)

Sb∪b′ ≈
∑

pi,j∈Bb,b′

F (pi,j |b)+F (pi,j |b′)− F (pi,j |b)F (pi,j |b′) (11)

In practice, to reduce the computational complexity of Eq. 11, Sb∪b′ can be
approximated by a simpler form:

Sb∪b′ = w × h+ w′ × h′ − Sb∩b′ (12)

where (w, h) and (w′, h′) are the size of OBBs b and b′, respectively. Our ex-
periment in Section 5.2 shows that Eq. 12 can effectively reduce the complexity
of Eq. 10 while preserving the overall detection performance. With these terms,
our proposed Pixels-IoU (PIoU) is computed as:

PIoU(b, b′) =
Sb∩b′

Sb∪b′
(13)

Let b denotes the predicted box and b′ denotes the ground-truth box. A pair
(b, b′) is regarded as positive if the predicted box b is based on a positive anchor
and b′ is the matched ground-truth box (an anchor is matched with a ground-
truth box if the IoU between them is larger them 0.5). We use M to denote the
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Table 1. Comparison between different datasets with OBB annotations. ≈ indicate
estimates based on selected annotated samples as full access was not possible.

Dataset Scenario Median Ratio Images Instances

SZTAKI [1] Aerial ≈1:3 9 665
VEDAI [31] Aerial 1:3 1268 2950
UCAS-AOD [50] Aerial 1:1.3 1510 14596
HRSC2016 [26] Aerial 1:5 1061 2976
Vehicle [23] Aerial 1:2 20 14235
DOTA [39] Aerial 1:2.5 2806 188282
SHIP [18] Aerial ≈1:5 640 -
OOP [12] PASCAL ≈1:1 4952 -
Proposed Retail 1:20 47000 48000

set of all positive pairs. With the goal to maximize the PIoU between b and b′,
the proposed PIoU Loss is calculated by:

Lpiou =
−
∑

(b,b′)∈M lnPIoU(b, b′)

|M |
(14)

Theoretically, Eq. 14 still works if there is no intersection between b and b′.
This is because PIoU(b, b′) > 0 based on Eq. 9 and the gradients still exist
in this case. Moreover, the proposed PIoU also works for horizontal bounding
box regression. Specifically, we can simply set θ = 0 in Eq. 5 for this purpose.
In Section 5, we experimentally validate the usability of PIoU for horizontal
bounding box regression.

4 Retail50K Dataset

OBB detectors have been actively studied for many years and several datasets
with such annotations have been proposed [39, 1, 23, 26, 31, 50, 18, 12]. As shown
in Table 1, most of them only focused on aerial images (Figure 4 (a),(b)) while
a few are annotated based on existing datasets such as MSCOCO [22], PAS-
CAL VOC [7] and ImageNet [5]. These datasets are important to evaluate the
detection performance with simple backgrounds and low aspect ratios. For ex-
ample, aerial images are typically gray and texture-less. The statistics in [39]
shows that most datasets of aerial images have a wide range of aspect ratios,
but around 90% of these ratios are distributed between 1:1 and 1:4, and very few
images contain OBBs with aspect ratios larger than 1:5. Moreover, aspect ratios
of OBBs on PASCAL VOC are mostly close to square (1:1). As a result, it is
hard to assess the capability of detectors on objects with high aspect ratios and
complex backgrounds using existing datasets. Motivated by this, we introduce a
new dataset, namely Retail50K, to advance the research of detection of rotated
objects in complex environments. We intend to make this publicly available to
the community (https://github.com/clobotics/piou).

