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Abstract. In this paper, we investigate a new visual restoration task,
termed as hallucinating visual instances in total absentia (HVITA). Un-
like conventional image inpainting task that works on images with only
part of a visual instance missing, HVITA concerns scenarios where an
object is completely absent from the scene. This seemingly minor differ-
ence in fact makes the HVITA a much challenging task, as the restoration
algorithm would have to not only infer the category of the object in to-
tal absentia, but also hallucinate an object of which the appearance is
consistent with the background. Towards solving HVITA, we propose an
end-to-end deep approach that explicitly looks into the global seman-
tics within the image. Specifically, we transform the input image to a
semantic graph, wherein each node corresponds to a detected object in
the scene. We then adopt a Graph Convolutional Network on top of the
scene graph to estimate the category of the missing object in the masked
region, and finally introduce a Generative Adversarial Module to carry
out the hallucination. Experiments on COCO, Visual Genome and NYU
Depth v2 datasets demonstrate that the proposed approach yields truly
encouraging and visually plausible results.

1 Introduction

If we are given a masked image as the one shown in Fig. 1 (a) and are asked
to hallucinate the object that is entirely absent, we can, without much effort,

(a) (b) (c) (d)

Fig. 1: Hallucinating instances in total absentia. Given a masked image with a scene
object completely absent like (a), our approach hallucinates a contextually and visually
plausible result, in this case the back cover of a cell phone shown in (b), by explic-
itly accounting for the global semantics. State-of-the-art inpainting approach [87], in
this case where the target object is completely absent, fills the blank region with the
background texture, as depicted in (c). The ground truth is shown in (d).
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Fig. 2: Illustration of our framework. Given a masked image, we first detect the objects
in the un-masked region and transform the image to a graph. We then use a GCN
module to predict the semantic information of the masked part. Finally, conditioned
on the masked image and the predicted semantic information of the missing region, we
introduce a GAN module to produce our hallucination.

tell the type of the absent object and further imagine a fairly reasonable overall
appearance of the image content in the masked region. In this regard, we identify
this image to be an indoor scene featuring a desktop, on top of which we see
a monitor, a keyboard, and a lamp, and then based on their relative spatial
layouts, we may safely draw the conclusion that, the missing image content
concerns about a wireless phone, which often appears in the vicinity of these
visual instances.

We term this task, which has been barely explored in prior works, as hal-
lucinating visual instances in total absentia (HVITA). Despite human brains
are able to accomplish this task in a considerably effortless way, existing image
generation methods that omit the explicit reasoning on the inter-object seman-
tics, produce visually inferior results. In the case of Fig. 1 (c), a state-of-the-art
image inpainting approach [87], without analyzing the instance-level contexts,
fills the masked region using the background texture. In fact, all existing image
inpainting methods, to our best knowledge, rely on first observing a consider-
able fraction of the target instance before filling the absent part, and are thus
incompetent of tackling HVITA.

Towards solving the proposed HVITA task, we introduce an interesting ap-
proach that, to some degree, imitates the human reasoning process for halluci-
nating the missing content. Unlike inpainting schemes that rely upon a partial
instance being present, our approach works on scenarios where objects are in
total absentia. This means our approach attempts to infer not only the category
of the missing object but also a legitimate appearance consistent with the overall
ambiance of the input image.

Specifically, our proposed approach follows a end-to-end trainable architec-
ture that comprises three stages as illustrated in Fig. 2. In the first stage, we
transform the input image to a semantic graph wherein each node corresponds
to a detected object in the scene, obtained from an off-the-shelf detector. The
masked region is also modeled as a node, but with an unknown label to be pre-
dicted. In the second stage, we introduce a Graph Convolutional Network (GCN)
to regress the semantic information of the masked area, during which process the
global-level inter-object semantics are explicitly accounted for. Finally, we stack
a Generative Adversarial Netowrk (GAN) to restore the masked region with the
predicted semantic information and to generate visually realistic results.
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Our contribution is therefore a novel framework designated to handle the
proposed HVITA task, which is to our best knowledge the first attempt. This
is accomplished by modeling each input image as a semantic graph, and then
estimating the semantic information using a GCN module, followed by feeding
the predictions into a GAN module so as to produce the final hallucination. The
whole pipeline is end-to-end trainable. We evaluate our method on COCO [51],
Visual Genome [41], and NYU Depth v2 [61], whose images comes from real
world scenes with complex structural information, and obtain very encouraging
qualitative and quantitative results.

