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Abstract. In real-world scenarios, data tends to exhibit a long-tailed
distribution, which increases the difficulty of training deep networks. In
this paper, we propose a novel self-paced knowledge distillation frame-
work, termed Learning From Multiple Experts (LFME). Our method
is inspired by the observation that networks trained on less imbalanced
subsets of the distribution often yield better performances than their
jointly-trained counterparts. We refer to these models as ‘Experts’, and
the proposed LFME framework aggregates the knowledge from multi-
ple ‘Experts’ to learn a unified student model. Specifically, the proposed
framework involves two levels of adaptive learning schedules: Self-paced
Expert Selection and Curriculum Instance Selection, so that the knowl-
edge is adaptively transferred to the ‘Student’. We conduct extensive
experiments and demonstrate that our method is able to achieve supe-
rior performances compared to state-of-the-art methods. We also show
that our method can be easily plugged into state-of-the-art long-tailed
classification algorithms for further improvements.

1 Introduction

Deep convolutional neural networks (CNNs) have achieved remarkable success in
various computer vision applications such as image classification, object detec-
tion and face recognition. Training a CNN typically relies on carefully collected
large-scale datasets, such as ImageNet [6] and MS COCO [30] with hundreds of
examples for each class. However, collecting such a uniformly distributed dataset
in real-world scenarios is usually difficult since the underlying natural data dis-
tribution tends to exhibit a long-tailed property with few majority classes (head)
and large amount of minority classes (tail) [37,51,36]. When deep models are
trained under such imbalanced distribution, they are unlikely to achieve the
expected performances which necessitates developing relevant algorithms.
Recent approaches tackle this problem mainly from two aspects. First is
via re-sampling schemes or cost-sensitive loss functions to alleviate the negative
impact of data imbalance. Second is by head-to-tail knowledge transfer, where
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Fig. 1. Schematic illustration of our proposed method.

prior knowledge or induction bias is learned from the richly annotated classes
and generalize to the minority ones.

Orthogonal to the above two perspectives, we propose a novel self-paced
knowledge distillation method which can be easily plugged into previous meth-
ods. Our method is motivated by an interesting observation that learning a
more uniform distribution with fewer samples is sometimes easier than learning
a long-tailed distribution with more samples [37]. We first introduce four metrics
to measure the ‘ongtailness’ of a long-tailed distribution. We then show that if
we sort all the categories according to their cardinality, then splitting the entire
long-tailed dataset into subsets will lead to a smaller longtailness, which indi-
cates that they suffer a less severe data imbalance problem. Therefore training
a CNN on these subsets is expected to perform better than their jointly-trained
counterparts. For clarity, we refer to such a subset as cardinality-adjacent
subset, and the CNN trained on these subsets as Expert Models.

Once we acquire the well-trained expert models, they can be utilized as guid-
ance to train a unified student model. If we take a look at human learning pro-
cess as students, we can conclude two characteristics: 1) the student often takes
various courses from easy to hard, 2) as the learning proceeds, the student ac-
quires more knowledge from self-learning than from teachers and he/she may
even exceed his/her teachers. Inspired by these findings, we propose a Learning
From Multiple Experts (LFME) framework with two levels of adaptive learning
schemes, termed as self-paced expert selection and curriculum instance selection.
Specifically, the self-paced expert selection automatically controls the impact of
knowledge distillation from each expert, so that the learned student model will
gradually acquire the knowledge from the experts, and finally exceed the expert.
The curriculum instance selection, on the other hand, designs a curriculum for
the unified model where the training samples are organized from easy to hard, so
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that the unified student model will receive a less challenging learning schedule,
and gradually learns from easy to hard samples. A schematic illustration of our
LFME framework is shown in Fig. 1.

To verify the effectiveness of our proposed framework, we conduct extensive
experiments on three benchmark long-tailed classification datasets, and show
that our method is able to yield superior performances compared to the state-of-
the-art methods. It is worth noting that our method can be easily combined with
other state-of-the-art methods and achieve further improvements. Moreover, we
conduct extensive ablation studies to verify the contribution of each component.