Figure 4 (c) illustrates a sample image from Retail50K dataset. Retail50K is
a collection of 47,000 images from different supermarkets. Annotations on those
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(a) DOTA (b) HRSC (c) Retail50K

Fig. 4. Sample images and their annotations of three datasets evaluated in our ex-
periments: (a) DOTA [39] (b) HRSC2016 [26] (c) Retail50K. There are two unique
characteristics of Retail50K: (1) Complex backgrounds such as occlusions (by price
tags), varied colours and textures. (2) OBB with high aspect ratios.
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Fig. 5. Statistics of different properties of Retail50K dataset.

images are the layer edges of shelves, fridges and displays. We focus on such
retail environments for three reasons: (1) Complex background. Shelves and
fridges are tightly filled with many different items with a wide variety of colours
and textures. Moreover, layer edges are normally occluded by price tags and sale
tags. Based on our statistics, the mean occlusion is around 37.5%. It is even more
challenging that the appearance of price tags are different in different supermar-
kets. (2) High aspect ratio. Aspect ratio is one of the essential factors for
anchor-based models [33]. Bounding boxes in Retail50K dataset not only have
large variety in degrees of orientation, but also a wide range of aspect ratios. In
particular, the majority of annotations in Retail50K are with high aspect ratios.
Therefore, this dataset represents a good combination of challenges that is pre-
cisely the type we find in complex retail environments.(3) Useful in practice.
The trained model based on Retail50K can be used for many applications in
retail scenarios such as shelf retail tag detection, automatic shelf demarcation,
shelf layer and image yaw angle estimation, etc. It is worth to note that although
SKU-110K dataset [9] is also assembled from retail environment such as super-
market shelves, the annotations in this dataset are horizontal bounding boxes
(HBB) of shelf products since it mainly focuses on object detection in densely
packed scenes. The aspect ratios of its HBB are distributed between 1:1-1:3 and
hence, it does not cater to the problem that we want to solve.

Images and Categories: Images in Retail50K were collected from 20 super-
market stores in China and USA. Dozens of volunteers acquired data using their
personal cellphone cameras. To increase the diversity of data, images were col-
lected in multiple cities from different volunteers. Image quality and view settings
were unregulated and so the collected images represent different scales, viewing
angles, lighting conditions, noise levels, and other sources of variability. We also
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recorded the meta data of the original images such as capture time, volunteer
name, shop name and MD5 [40] checksum to filter out duplicated images. Un-
like existing datasets that contain multiple categories [39, 22, 7, 5], there is only
one category in Retail50K dataset. For better comparisons across datasets, we
also employ DOTA [39] (15 categories) and HRSC2016 [26] (the aspect ratio of
objects is between that of Retail50K and DOTA) in our experiments (Figure 4).
Annotation and Properties: In Retail50K dataset, bounding box annotations
were provided by 5 skilled annotators. To improve their efficiency, a handbook
of labelling rules was provided during the training process. Candidate images
were grouped into 165 labelling tasks based on their meta-data so that peer
reviews can be applied. Finally, considering the complicated background and
various orientations of layer edges, we perform the annotations using arbitrary
quadrilateral bounding boxes (AQBB). Briefly, AQBB is denoted by the vertices
of the bounding polygon in clockwise order. Due to high efficiency and empirical
success, AQBB is widely used in many benchmarks such as text detection [15],
object detection in aerial images [18], etc. Based on AQBB, we can easily com-
pute the required OBB format which is denoted by (cx, cy, w, h, θ).

Since images were collected with personal cellphone cameras, the original
images have different resolutions; hence they were uniformly resized into 600×800
before annotation took place. Figure 5 shows some statistics of Retail50K. We see
that the dataset contains a wide range of aspect ratios and orientations (Figure 5
(a) and (b)). In particular, Retail50K is more challenging as compared to existing
datasets [23, 39, 18] since it contains rich annotations with extremely high aspect
ratios (higher than 1:10). Similar to natural-image datasets such as ImageNet
(average 2) and MSCOCO (average 7.7), most images in our dataset contain
around 2-6 instances with complex backgrounds (Figure 5 (c)). For experiments,
we selected half of the original images as the training set, 1/6 as validation set,
and 1/3 as the testing set.