2 Related work

We briefly review here prior works related to ours, including graph convolutional
network, image inpainting, image generation, and image insertion.

Graph Convolutional Network. Earlier works on graph-related tasks ei-
ther assume the node features to be fixed [66, 81, 80, 55, 54, 43], or apply iterative
schemes to learn node representations, which are computationally expensive and
at times unstable [17, 71, 21, 75]. Inspired by the progress of deep learning [42, 72,
27], two categories graph convolutional neural networks are proposed: spectral-
based approaches, which aims to develop graph convolution based on the spectral
theory [47, 45, 39, 79, 12, 28, 9], and spatial-based ones, which investigates infor-
mation mutual dependency [78, 86, 31, 10, 4, 18, 60, 23, 19, 62, 3]. More recently,
the attention-based methods are introduced to GCN and have achieved very
promising results [1, 44, 53, 85, 84, 90, 77].

Image Inpainting. Conventional image inpainting methods, both diffusion-
based [7, 5, 46] and patch-based ones [6, 8, 11], use the intra-image information
to fill the masked area. Thanks to the progress of deep learning especially gen-
erative adversial networks [20], many deep approaches have been proposed [69,
40, 25, 65, 88, 48, 74]. These methods ensure the semantic continuity, yet at times
yield artifacts around the border. The more recent methods make use of both
intra-image information and learning from large datasets, and gain significant
improvement in terms of semantic continuity and visual authenticity [83, 87, 82,
89, 34, 93, 73, 88, 92]. However, image inpainting methods handles only parts of
a missing object, of which the semantic label is known, and therefore can not be
exploited to hallucinate completely-absent objects.

Image Generation. Image generation has gained unprecedented improve-
ment since the introduction of GAN [20]. Following works focus on improving
the capacity of the generator and the learning capability of the discriminator
[68, 52, 58, 89, 70], designing more stable loss function [56, 76, 50, 2], or introduc-
ing semantic information into the generation process [59, 64, 35, 33, 91, 63]. In
this work, we build our network based on the popular Conditional GAN [57] to
produce the final hallucinated image.

Object Insertion. Object insertion aims to insert a human-chosen object
into the target scene. Approaches of [24, 29, 14–16] focus on geometry for object
modeling [67], and those of [22, 36] utilize user interactions for model generation.
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Methods like [37, 38, 49], on the other hand, model the generation process as a
self-adaptive algorithm. Unlike our task, object insertion concerns only on the
insertion process, rather than inferring and further hallucinating the missing
object using scene semantics.

3 Method
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Fig. 3: Illustration of the proposed framework. The GCN module, object generator,
and refinement network are trained end-to-end.

⊕
denotes the operation that fills the

masked area with the restored object image, and
⊗

denotes concatenation. Note that,
in the Graph with Attention of Stage 2, the thickness of an edge reflects its value of
attention: a thicker edge indicates that the detected node is of higher importance to
the hallucination inference.

In this section, we show the working scheme of the proposed framework in
detail. As depicted in Fig. 3, our framework comprises three stages. In Stage 1,
we utilize a detection module on the input image, where the object of interest
is masked out, to detect the objects in the scene and extract their semantic and
spatial information. Meanwhile, we adopt an Autoencoder to obtain the global
feature of the masked image as a whole. In Stage 2, we model the masked image
as a graph, in which each node corresponds to an object in the scene. We then
insert two additional nodes, one for the absent object to be hallucinated and one
for the global feature, into the graph. Afterwards, we apply a GCN module to
estimate the features of the absent object. In Stage 3, we feed the hallucinated
features of the absent object and the masked image into a GAN-based restoring
module to achieve the restoration task.
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3.1 Stage 1: Detection Module and Autoencoder

We adopt a detection module in Stage 1 to detect the objects in the masked im-
age so as to derive instance-level features. Specifically, we train the Mask-RCNN
model [26] on our training set, where masked images are used, and apply the
trained detector on the test images. For each detected object, we construct a
1028-dimension feature vector that encodes both the semantic and spatial infor-
mation. Features in first 1024 dimensions are taken directly from the last layer
of Mask-RCNN to embrace the semantics, while features in the last four dimen-
sion, namely upper-left and lower-right coordinates of the detection bounding
box, are adopted to encode its spatial information. Such 1028-dimension vectors
are further fed to Stage 2, and taken to be the features of the corresponding
node in the scene graph.