Our contributions can be summarized as follows: (1) We introduce four met-
rics for evaluating the ‘longtailness’ of a distribution and further propose a
Learning From Multiple Experts knowledge distillation framework. (2) We pro-
pose two levels of adaptive learning schemes, i.e. model level and instance level,
to learn a unified Student model. (3) Our proposed method achieves state-of-
the-art performances on three benchmark long-tailed classification datasets, and
can be easily combined with state-of-art methods for further improvements.

2 Related Work

Long-tailed, Data-imbalanced Learning. The long-tailed learning prob-
lem has been comprehensively studied due to the prevalence of data imbalance
problem [17,37]. Most previous methods tackle this problem using either re-
sampling, re-weighting or ‘head-to-tail’ knowledge transfer. Re-sampling meth-
ods either adopt over-sampling on tail classes [3, 16] or use under-sampling [9, 44,
22] on head classes. On the other hand, various cost-sensitive loss functions have
been proposed in the literature to re-weight majority and minority instances [26,
51,8, 29,20,2,5]. Among them, Range Loss [51] minimizes the range of each class
to enhance the learning towards face recognition with long-tail while Focal Loss
[29] down-weights the loss assigned to well-classified examples to deal with class
imbalance in object detection. Label-Distribution-Aware Margin Loss (LDAM)
[2], on the other hand, encourages minority classes to have larger margins.
Researchers also try to employ head-to-tail knowledge transfer for data im-
balance. In [45,46] a transformation from minority classes to majority classes
regressors/classifiers is learned progressively while in [31] a meta embedding
equipped with a feature memory is proposed for such knowledge transfer.
Few-shot learning methods [10, 15,47] also try to generalize knowledge from a
richly annotated dataset to a low-shot dataset. This is often achieved by training
a meta-learner [12,48] from the many-shot classes and then generalize to new
few-shot classes. However, different from few-shot learning algorithms, we mainly
focus on learning a continuous spectrum of data distribution jointly, rather than
focus solely on the few-shot classes.
Knowledge Distillation. The idea of knowledge distillation was first intro-
duced in [19] for the purpose of model compression where a student network is
trained to mimic the behavior of a teacher network so that the knowledge is com-
pressed to the compact student network. Then the distillation target is further
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extended to hidden layer features [41] and visual attention [50], where attention
map from the teacher model is transferred to the student. Apart from distill-
ing for model compression, knowledge distillation is also proved to be effective
when the teacher and the student have identical architecture. i.e. self-distillation
[49,11]. Knowledge distillation is also applied in other areas such as continual
learning [28, 39], semi-supervised learning [32,7] and neural style transfer [21].
Curriculum and Self-paced Learning. The basic idea of curriculum learn-
ing is to organize samples or tasks in ascending order of difficulty, and it has
been widely adopted for weakly supervised learning [27,24,14] and reinforce-
ment learning[43, 33, 34]. Apart from designing easy-to-hard curriculums based
on prior knowledge, efforts have also been made to incorporate learning process
to dynamically adjust the curriculum. In [23] a self-paced curriculum deter-
mined by both prior knowledge and learning dynamics is proposed. In [13] a
multi-armed bandit algorithm is used to determine a syllabus, where the rate of
increase in prediction accuracy and network complexity are utilized as reward
signals. In [40], meta learning is employed to assign weights to training samples
based on gradient directions.

Table 1. Comparison of entire distribution and subsets under four metrics. Larger
values indicate more longtailness.

A
Metric A I atio| Ik | Tavs | Icins
Entire 256.0(0.707|0.769|0.524
Many-shot 12.8 [0.278]0.481|0.322
Medium-shot 4.7 10.122{0.356|0.235
Low-shot 4.0 10.099(0.320(0.209

3 DMotivation and Metrics for Evaluating Data Imbalance

The problem we address in this work is to train a CNN on a long-tailed clas-
sification task. Our method is inspired by an interesting empirical finding that,
training a CNN on a balanced dataset with fewer samples sometimes leads to
superior performances than on a long-tailed dataset with more samples. As the
experiment in [37] reveals that even when 40% of the positive samples are left
out for the representation learning, the object detection performances can still
be surprisingly improved a bit due to a more uniform distribution. This obser-
vation successfully emphasizes the importance of learning a balanced, uniform
distribution. To learn a more balanced distribution, a natural question to ask
would be, how to measure the data imbalance. Since almost every manually col-
lected dataset more or less contains various number of samples per class. To this
end, we first introduce four metrics for data imbalance measurement.
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For a long-tailed dataset, if we denote N, N;,C' to be the total number of
samples, number of samples in class ¢, and number of classes respectively, then
the four metrics for measuring data imbalance is introduced as follows:
Imbalance Ratio [42] is defined as the ratio between the largest and the small-