5 Experiments

5.1 Experimental Settings

We evaluate the proposed PIoU loss with anchor-based and anchor-free OBB-
detectors (RefineDet, CenterNet) under different parameters, backbones. We also
compare the proposed method with other state-of-the-art OBB-detection meth-
ods in different benchmark datasets (i.e. DOTA [39], HRSC2016 [26], PASCAL
VOC [7]) and the proposed Retail50K dataset. The training and testing tasks
are accomplished on a desktop machine with Intel(R) Core(TM) i7-6850K CPU
@ 3.60GHzs, 64 GB installed memory, a GeForce GTX 1080TI GPU (11 GB
global memory), and Ubuntu 16.04 LTS. With this machine, the batch size is
set to 8 and 1 for training and testing, respectively.
Anchor-based OBB Detector: For anchor-based object detection, we train
RefineDet [46] by updating its loss using the proposed PIoU method. Since the
detector is optimized by classification and regression losses, we can easily replace
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the regression one with PIoU loss Lpiou while keeping the original Softmax Loss
Lcls for classification. We use ResNet [11] and VGG [36] as the backbone models.
The oriented anchors are generated by rotating the horizontal anchors by kπ/6
for 0 ≤ k < 6. We adopt the data augmentation strategies introduced in [25]
except cropping, while including rotation (i.e. rotate the image by a random angle
sampled in [0, π/6]). In training phase, the input image is resized to 512×512.
We adopt the mini-batch training on 2 GPUs with 8 images per GPU. SGD is
adopted to optimize the models with momentum set to 0.9 and weight decay
set to 0.0005. All evaluated models are trained for 120 epochs with an initial
learning rate of 0.001 which is then divided by 10 at 60 epochs and again at 90
epochs. Other experimental settings are the same as those in [46].
Anchor-free OBB Detector: To extend anchor-free frameworks for detecting
OBB, we modify CenterNet [49] by adding an angle dimension regressed by L1-
Loss in its overall training objective as our baseline. To evaluate the proposed
loss function, in similar fashion as anchor-based approach, we can replace the
regression one with PIoU loss Lpiou while keeping the other classification loss
Lcls the same. Be noted that CenterNet uses a heatmap to locate the center of
objects. Thus, we do not back-propagate the gradient of the object’s center when
computing the PIoU loss. We use DLA [44] and ResNet [11] as the backbone
models. The data augmentation strategies is the same as those for RefineDet-
OBB (shown before). In training phase, the input image is resized to 512×512.
We adopt the mini-batch training on 2 GPUs with 16 images per GPU. ADAM is
adopted to optimize the models. All evaluated models are trained for 120 epochs
with an initial learning rate of 0.0005 which is then divided by 10 at 60 epochs
and again at 90 epochs. Other settings are the same as those in [49].

5.2 Ablation Study

Comparison on different parameters: In Eq. 9, k is an adjustable factor in
our kernel function to control the sensitivity of each pixel. In order to evaluate
its influence as well as to find a proper value for the remaining experiments, we
conduct a set of experiments by varying k values based on DOTA [39] dataset
with the proposed anchor-based framework. To simplify discussions, results of
k = 5, 10, 15 are detailed in Table 2 while their distributions can be visualized
in Fig. 3(b). We finally select k = 10 for the rest of the experiments since it
achieves the best accuracy.
Comparison for oriented bounding box: Based on DOTA [39] dataset, we
compare the proposed PIoU loss with the commonly used L1 loss, SmoothL1 loss
as well as L2 loss. For fair comparisons, we fix the backbone to VGGNet [36]
and build the network based on FPN [20]. Table 3 details the comparisons and
we can clearly see that the proposed PIoU Loss improves the detection perfor-
mance by around 3.5%. HPIoU (Hard PIoU) loss is the simplified PIoU loss
using Eq. 12. Its performance is slightly reduced but still comparable to PIoU
loss. Thus, HPIoU loss can be a viable option in practise as it has lower compu-
tational complexity. We also observe that the proposed PIoU costs 15-20% more
time than other three loss functions, which shows that it is still acceptable in
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Table 2. Comparison between different sensitivity factor k in Eq. 9 for PIoU loss on
DOTA dataset. RefineDet [46] is used as the detection model.

k AP AP50 AP75

5 46.88 59.03 34.73
10 54.24 67.89 40.59
15 53.41 65.97 40.84

Table 3. Comparison between different losses for oriented bounding box on DOTA
dataset. RefineDet [46] is used as the detection model. HPIoU (Hard PIoU) loss refers
to the PIoU loss simplified by Eq. 12. Training time is estimated in hours.