Apart from the instance-level features, we also explicitly account for the
global appearance of the entire image by extracting image-level features. To
this end, we adopt a customized Autoencoder shown in Fig. 4a, where Batch
Normalization (BN) [32] and ReLU are implemented in each layer except the last
one. For the last layer, Tanh is adopted as the active function. We fill the masked
area in the input image with a pixel value of v = 0.5 (v ∈ [0, 1]). We then extract
the first 4096-dimension feature from the Autoencoder as the global feature of
the masked image, and pass feature vector to Stage 2. Specifically, the loss for
Autoencoder is taken to be pixel-level square loss between the reconstructed
image and the input image:

LAE =
1

N

N∑
i=1

‖Iiin − Îi‖2, (1)

where Iiin and Îi represent the i-th masked image and the reconstructed image
respectively, and N denotes the number of samples.

3.2 Stage 2: GCN Module

The second stage of our framework takes as input both the instance- and image-
level semantics obtained in Stage 1, and models the interplays between the scene
objects using a scene graph. Let N denotes the number of detected objects in
Stage 1. We construct a graph of N+2 nodes: N nodes that correspond to the N
detected object instances, one node that encodes the image-level global features,
and one node that denotes the missing object. We then link all the pairs of the
N + 2 nodes to form a complete graph.

Each node in the graph holds a 1028-dimensions feature. For the N detected-
object nodes, we directly take their instance-level features obtained in Stage 1 to
be the node features. For the image node that accounts for the global semantics,
we take the image-level feature of 4096 dimensions in Stage 1, and reduce it to
1024 dimensions using a learnable fully connected layer; we then pad 4 other
dimensions, namely the origin coordinate (0, 0) and the size of the image, to the
1024-dimension feature and form a 1028-dimension one. Finally for the absent-
object node, we initialize its first 1024 dimensions using Gaussian noise and stack
its 4-dimension location, i.e., the upper-left and lower-right coordinates of mask.
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Fig. 4: (a) shows the architecture of our Autoenocoder for extracting image-level se-
mantics, in which the first 4096-dimension feature is used as the global feature. (b)
shows the network architecture of the object generative adversarial network (OGAN)
for hallucinating the absent object in in the mask.

Next, we adopt a graph convolutional network to reveal the intrinsic relation-
ship between objects and derive the semantic features of the absent one to be
hallucinated. Specifically, we adopt the popular graph attention network (GAT)
model [77] to achieve this task. Given the input graph G = {V, E} and the cor-
responding features of nodes X = {x1, x2, ...x|V|}, xi ∈ RF , one layer of the
adopted GCN model can be formulated as

x′i =
∑

j:j→i∈E

eAθ(hφ(xi),hφ(xj))∑
j:j→i∈E e

Aθ(hφ(xi),hφ(xj))
∗ hφ(xj), (2)

where A is a function that takes a pair of nodes as input and outputs the
attention score between them, and h is a non-linear mapping that takes the
node features as input and maps them to a new space. The two functions A
and h are controlled by parameters θ and φ, respectively. The new feature of
the center node i is updated as the weighted sum of all the features from its
neighbors. Thanks to the attention mechanism, the network learns to recover
the feature of the absent object by interacting with other objects and global
semantics of the entire image.

The loss of the GCN module comprises two parts, LCE and Lfeat, defined
as follows,

LCE =
1

N

N∑
i=1

H(f(x′i), f(xi)), Lfeat =
1

N

N∑
i=1

||x′i − xi||2, (3)

where f denotes the classifier of detector in Stage 1 and f(·) returns the classifi-
cation probability, xi denotes the ground truth feature of the hallucinated object
in image i, and x′i is the aggregated feature of the hallucinated object from GCN
module. H denotes the cross entropy function. Specifically, LCE accounts for the
predicted label of the absent object, and Lfeat enforces the similarity between
the aggregated feature and the ground truth one. The loss for GCN module is
thus taken as

LGCN = LCE + Lfeat. (4)

The semantic feature of the hallucinated object, aggregated from its neighbour-
ing objects and the entire scene by the GCN module, is then passed to the next
stage.
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Fig. 5: Architecture of our global refinement adversarial network (GRAN).
⊕

denotes
summation and the

⊗
denotes concatenation. GRAN tasks as input the initial re-

stored image and outputs the refined one, ensuring the semantic continuity and visual
authenticity.