N;
est number of samples: ITrqtio = F24=

Ymin

Fig. 2. Comparison of CNN performances trained on cardinality-adjacent subsets and
the entire dataset.

Imbalance Divergence is defined as the KL-Divergence between the long-
tailed distribution and the uniform distribution:

Di
Ixr = D(P||Q) = ZPJOQE

where p; = % is the class probability for class i, and ¢; = % denotes the uniform

probability.
Imbalance Absolute Deviation [4] is defined as the sum of aboslute distance
between each long-tailed and uniform probability:

1 N;
Laps = Z |5 - WZ
Gini Coefficient is defined as

Zz‘C:1(2i -C- I)Ni
C
CZi:l Ni

Igini =

where 7 is the class index when all classes are sorted by cardinality in ascending
order.

The last three metrics all measure the distance between the current long-
tailed distribution and a uniform distribution. For all four metrics, smaller val-
ues indicate a more uniform distribution. Having these metrics at hand, we show
that for a long-tailed dataset, if we sort the classes by their cardinality, i.e. num-
ber of samples, then a subset of the classes with adjacent cardinality will become
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less long-tailed under these imbalance measurements. As Table 2 shows that, if
we split the long-tailed benchmark dataset ImageNet-LT into three splits (many-
shot, medium-shot, few-shot) according to class cardinality (following [31]), then
all four metrics become smaller, which indicates that these subsets become less
imbalanced than the original. Then the CNNs trained on these subsets are ex-
pected to perform better than their jointly-trained counterparts. We verify this
assumption on two long-tailed benchmark datasets ImageNet-LT and Places-LT
[31]. As shown in Fig. 2 that CNNs trained on these subsets outperform the joint
model by a large margin. This empirical result also accords with our intuition
that a continuous spectrum subset of adjacent classes is more balanced in terms
of cardinality, and the learning process involves less interference between the
majority and the minority.

4 The LFME framework

4.1 Overview
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Fig. 3. Overview of the LFME framework.

In this section, we describe the proposed LFME framework in detail. For-
mally, given a long-tailed dataset D with C' classes, we split the entire set of cat-
egories into L cardinality-adjacent subsets S1, s, ..., Sr using L — 1 thresholds
Ty, Ty, ...,Tr_1 such that S; = {c|T; < N. < T;11}, where N, is class ¢’s cardinal-
ity. Then we train L expert models on each of the cardinality-adjacent subset and
denote them as Mg, , Mp,, ..., Mg, . These expert models serve to 1) provide
output logits’ distribution for knowledge transfer 2) provide output confidence as
instance difficulty cues. These information enables us to develop self-paced and
curriculum learning schemes from both model level and instance level. From the
perspective of self-paced expert selection, we adopt a weighted knowledge
distillation between the output logits from the expert models and the student
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model. As the learning proceeds, the student will gradually approach the experts’
performances. In such cases, we do not want the experts to limit the learning
process of the student. To achieve this goal, we introduce a self-paced weighted
scheme based on the performance gap on the validation set between the expert
models and the student model. As the student model acquires knowledge from
both data and the expert models, the importance weight of knowledge distil-
lation will gradually decrease, and finally the unified student model is able to
achieve comparable or even superior performance compared to the experts. From
the perspective of curriculum instance selection, given the confidence scores
from the Expert models, we re-organize the training data from easy to hard, i.e.
from low-confidence to high-confidence. Then we exploit a soft weighted instance
selection scheme to conduct such curriculum, so that easy samples are trained
first, then harder samples are added to the training set gradually. This progres-
sive learning curriculum has proved to be beneficial for training deep models [1].
Finally, with the two levels of self-paced and curriculum learning schemes, the
knowledge from the expert models will be gradually transferred to the unified
student model. An overview of the LEME framework is shown in Fig 3.