Loss AP AP50 AP75 Training Time

L1 Loss 50.66 64.14 37.18 20
L2 Loss 49.70 62.74 36.65 20
SmoothL1 Loss 51.46 65.68 37.25 21.5
PIoU Loss 54.24 67.89 40.59 25.7
HPIoU Loss 53.37 66.38 40.36 24.8

Table 4. Comparison between different losses for horizontal bounding box on PASCAL
VOC2007 dataset. SSD [25] is used as the detection model.

Loss AP AP50 AP60 AP70 AP80 AP90

SmoothL1 Loss 48.8 79.8 72.9 60.6 40.3 10.2
GIoU Loss [35] 49.9 79.8 74.1 63.2 41.9 12.4
PIoU Loss 50.3 80.1 74.9 63.0 42.5 12.2

practice. We also observed that HPIoU costs less training time than PIoU. Such
observation verifies the theoretical analysis and usability of Eq. 12.
Comparison for horizontal bounding box: Besides, we also compare the
PIoU loss with SmoothL1 loss and GIoU loss [35] for horizontal bounding box
on PASCAL VOC dataset [7]. In Table 4, we observe that the proposed PIoU loss
is still better than SmoothL1 loss and GIoU loss for horizontal bounding box re-
gression, particularly at those AP metrics with high IoU threshold. Note that the
GIoU loss is designed only for horizontal bounding box while the proposed PIoU
loss is more robust and well suited for both horizontal and oriented bounding
box. Together with the results in Table 3, we observe the strong generalization
ability and effectiveness of the proposed PIoU loss.

5.3 Benchmark Results

Retail50K: We evaluate our PIoU loss with two OBB-detectors (i.e. the OBB
versions of RefineDet [46] and CenterNet [49]) on Retail50K dataset. The exper-
imental results are shown in Table 5. We observe that, both detectors achieve
significant improvements with the proposed PIoU loss (∼ 7% improvement for
RefineDet-OBB and ∼ 6% improvement for CenterNet-OBB). One reason for
obtaining such notable improvements is that the proposed PIoU loss is much
better suited for oriented objects than the traditional regression loss. Moreover,
the improvements from PIoU loss in Retail50K are more obvious than those
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Table 5. Detection results on Retail50K dataset. The PIoU loss is evaluated on Re-
fineDet [46] and CenterNet [49] with different backbone models.

Method Backbone AP AP50 AP75 Time (ms) FPS

RefineDet-OBB [46] ResNet-50 53.96 74.15 33.77 142 7
RefineDet-OBB+PIoU ResNet-50 61.78 80.17 43.39 142 7
RefineDet-OBB [46] ResNet-101 55.46 77.05 33.87 167 6
RefineDet-OBB+PIoU ResNet-101 63.00 79.08 46.01 167 6

CenterNet-OBB [49] ResNet18 54.44 76.58 32.29 7 140
CenterNet-OBB+PIoU ResNet18 61.02 87.19 34.85 7 140
CenterNet-OBB [49] DLA-34 56.13 78.29 33.97 18.18 55
CenterNet-OBB+PIoU DLA-34 61.64 88.47 34.80 18.18 55

Table 6. Detection results on HRSC2016 dataset. Aug. indicates data augmentation.
Size means the image size that used for training and testing.