3.3 Stage 3: GAN module

Given the predicted class and features of the absent object, we conduct halluci-
nation on the masked area to produce the final image output. This is achieved, in
our implementation, via a GAN module. Specifically, our GAN module consists
of two networks, an object generative adversarial network (OGAN) for generat-
ing the object and a global refinement adversarial network (GRAN) for refining
restored image.

The structure of our OGAN is showed in Fig. 4b. It can be seen that the
network is designed as a conditional GAN to generate the target object with
the predicted class. In the Object Generator network, BN and Leaky ReLU are
implemented in every layer except the last, where Tanh is used as the activation
function. As for the Object Discriminator, BN and ReLU are applied to every
layer but the last, where no activation function is applied and least squares loss
[56] is implemented. To this end, we write,

min
OD

VOGAN (OD) =
1

2
Ex∼pdata(x)[(OD(x, y)− b)2] +

1

2
Ez∼pz(z)[(OD(OG(z), y)− a)2]

min
OG

VOGAN (OG) =
1

2
Ez∼pz(z)[(OD(OG(z), y)− c)2],

(5)

where OD denotes the Object Discriminator network, and OG denotes the Ob-
ject Generator network. a and b denote the ground truth fake and real labels,
respectively. c denotes the value that OG wants OD to believe for the fake data,
and y denotes the label of predicted class.

Once the image of the absent object is hallucinated, we resize and then
insert it into the masked area of the input image, and obtain the initial restored
image. Such restored images, despite semantically meaningful, turn out to be
visually implausible, as the OGAN focuses on producing an object image of a
specified class but overlooks the background content within the mask. This calls
for another image generator that looks at the image as a whole and explicitly
accounts for the visual continuity.

To this end, we introduce GRAN, a second GAN-based module that ensures
the semantic continuity and visual authenticity of the restored image. The archi-
tecture of our GRAN is shown in Fig. 5. It comprises a Refinement Network and
a Refinement Discriminator. For the Refinement Network, we implement it as an
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U-net structure, which utilizes multi-scale features and avoids gradient vanish-
ing. Specifically, in this network, BN and Leaky ReLU are implemented in every
layer except the last, where again Tanh is adopted as active function. As for the
Refinement Discriminator, we implement BN and ReLU in every layer except the
last one. We also adopt the least square loss for the Refinement Disriminator:

min
RD

VGRAN (RD) =
1

2
Ex∼pdata(x)[(RD(x)− b)2] +

1

2
Ez∼pz(z)[(RD(RN(z))− a)2]

min
RN

VGRAN (RN) =
1

2
Ez∼pz(z)[(RD(RN(z))− c)2],

(6)
where RD denotes the Refinement Discriminator network, and RN denotes the
Refinement network. Moreover, we impose a l1 loss on the Refinement network
for the un-masked areas:

Lvalid =
1

NIvalid

‖(1−M)� (Iout − Iis)‖1, (7)

where NIvalid denotes the number of unmasked pixels, M denotes the binary
mask (1 for holes), Iout denotes the output of the Refinement network, and Iis
denotes the initial restored image.

In the first training step, our GAN module is pre-trained to ensure the abil-
ity of generating visual realistic images. The details will be explained in the
experiment section.

3.4 End-to-end training

The GCN and GAN module in our framework are end-to-end trainable. In our
implementation, we adopt the end-to-end training scheme of the two modules,
as the visual authenticity loss of the GAN in Stage 3 may facilitate the GCN in
Stage 2 to aggregates and encode more discriminant information into its obtained
semantic feature. We shown in Fig. 6 a comparison between the results obtained
by end-to-end training and by separate training, where the former yields to the
more semantically plausible result.