4.2 Self-paced Expert Selection

Once we acquire the well-trained expert models, we feed the training data and
obtain their output predictions. Then we employ knowledge distillation as an
extra supervision signal to the student model. Specifically, for the expert Mg,
trained on I-th cardinality-adjacent subset S;, if we denote z(", z to be the output
logits of the current expert model and the current student model respectively,
then the knowledge distillation loss for expert Mg, is given by:

|51
Lip, = —H(r(20),7(zV)) = = 3" (") log(r ("))

i=1

where z() = Z.cg, is the student logits for classes in S; and

exp(z" /T) (0 = exp(5"/T)
> exp(zl/T) > exp(21 /1)

are the output probabilities using Softmax with temperature 7. T' is usually set
to be greater than 1 to increase the weight for smaller probabilities. In this way,
for each expert model Mg, we have its knowledge distillation loss to transfer its
knowledge to the student model, and there are L losses in total, corresponding to
L experts trained on L cardinality-adjacent subsets. The most straightforward
way to aggregate these losses would be simply summing them up. However, this
could be problematic, since as the learning process goes on, the student model’s
performance will gradually approach or even exceed the expert’s. In such cases,
we do not want the expert models become performance ceilings for the student
model, and we wish to gradually weaken the guidance from the experts as the
data-driven learning proceeds.

T(Z(l)) =

3
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To achieve this goal, we propose a Self-paced Expert Selection scheme based
on the performance gap between the student and the experts. In the experiments,
we use the Top-1 Accuracy on the validation set after each training epoch as
the measurement for performance gap. If we denote the Top-1 Accuracy of the
student model M and the expert model Mg, at epoch e to be Accaq and Accp,
respectively, then a weighting scheme is defined as follows:

1.0 ifAccpm < aAccp,
w; = § Accg, — Accpm
Accg, (1 — )

and w; is updated at the end of each epoch. The weight scheduling threshold «
controls the knowledge distillation to switch from ordinary to a self-paced de-
caying schedule. With the self-paced weight scheduling weight w;, the knowledge
transfer from the experts is automatically controlled by the student model’s per-
formance. The final knowledge distillation loss is the automatic weighted sum of
knowledge distillation loss from all expert models:

ifAccp > aAccp,

L
Lkgp = E wiLkp,
=1

4.3 Curriculum Instance Selection

Following the spirit of curriculum learning which mimics the human learning
process, three questions need to be answered: 1) how to evaluate the difficulty
of each instance, 2) how to select or unselect a sample, 3) how to design a
curriculum so that samples are organized from easy to hard.

For the first question, we use the expert models’ output confidence for each
instance as an indication for instance difficulty. Given a training instance (x;, y;),
suppose its ground-truth class y; falls into the I-th subset Sy, i.e. y; € S}, then we
take the corresponding I-th expert model and use its output prediction for class
y; as confidence score, denoted as p;. In this way, we can obtain the confidence
score for all the instances in the training set.

For the second question, we adopt a soft selection method for instance se-
lection. For instance (z;,y;), we replace the cross entropy loss with a weighted
version:

N
LCE = Z vgk)LCE(;vi)
=1

where vi(k) € [0, 1] is the selection weight at k-th epoch. A higher value of v; (close

to 1) indicates a soft selection of i-th instance, while a smaller value indicates a
soft unselection of that instance.

Finally, to answer the third question, we design an automatic curriculum to
determine the value of vgk), so that the instances are selected from easy to hard.
The simplest approach is to sort the instances using their confidence score p;
obtained by the expert models. However, different from traditional curriculum
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learning scenarios, our long-tailed classification problem involves both many-shot
and low-shot categories, where low-shot instances tend to have lower confidence
scores than many-shot instances. When sorted by the confidence score, the low-
shot samples tend to be classified as hard examples and are not selected at
first, which we do not wish to happen. To deal with such scenarios, instead
of sorting across the whole training set, we sort instances according to their
confidence scores within each cardinality subset. To be more specific, given
the expert output confidence, v¥ should be determined by three factors 1) the
expert confidence p;, 2) current epoch k, 3) the cardinality-adjacent subset S; the
i-th instance belongs to. Since the whole dataset is long-tailed, while we select
samples from easy to hard, we also wish to select as uniform as possible across all
subsets at the beginning of the training, and gradually add more hard samples
as the epoch increases. In other words, at the first epoch we wish to select all
the samples in the subset with lowest shots Sy, (i.e. classes in Sy, have the
smallest number of samples) and same amount of samples in other subsets, and
gradually add more samples until all the samples in all subsets are selected in
the last epoch.