Method Backbone Size Aug. mAP FPS

R2CNN [14] ResNet101 800 × 800 × 73.03 2
RC1 & RC2 [27] VGG-16 - - 75.7 <1fps
RRPN [28] ResNet101 800 × 800 × 79.08 3.5
R2PN [47] VGG-16 -

√
79.6 <1fps

RetinaNet-H [41] ResNet101 800 × 800
√

82.89 14
RetinaNet-R [41] ResNet101 800 × 800

√
89.18 10

RoI-Transformer [6] ResNet101 512 × 800 × 86.20 -

R3Det [41]
ResNet101 300 × 300

√
87.14 18

ResNet101 600 × 600
√

88.97 15
ResNet101 800 × 800

√
89.26 12

CenterNet-OBB [49] ResNet18 512 × 512
√

67.73 140
CenterNet-OBB+PIoU ResNet18 512 × 512

√
78.54 140

CenterNet-OBB [49] ResNet101 512 × 512
√

77.43 45
CenterNet-OBB+PIoU ResNet101 512 × 512

√
80.32 45

CenterNet-OBB [49] DLA-34 512 × 512
√

87.98 55
CenterNet-OBB+PIoU DLA-34 512 × 512

√
89.20 55

in DOTA (c.f. Table 3), which could mean that the proposed PIoU loss is ex-
tremely useful for objects with high aspect ratios and complex environments.
This verifies the effectiveness of the proposed method.

HRSC2016: The HRSC2016 dataset [26] contains 1070 images from two sce-
narios including ships on sea and ships close inshore. We evaluate the proposed
PIoU with CenterNet [49] on different backbones, and compare them with sev-
eral state-of-the-art detectors. The experimental results are shown in Table 6.
It can be seen that the CenterNet-OBB+PIoU outperforms all other methods
except R3Det-800. This is because we use a smaller image size (512×512) than
R3Det-800 (800×800). Thus, our detector preserves a reasonably competitive
detection performance, but with far better efficiency (55 fps v.s 12 fps). This
exemplifies the strength of the proposed PIoU loss on OBB detectors.

DOTA: The DOTA dataset [39] contains 2806 aerial images from different sen-
sors and platforms with crowd-sourcing. Each image is of size about 4000×4000



PIoU Loss 13

Table 7. Detection results on DOTA dataset. We report the detection results for each
category to better demonstrate where the performance gains come from.

Method Backbone Size PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

SSD [25] VGG16 512 39.8 9.1 0.6 13.2 0.3 0.4 1.1 16.2 27.6 9.2 27.2 9.1 3.0 1.1 1.0 10.6
YOLOV2 [33] DarkNet19 416 39.6 20.3 36.6 23.4 8.9 2.1 4.8 44.3 38.4 34.7 16.0 37.6 47.2 25.5 7.5 21.4
R-FCN [4] ResNet101 800 37.8 38.2 3.6 37.3 6.7 2.6 5.6 22.9 46.9 66.0 33.4 47.2 10.6 25.2 18.0 26.8
FR-H [34] ResNet101 800 47.2 61.0 9.8 51.7 14.9 12.8 6.9 56.3 60.0 57.3 47.8 48.7 8.2 37.3 23.1 32.3
FR-O [39] ResNet101 800 79.1 69.1 17.2 63.5 34.2 37.2 36.2 89.2 69.6 59.0 49. 52.5 46.7 44.8 46.3 52.9
R-DFPN [42] ResNet101 800 80.9 65.8 33.8 58.9 55.8 50.9 54.8 90.3 66.3 68.7 48.7 51.8 55.1 51.3 35.9 57.9

R2CNN [14] ResNet101 800 80.9 65.7 35.3 67.4 59.9 50.9 55.8 90.7 66.9 72.4 55.1 52.2 55.1 53.4 48.2 60.7
RRPN [28] ResNet101 800 88.5 71.2 31.7 59.3 51.9 56.2 57.3 90.8 72.8 67.4 56.7 52.8 53.1 51.9 53.6 61.0

RefineDet [46] VGG16 512 80.5 26.3 33.2 28.5 63.5 75.1 78.8 90.8 61.1 65.9 12.1 23.0 50.9 50.9 22.6 50.9
RefineDet+PIoU VGG16 512 80.5 33.3 34.9 28.1 64.9 74.3 78.7 90.9 65.8 66.6 19.5 24.6 51.1 50.8 23.6 52.5
RefineDet [46] ResNet101 512 80.7 44.2 27.5 32.8 61.2 76.1 78.8 90.7 69.9 73.9 24.9 31.9 55.8 51.4 26.8 55.1
RefineDet+PIoU ResNet101 512 80.7 48.8 26.1 38.7 65.2 75.5 78.6 90.8 70.4 75.0 32.0 28.0 54.3 53.7 29.6 56.5