In sum, the losses for GCN module, OGAN, and GRAN are summarized as
follows,

LGCN = λ1LRNGRAN + λ2LOGOGAN + LCE + Lfeat,

LOG = LRNGRAN + λ3LOGOGAN ,

LRN = LRNGRAN + λ4Lvalid,

(8)

where λ1, λ2, λ3 and λ4 denotes the balancing weights.

4 Experiments

In this section, we provide our experimental setups and show the results. Since
we are not aware of any existing work that performs exactly the same task as
we do here, we mainly focus on showing the promise of the proposed framework.
We also compare part of our framework with other popular models. Our goal
is, again, to show the possibility of hallucinating totally absent but reasonable
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(d)(c)(b)(a)

Fig. 6: Comparison between training Stage 2 and Stage 3 separately and end-to-end.
(a), (b), (c) and (d) denote, respectively, the masked image, restored image with end-
to-end training, restored image with separately training, and the ground truth.

(c)(b)(a)

Fig. 7: An example that our method produces visually and structurally reasonable,
yet distorted image completion, in this case the distorted car. Image (a) ,(b) and (c)
respectively denote the input, our restoration image, and the ground truth.

objects in the masked image, rather than trying to beat the state-of-the-art
GCN, GAN, and inpainting models. More complicated networks, as long as they
are end-to-end trainable, can be adopted in our framework to achieve potentially
better performances.

4.1 Datasets and Implementation Details

We adopt three datasets, COCO [51], Visual Genome [41], and NYU Depth
v2 [61] to validate the proposed object hallucination approach. Image from these
datasets feature complex scenes with rich contextual information, from which we
can draw discriminant information to infer the type and appearance of the absent
object. Other datasets, such as Pascal VOC [30] and ImageNet [13], do not fit our
purpose well, since images from Pascal VOC typically contain only one object,
while those from ImageNet often feature objects of the same class.

Microsoft COCO 2017 Dataset [51]. It is a detection dataset that com-
prises 123k complex scene images from 81 object classes for classification. We
perform HVITA on 20 out of 81 classes: we use 40k images for training, 5k
for validation, and 32k images for testing. We leave out the other classes, as
the state-of-the-art object detector, GCN, and GAN are still short of the ca-
pability to detect and generate objects under in-the-wild higher-order physical
constraints, such as the 3D orientation of a scene object. In the case of Fig. 7, for
example, even though our approach successfully encodes the type of the missing
object, in this case a car, and further generates a visually reasonable image, the
3D orientation of car, however, deviates from ground truth.

Visual Genome [41]. It comprises 110k images and 3.8m object instances.
We adopt this dataset because it features a large number of complex scenes.
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Term Ours GNN[39] Ours-NYU GNN-NYU Ours-Genome GNN-Genome

Accuracy (%) 87.93 79.23 80.41 75.54 85.01 80.47
Balanced Acc (%) 85.62 74.82 76.83 69.31 82.56 77.51

Table 1: Comparative results of our GCN module and GNN on COCO and NYU v2.

This dataset, however, includes a total number of 38k fine-grained object classes,
making it infeasible to train a classifier and detector that can perform well on
all classes with the limited samples. To this end, we group the finer-grained
classes into coarser ones, such as clustering blue suitcase and black suitcase into
a suitcase class. Then, we use the grouped classes as ground truth to train our
detection and GCN module. In our experiment, we implement our framework
on the same 20 classes as done for COCO. Thus, we use 30k images for training,
5k for validation, and 20k for testing. We use exactly same network structures
and training parameters as for the COCO dataset.

NYU Depth v2 [61]. It comprises 1449 images from real-world indoor
scenes. We adopt this dataset for testing the generalization capability of our
method, as it provides complex scene with abundant structural information.

Implementation Details. Our networks are implemented using PyTorch
and with 4 Tesla V-100 SXM2 GPUs. In the pre-training stage, the batch size for
Autoencoder, GCN module and GAN module are 192, 32 and 96, respectively.
During the end-to-end training stage, the batch size is set to 16 for GCN and
GAN module. The loss balancing weights λ1, λ2, λ3 and λ4 are set to be 0.01,
0.05, 5 and 0.1, respectively. We follow a two-step training strategy, which we find
to be more efficient and effective than the single-step strategy that trans Stage
2 and Stage 3 all at once. In the first step, we supervisedly pre-training Stage 2
and Stage 3 independently. And in the second step, we end-to-end training these
two stages with loss adjustment.