To achieve this goal, if we denote Ns, = 57 s | Elsl‘ N; as the average shot
(average number of samples per class) in subset S;, then vl(k)
Ns

Pi e at epoch 1, and grows gradually to 1 at the last epoch. Then at epoch

is determined by

1
1, each subset softly selects its Ng,,,, easiest samples, and harder samples are

gradually softly added to the training process. Formally, we use a monotonically

increasing function f as scheduling function, so that Ufk)

pv% to 1. For simplicity, we choose the linear function in the experiments

and f lis defined as

will gradually grow from

1)y € 1
)y = (1= o) + 0"

where v( ) = = pi7-—— is the initial soft selection weight at epoch 1, and e, E' are

the current epoch and the total number of epochs respectively. It is worth noting
that the scheduling function f can also be any convex or concave function as long
as it is monotonically increasing within [1, E]. The impact of choosing different
f is further analyzed in the experimental section. A schematic illustration of wy
and v; can be found in Fig 4.

4.4 Training

With the Self-paced Expert Selection and Curriculum Instance Selection, we
obtain the final loss function:

N L N
L= wLop(@i,y)+ Y Y wilip, (M, Mpp; ;)
i=1 =1 i=1

where N, L are the number of training instances and number of experts re-
spectively, and v;, w; controls the two levels of adaptive learning schedules. In
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Wi fw)
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1.0
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Fig. 4. Weight scheduling function for (a) model level selection w;, and (b) instance
level selection v;.

practice, we first train expert models using ordinary Instance-level Random Sam-
pling, where each instance is sampled with equal probability. We then train the
whole LFME using Class-level Random Sampling adopted in [31, 25], where each
class is sampled with equal number of samples and probability.

5 Experiments

5.1 Experimental Settings

Dataset We evaluate our proposed method on three benchmark long-tailed
classification datasets: ImageNet-LT, Places-LT proposed in [31] and CIFAR100-
LT proposed in [2]. ImageNet-LT is created by sampling a subset of ImageNet
[6] following the Pareto distribution with power value o = 6. It contains 1000
categories with class cardinality ranging from 5 to 1280. Places-LT is created
similarly from Places dataset [52] and contains 365 categories with class cardi-
nality ranging from 5 to 4980. CIFAR100-LT is created with exponential decay
imbalance and controllable imbalance ratio.

Baselines  For the first two datasets, similar to [31], our baseline methods
include three re-weighting methods: Lifted Loss [35], Focal Loss [29] and Range
Loss [51], and one SOTA few-shot learning method FSLwF [12], as well as the
recent SOTA method OLTR [31]. For the CIFARI00-LT dataset, we mainly
compare with the SOTA method LDAM proposed in [2].

Implementation Details For the first two datasets, we choose the number
of cardinality-adjacent subsets L = 3 with thresholds {20,100} following the
splits in [31]. We refer to these subsets as many, medium and few-shot subsets.
For CIFAR100-LT, We equally split the 100 classes into two subsets: many and
few-shot. We use PyTorch [38] to implement all experiments. For the first two
datasets, we first train the experts using SGD for 120 epochs. Then the LFME
model is trained with SGD with momentum 0.9, weight decay 0.0005 for 90
epochs, batch size 256, learning rate 0.1 and divide by 0.1 every 40 epochs.
We use ResNet-10 [18] training from scratch for ImageNet-LT and ImageNet
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pretrained Resnet-152 for Places-LT. During training, class-balanced sampling
is adopted. For the CIFAR100-LT experiments, we first train the experts for 200
epochs and then train the LFME model using SGD with momentum 0.9, weight
decay 2 x 10™%, batch size 128, epochs 200, initial learning rate 0.1 and decay by
0.01 at 160 and 180 epochs, as well as deferred class-balanced sampling, same
as [2]. The backbone network is ResNet-32. The distillation temperature T is
set to 2, and the expert weight scheduling threshold « is set to 0.6 during the
experiments.

