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1 Overview

This supplementary material provides more detailed and thorough analysis of
our weakly-supervised approach for 3D shape completion. We hope readers can
gain more insights into our approach. Sec 2 presents ablation studies to analyze
our design. We report the results of partial point cloud registration on ShapeNet
in Sec 3, to show more quantitative comparison. Moreover, we showcase an ex-
periment where the model is fine-tuned on another category in the wild during
inference in Sec 4. Sec 6 shows more visual comparison on both synthetic and
real LIDAR datasets. Last but not least, the sensitivity to initialization is inves-
tigated in Sec 7.

2 Ablation studies

For ablation studies, we investigate several factors: 1) the shape-projection-
matching-observation term, 2) the hindsight loss. Table 1 shows the quantita-
tive results on ShapeNet. It is observed that: 1) Without the shape-projection-
matching-observation term, the chamfer distance and precision increase while
the coverage decreases. It shows the effectiveness of our proposed projection ap-
proach, and verifies that the observation-matching-shape term only is not enough
as it can not force the generated shape to be close to the observation. On our
3D vehicle dataset, the shape-projection-matching-observation term decreases
the precision but increases the coverage, which results in the chamfer distance
similar to that without it. However, the loss term can improve visual results.
2) Without the hindsight loss, the network is vulnerable to local minima, and
performs worse.

In addition, we investigate the relation between the performance and the
number of views during training. Table 2 shows results on our 3D vehicle dataset,
w.r.t numbers of views. With the same number of instances in a batch, the more
the number of views, the better the performance is. We select 4 views per instance
as a trade-off between the performance and the computation.
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Category ‘ Method CD Precision Coverage

. w/o projection|2.80  1.98 0.82
Airplane ; ]

w/o hindsight |2.32  1.18 1.14

full 1.65 0.77 0.88

Car w/o projection|2.96  1.67 1.29

w/o hindsight (2.82  1.46 1.36

full 2.68 1.27 1.41

Chair w/o pr.o‘]ec.tlon 3.94 250 1.44

w/o hindsight [3.80  2.09 1.71

full 3.33 1.69 1.64

Table 1: Ablation studies on ShapeNet. We report shape completion results on
the test set. All the values are multiplied by 100.

#views #inst‘ CD Rot Af Trans At

2 8 10.307 6.185 0.213
4 8 10.261 4.208 0.160
8 8 10.242 3.995 0.142

Table 2: Ablation studies on our 3D vehicle dataset w.r.t different numbers of
views. Note that we report an average of 5 trials instead of the best trial here.

3 Point cloud registration on ShapeNet

In the main paper, we have showcased that our approach can be extended to
challenging partial point cloud registration on real datasets. In this section, we
demonstrate the results of this task on ShapeNet. Concretely, we compare the
relative pose between one view and the target view against the ground truth rel-
ative pose. We argue that our evaluation protocal for pose estimation is better
than that in DPC [1], as they measure the pose error by first aligning the canon-
ical pose learned with the groundtruth using ICP. Compared to real datasets
with over 80 scans per instance, it is even challenging for synthetic data, since
there are only 5 views per object in total for training.

We report the accuracy, median angle difference, and median translation
MSE of our method, DPC, DPC' in Table 3. Our approach outperforms DPC
and DPCT by a large margin on all the categories. For cars, we use a variant
of our approach, where input and output points are both projected into 2D
points and the chamfer distance between 2D projections is optimized. Unlike
chairs and planes, the front and back of cars look similar, which introduces
more pose ambiguity and results in an oversmoothed canonical shape. Thus, the
variant is proposed to tackle the pose ambiguity caused by the symmetry of
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Input(Ours) GT DPC Ours Ours*

Fig. 1: Qualitative results of 3D shape completion on the test set of ShapeNet.
All the point clouds are transformed to the ground-truth canonical frame and
visualized at a fixed viewpoint.

cars. Fig 1 shows the comparison between the variant (Ours*) and the original
implementation.

4 Fine-tuning during inference

To demonstrate that our method can be applied to other categories in the wild,
we experiment on parked trucks of Semantic KITTI. Due to the limited amount
of data (14 valid instances), we fine-tuned the model pre-trained on our 3D ve-
hicle dataset. The CD is 0.2942. The pose accuracy is 86.74, the median angle
difference is 2.08, and the median translation MSE is 0.15. It indicates the flex-
ibility of our method, which can be optimized during inference. Some examples
are visualized in Fig 2.

5 Clarification for the GT of our 3D vehicle dataset

Note that we leverage symmetry to generate ground truth complete shapes of
our 3D vehicle dataset. However, for SemanticKITTI, due to lack of GT boxes,
we use the point clouds fused over frames as “partial” GT. Thus, we provide
the quantitative results of shape completion on our 3D vehicle dataset evaluated
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Category‘Method‘Acc(A@ < 30°) Rot Af Trans At

Airplane DPC 74.17 9.95 -
DPCt 55.64 23.85 0.13
Ours 92.87 1.87 0.01
DPC 84.75 6.40 -

Car
ppct 82.17 8.79 0.05
Ours* 91.03 2.46 -

Chair DPC 80.02 10.96 -
DPCt 70.45 10.17 0.07
Ours 95.82 2.31 0.02

Table 3: Point cloud registration results on the test set of ShapeNet. Ours*
computes losses on projected input and output points.

by “partial” GT. The chamfer distance of our method improves from 0.255 to
0.195, while local ICP and global ICP improve from 0.315 to 0.275 and from
0.309 to 0.274 respectively. The ranking among different methods remains the
same. The performance of point cloud registration is not affected.