4.2 GCN Module

We compare our Graph Attention Network with GNN proposed by Kipf et al. [39]
on the classification accuracy and balanced class accuracy, to demonstrate the
its capability to infer the correct object class. It can be seen from Tab. 1 that our
GCN model outperforms GNN on both metrics. This is because the GNN model
aggregates the information of missing node from its neighbours averagely, thus
unable to learn relationship importance embedded in the structural information.

For the GCN module, we use a three-layer neural network with residual
connections. The number of attention heads for each layer are all set to be 6,
and the feature dimension of the head for each layer are set to be 128, 256, 1024
respectively. For the last layer, we adopt a ReLU activation function to make
the aggregated features comparable with the ground truth. The learning rate
of GCN module is set to be 0.003 in the pre-trainig stage and 0.00001 in the
end-to-end training stage.
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Term OG-only RN-only Full-OG Full-RN

PSNR 26.23 29.06 27.14 29.17
SSIM 0.9002 0.9144 0.9078 0.9165

Table 2: Results of the GAN networks trained separately (OG-only/RN-only) and
with end-to-end training (Full-OG/Full-RN).

4.3 GAN Module

We show here the pre-training process of our GAN module in detail. We feed the
ground-truth object feature and class label to the GAN module, and use ground-
truth object image and the scene image as the target output of OG and RN to
compute a l1 loss. An extra loss for OG is taken to be LsupOG = 1

NIOgt
‖IOG−IOgt‖1,

where the NIOgt denotes the number of pixels in the ground truth, IOG denotes
the generated image from OG, and IOgt denotes the ground truth object image.
We also define an extra loss for RN to be LsupRN = 1

NIhole
‖(M) � (Iout − Iin)‖1.

For the OG network, a squared RGB image with size 128 is generated. For the
RN network, however, a squared RGB image with size 512 is required for input
and output. To end this, for ground truth scene image, we first resize and then
crop it centered at the masked area.

Moreover, in the pre-training process, we randomly add Gaussian noises on
the background area in image generated by OG. This operation helps RN im-
prove the performance on ensuring semantic continuity and visual authenticity.
Here, the loss for OG and RN are computed as

Lpre
OG = LRNGRAN + β1LOGOGAN + β2Lsup

OG ,

Lpre
RN = LRNGRAN + β3Lvalid + β4Lsup

RN ,
(9)

where β1, β2, β3 and β4 denotes the loss balancing weights and are set to 5, 0.1,
0.1 and 0.5, respectively.

We compare the results of two training schemes for GAN module in pre-
training step: training OGAN and GRAN separately, and training them jointly
end-to-end. It can be seen from Tab. 2 that the end-to-end training improves the
performance of OG network by a large margin. This can be in part explained
by that, when training with GRAN, the supervision of background refinement
are passed to OGAN, allowing for the OG network to ensure both the visual
authenticity and the background continuity. The learning rate for GAN module
is set to 10−5 during the pre-training stage. During the end-to-end training stage,
the learning rate is reduced from 10−5 to 10−6.

4.4 User Study

To validate the authenticity of the hallucinated image, we conduct two user-
study experiments, where 166 users are involved to evaluate the visual quality
of our produced images. In the first experiment, we send each user 30 randomly
selected image pairs, where one of them is the ground-truth image and the other



12 J. Qiu et al.

Term COCO Visual Genome NYU COCO Visual Genome NYU
-Uexp1 -Uexp1 -Uexp1 -Uexp2 -Uexp2 -Uexp2

Score 0.406 0.399 0.373 3.38 3.31 3.17
Std 0.049 0.052 0.075 0.098 0.092 0.15

Table 3: Statistical results of user study experiments. std here denotes the standard
deviation of people.