Table 2. Long-tailed classification results on ImageNet-LT and Place-LT. * denotes
reproduced results, other results are from [31].

Acc. ImageNet-LT Places-LT
Method Many Med. Few All | Many Med. Few All
Plain Model 40.9 10.7 0.4 20.9 | 45.9 224 0.36 27.2
Lifted Loss[35] 35.8 304 17.9 30.8 41.1 35.4 24 35.2
Focal Loss[29] 36.4 29.9 16.0 30.5 41.1 34.8 224 346
Range Loss[51] 358 30.3 17.6 30.7 | 41.1 354 232 351
FSLwF [12] 40.9 22.1 15.0 28.4 43.9 29.9 29.5 349
OLTR [31] 43.2 35.1 18.5 35.6 44.7 370 25.3 359
OLTR [31]* 40.7  33.2 174 33.8 42.2 38.1 17.8  35.3
Ours 47.1  35.0 17.5 37.2 384  39.1 21.7  35.2
Ours + Focal Loss | 46.7 358 173 373 | 37.0 39.6 23.0 352
Ours + OLTR 470 379 19.2 38.8 | 393 39.6 242 36.2

5.2 Main Results on Long-tailed Classification Benchmarks

Table 2 shows the long-tailed classification results on ImageNet-LT and Places-
LT dataset. As can be found that our method is able to achieve superior or
at least comparable results to the state-of-the-art methods such as OLTR. We
found that many-shot categories benefit most from our LFME framework, while
few-shot classes also demonstrate improvements and perform similarly with the
re-weighting methods. Moreover, we also demonstrate that our method can be
easily incorporated with other state-of-the-art methods, and we show the result
of LFME+Focal Loss and LFME+OLTR (where LFME is added in the second
stage of OLTR). We observe that both methods benefit from our expert model
on all three subsets, and the combination of our method and OLTR outperforms
previous methods by a large margin. It is also worth noting that our expert
models are trained using vanilla CNNs, and utilizing other techniques will further
lead to superior expert models, and assumably, superior student model.

To further demonstrate the statistical significance of the proposed method,
we conduct experiments on CIFAR100-LT with imbalance ratio 100. The results
in Table 3 show that LFME is able to achieve comparable performances with
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the SOTA method LDAM [2] and combining them will further improve LDAM
on both many and few-shot subsets.

Table 3. Results on CIFAR100-LT. Table 4. Effect of different scheduling func-

tions.
Methods [Many[ Few[ All
Plain CNN_ | 59.0 | 18.2]38.6 Schedule[Many[Medium| Few | All
Ours 59.0 |25.5|42.3 Lincar | 47.1 | 35.0 |17.5]37.2
LDAM [2] | 58.8|26.1[42.4 Convex | 47.2 | 34.6 |16.7/36.9
Ours+LDAM| 59.5 |28.0|43.8 Concave|47.5 | 34.7 |17.0]37.1

5.3 Ablation Study

Effectiveness of Each Component
We evaluate each part of our method and the result is shown in Table 5.
We compare with the following variants: 1) Instance-level Random Sampling
(Ins.Samp.), where each instance is sampled with equal probability. 2) Instance-
level Random Sampling + Ordinary Knowledge distillation (Ins.Samp.+KD),
where non-self-paced version knowledge distillation from the experts is added,
ie. w; = 1.0. 3) Class-level Random Sampling (Cls.Samp.), where each class
is sampled with equal number of samples and probability. 4) Class-level Ran-
dom Sampling + Ordinary Knowledge Distillation (Cls.Samp.+KD). 5) Class-
level Random Sampling + Knowledge Distillation + Self-paced Expert Selection
(Cls.Samp.+ KD + SpES). 6) Curriculum Instance Selection + Self-paced Ex-
pert Selection (CurlS+KD+SpES), which constitute our LFME framework.
From the results, we come
up with the following ob-
servations: first, compared to

the instance-random sampling, Table 5. Effectiveness of each component.