CenterNet [49] DLA-34 512 81.0 64.0 22.6 56.6 38.6 64.0 64.9 90.8 78.0 72.5 44.0 41.1 55.5 55.0 57.4 59.1
CenterNet+PIoU DLA-34 512 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 77.2 70.4 46.5 37.1 57.1 61.9 64.0 60.5

pixels and contains objects of different scales, orientations and shapes. Note that
image in DOTA is too large to be directly sent to CNN-based detectors. Thus,
similar to the strategy in [39], we crop a series of 512×512 patches from the
original image with the stride set to 256. For testing, the detection results are
obtained from the DOTA evaluation server. The detailed performances for each
category are reported so that deeper observations could be made. We use the
same short names, benchmarks and forms as those existing methods in [41] to
evaluate the effectiveness of PIoU loss on this dataset. The final results are shown
in Table 7. We find that the performance improvements vary among different
categories. However, it is interesting to find that the improvement is more plau-
sible for some categories with high aspect ratios. For example, harbour (HA),
ground track field (GTF), soccer-ball field (SBF) and basketball court (BC) all
naturally have large aspect ratios, and they appear to benefit from the inclusion
of PIoU. Such observations confirm that the PIoU can effectively improve the
performance of OBB detectors, particularly on objects with high-aspect ratios.
These verify again the effectiveness of the proposed PIoU loss on OBB detectors.
We also find that our baselines are relatively low than some state-of-the-art per-
formances. We conjecture the main reason is that we use much smaller input size
than other methods (512 vs 1024 on DOTA). However, note that the existing
result (89.2 mAP) for HRSC2016 in Table 6 already achieves the state-of-the-
art level performance with only 512 × 512 image size. Thus, the proposed loss
function can bring gain in this strong baseline.

In order to visually verify these performance improvements, we employ the
anchor-based model RefineDet [46] and conduct two independent experiments
using PIoU and SmoothL1 losses. The experiments are applied on all three
datasets (i.e. Retail50K, DOTA [39], HRSC2016 [26]) and selected visual re-
sults are presented in Figure 6. We can observe that the OBB detector with
PIoU loss (in red boxes) has more robust and accurate detection results than
the one with SmoothL1 loss (in yellow boxes) on all three datasets, particularly
on Retail50K, which demonstrates its strength in improving the performance for
high aspect ratio oriented objects. Here, we also evaluate the proposed HPIoU
loss with the same configuration of PIoU. In our experiments, the performances
of HPIoU loss are slightly lower than those of PIoU loss (0.87, 1.41 and 0.18
mAP on DOTA, Retail50K and HRSC2016 respectively), but still better than
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Fig. 6. Samples results using PIoU (red boxes) and SmoothL1 (yellow boxes) losses on
Retail50K (first row), HRSC2016 (second row) and DOTA (last row) datasets.

smooth-L1 loss while having higher training speed than PIoU loss. Overall, the
performances of HPIoU are consistent on all three datasets.

6 Conclusion

We introduce a simple but effective loss function, PIoU, to exploit both the angle
and IoU for accurate OBB regression. The PIoU loss is derived from IoU met-
ric with a pixel-wise form, which is simple and suitable for both horizontal and
oriented bounding box. To demonstrate its effectiveness, we evaluate the PIoU
loss on both anchor-based and anchor-free frameworks. The experimental results
show that PIoU loss can significantly improve the accuracy of OBB detectors,
particularly on objects with high-aspect ratios. We also introduce a new chal-
lenging dataset, Retail50K, to explore the limitations of existing OBB detectors
as well as to validate their performance after using the PIoU loss. In the future,
we will extend PIoU to 3D rotated object detection. Our preliminary results
show that PIoU can improve PointPillars [16] on KITTI val dataset [8] by 0.65,
0.64 and 2.0 AP for car, pedestrian and cyclist in moderate level, respectively.
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