Term Ours GNN Ours GNN Ours GNN Ours GNN
-full -full -full -LKL -LKL -without-G -without-G -without-S -without-S

Accuracy (%) 87.93 79.23 85.46 73.01 86.55 75.67 84.86 77.64
Balanced Acc (%) 85.62 74.82 80.12 70.56 84.19 71.78 81.21 72.58

Table 4: Results of Ours and GNN under different setups. We compare the performances
of the two networks trained with full settings in our paper (Ours-full/GNN-full), the
performances of the two networks trained using Kullback–Leibler divergence loss LKL

to replace the cross-entropy loss Lclass (Ours-LKL/GNN-LKL), the performance of the
two networks trained without global feature from Autoencoder (Ours-without-G/GNN-
without-G), and those of the two trainings without spatial information (Ours-without-
S/GNN-without-S).

is our hallucinated one, and ask the user to pick which image of the two is the
real one. Finally, the proposed method achieves 40.6% real chosen on COCO,
39.9% on Visual Genome, and 37.3% on NYU v2.

For the second experiment, we send each user 30 randomly selected image
triplets: the original image, the image with an instance masked out, and the
hallucinated image. We then ask the user to give a grade for each hallucinated
image: very visually real (4 points), fairly visually real (3 points), borderline (2
points), fairly visually fake (1 points), very visually fake (0 points). The obtained
average score is 3.38 on COCO, 3.31 on Visual Genome and 3.17 on NYU V2. The
results of these two experiments are summarized in Tab. 3, where our proposed
approach indeed achieves promising and stable performances on the user study.

4.5 Ablation Studies

More visual samples. We show more visual examples in Fig. 8 for COCO
and Visual Genome and NYU v2 datasets, where our methods generates visually
pleasing results.

Results using Kullback–Leibler divergence loss in GCN module. We
replace the cross-entropy loss LCE of GCN module by the Kullback–Leibler
divergence loss LKL, which regresses the probabilities of the predicted classes.
The supervised label is the ground-truth probability from the detection module.
It can be seen from Tab. 4 that the LKL decreases the prediction accuracies
of both models. This shows when the hallucinated object’s semantic feature
contains multi-class information, its relationship with other objects is hard to
determine, thus increasing the complexity of semantic understanding.
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Fig. 8: Results on the COCO (Rows 1,2,4), NYU v2 (Row 3) and Visual Genome (Rows
5,6) dataset images. For each group of images, the first one is the masked image, the
second one is our restored image and the third one is the original image.

(a) (b) (c) (d)

Fig. 9: Comparing training GAN module with and without global scene features from
Autoencoder. The image (a), (b) ,(c) and (d) denotes the masked image, the restored
image with global feature from Autoencoder, the restored image without global feature,
and the ground truth image, respectively. Ours GCN module is used to hallucinate the
semantic feature of the missing object.

Results without using global feature in GCN module. In this experiment,
we train our GCN module and GNN without the global information from the
Autoencoder. This means the GCN can only extract structural information from
the remaining objects. As can be seen from Tab. 4, the performance decreased.
This is because the missing objects are with strong relationship with the scene
style. An visual example is shown in Fig. 9: when the semantic feature of the
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(c)(b)(a)

Fig. 10: An example that our framework produces visual realistic and structurally rea-
sonable restoration but with a incorrectly predicted label.

baseball is not trained with global feature, a tennis ball is hallucinated. One
reason for this error is that, COCO contains both types of balls in the same
class. After training with the global feature, however, a baseball is hallucinated,
showing effect of the global feature for the image generating process.

Results without using spatial information in GCN module. We train
our GCN module and GNN without the spatial information, and thus the feature
of an object is shortened to be 1024 dimensions. It can be seen from Tab. 4 that
the performances of both methods decrease significantly, which demonstrates
the important role played by the spatial coordinates of the defections.

An interesting case. We show a case in Fig. 10, where an incorrect object label
is predicted, yet a visually plausible and contextually reasonable object is hallu-
cinated. This highlights that, our method can utilize the structural information
to produce realistic object hallucinations, even with a wrong label.

5 Conclusion

In this paper, we introduce a new image restoration task, named hallucinat-
ing visual instances in total absentia (HAVITA). Unlike image inpainting that
aims to fill the missing part of a visual instance present in the scene, HAVITA
concerns about hallucinating an completely-absent object. To this end, we pro-
pose an end-to-end network that models the input image as a semantic graph,
and then predicting the semantic information using a GCN module, followed
by feeding the semantic information into our GAN module to generate the final
hallucination. Results on three datasets demonstrate the encouraging potential
of our approach. In our future work, we will study hallucinating objects with
more complex physical constraints, such as the 3D orientation of a running car
following that of the road.
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