the adopted class-level random Accuracy Many|Med. |Few| All
sampling is able to largely im- Method

prove the few-shot performance Ins.Samp. 40.9 110.7] 0.4 |20.9
while also decrease the many- Ins.Samp.+KD 55.7 22.210.02|32.2
shot performance slightly, since Cls.Samp. 38.8 | 32.317.0|32.6
it samples more few-shot and Cls.Samp.+KD 44.9 134.5115.8|35.8
less many-shot instances. Sec- Cls.Samp.++KD-+SpES| 46.6 | 35.8 |16.5(37.1
ond, the introduction of knowl- CurIS+KD+SpES 47.1 135.017.5|37.2

edge distillation from experts

can significantly improve the re-

sults, as it brings 11.3% and 3.2% to the Instance-level Sampling and Class-level
Sampling baselines. However, while knowledge distillation brings improvements
for many-shot classes, it will also decrease the few-shot accuracy slightly. Third,
the Self-paced Expert Selection improves the knowledge distillation on all three
subsets. It removes the performance ceiling brought from the experts and allows
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the student to exceed the experts. As the results show that SpES brings 0.4%
and 1.83% overall performance gain respectively. Finally, the proposed Curricu-
lum Instance Selection further improves on the few-shot categories with 1.0%
in accuracy, so that the decrease on few-shot subset caused by the knowledge
distillation is compensated.
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Fig. 5. (a)-(c): Visualization of self-paced expert selection scheduler w; for many-shot,
medium-shot, few-shot expert model. (d): Loss curves before and after adding Self-
paced Expert Selection.

Visualization of Self-paced Expert Selection Self-paced expert selection
plays an important role in LFME for more efficient and effective knowledge
transfer. Fig 5 (a)-(c) gives a visualization of the expert selection weights w; for
many-shot, medium-shot, few-shot model. From the visualization, we observe
that w; serves to automatically control the knowledge transfer, as for many-
shot and medium-shot experts the knowledge is consistently distilled, while for
few-shot experts, the student instantly exceeds the expert’s performance, thus
leading to a decay in wjfewshot- Moreover, we also visualize the impact of Self-
paced Expert Selection in terms of cross-entropy loss curves, shown in Fig 5 (d),
and we find that it leads to a lower cross-entropy loss, which also verifies the
effectiveness of the proposed Self-paced Expert Selection.

Effect of Learning Scheduler We also discuss the impact of different learn-
ing schedules for v; as shown in Table 4. Given the initial instance confidence
v, we test with the following scheduling functions:

- fLinear = (1 - U(l))% + 1;(1)
- fCOnvez =1- (]. — ’U(l)) COS(%%)

log(1+ %
- fConca'ue - (1 - U(l))%
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Fig. 6. (a) Sensitivity analysis of a. (b) T-SNE visualization of classification weights.

The result shows that the linear growing function yields the best result, while the
concave the convex function f also produce similar performances. The convex
function yields the worst performances as it selects fewest instances at the start
of the training which may not be beneficial for the training dynamics.
Sensitivity Analysis of Hyperparameter a Fig. 6(a) shows the sensitivity
analysis of expert weight scheduling threshold «. From the result, we observe
that our model is robust to most a values. When « grows to 1.0, the Self-
paced Expert Selection becomes ordinary knowledge distillation, and result in a
performance decline.

Visualization of Classification Weights We visualize the classification
weights of vanilla CNN and our LEME via T-SNE in Fig 6(b). The results show
that our method results in a more structured, compact feature manifold. It
shows that without particular re-weighting, our method is also able to produce
discriminative feature space and classifiers.

6 Conclusions

In this paper, we propose a Learning From Multiple Experts framework for long-
tailed classification problem. By introducing the idea of cardinality-adjacent sub-
set which is less long-tailed, we train several expert models and propose two levels
of adaptive learning to distill the knowledge from the expert models to a unified
student model. From the extensive experiments and visualizations, we verify the
effectiveness of our proposed method as well as each of its component, and show
that the LFME framework is able to achieve state-of-the-art performances on
the long-tailed classification benchmarks.
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