6 More qualitative results

To better understand how our method performs compared to baselines, we visu-
alize more results in this section. Fig 3 demonstrates more qualitative results on
ShapeNet. It can be observed that shapes and poses estimated by our method
are more accurate than DPC and DPCT, especially for chairs and planes. Since
planes are usually flat, DPC and its variant suffer from sparse 2D observations
and generate many artifacts.

Fig 4 and Fig 5 include more qualitative results on real LiDAR datasets.
Apart from shape completion, our weakly-supervised approach can be easily
extended to point cloud registration. As our method estimates the 6-DoF pose
of the canonical shape, we can estimate the transformation from one partial point
cloud to another, by first transforming the source point cloud to the canonical
frame and then to the sensor coordinate system of the target point cloud. We
select the middle frame of a sequence as the target, and fuse all the partial
observations in a sequence according to estimated transformations. Fused point
clouds are visualized in the last column (OQurs(fusion)) of Fig 4. Although the
predicted complete shape of our method lacks fine details, the estimated pose
is accurate, and thus the fused point cloud is very close to the ground truth.
Our method outperforms ICP methods, which implies that the knowledge of the
complete shape eases the challenging problem of partial point cloud registration,
especially for real, sparse point clouds.
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Input Ground truth Ours(shape) Ours(fusion)

Fig.2: Qualitative results of our model fine-tuned on SemanticKITTI trucks.
All the point clouds are transformed to the ground-truth canonical frame and
visualized at a fixed viewpoint. We denote our approach for 3D shape completion
and point cloud registration by Ours(shape) and Ours(fusion,).

Moreover, we show t-SNE visualization of the shape features learned from
our 3D vehicle dataset in Fig 6. Close features correspond to instances with
similar shapes, which indicates that the learned shape features are meaningful.

7 Sensitivity to initialization

It is intuitive that the randomness of initialization and optimization will lead to
very different results for not fully-supervised approaches. Thus, we would like
to investigate how sensitive our method as well as other not fully-supervised
baselines are to initialization. Table 4 shows the average and standard deviation
of 3 trials on ShapeNet. It is observed that our method shows a lower variance
compared to DPC [1] in general. In addtion, Table 5 shows the average and
standard deviation of 5 trials on real LiDAR datasets. It is worthy of future
work to study how to lower the variance.

8 Implementation details of DPC-LIDAR

In this section, we describe more details about the implementation of the baseline
DPC-LIDAR. First, We adapt DPC [1] to range images by replacing perspec-
tive transformation with polar transformation. Different from synthetic data,
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Category Method‘ CD Acc(< 30°)
Airolane | PPC | 7:20 (0.81)  76.11 (1.69)
P DPC [17.21 (3.59) 34.83 (18.07)
Ours | 1.95 (0.03) 90.87 (3.40)

Cor DPC | 3.64 (0.13) 83.33 (1.26)
DPCT | 9.66 (4.31) 35.73 (40.47)

Ours | 2.66 (0.05) 49.58 (0.58)

Chair DPC | 6.24 (1.64) 57.13 (26.67)
DPC! | 7.38 (0.05) 69.46 (0.91)

Ours [3.33 (0.002) 95.20 (0.65)

Table 4: We report the chamfer distance and the pose accuracy of 3 trials on the
test set of ShapeNet. The chamfer distance is multiplied by 100. The average
with the standard deviation (in the parentheses) is reported.

Dataset ‘ CD ‘ Acc(<30°) Rot A6 Trans At

3D vehicle dataset|0.26 (0.009) |76.54 (19.20) 4.21 (1.72) 0.16 (0.032)
SemanticKITTI | 0.20 (0.09) |60.62 (19.17) 11.54 (6.26) 0.21 (0.032)
Table 5: We report the chamfer distance, the pose accuracy, the median angle
difference and the median translation MSE of 5 trials on the test set of real
LiDAR datasets. The average with the standard deviation (in the parentheses)

is reported.

real data is not normalized and the distance between the partial point cloud
and the sensor varies significantly (e.g. 5-30 meters). However, the camera dis-
tance is constant for the original DPC. Other weakly-supervised approaches,
like MVC [2], also assume little or no translation in relative pose. Thus, we then
scale the canonical shape predicted by DPC in a unit cube to the real world
dimensions. The factor is selected as 6.0, as the average length of vehicles is
about 5 meters. In addition, a radial offset, which is the average of the maxi-
mum and the minimum radial distances of the partial point cloud, is provided.
The range image provided as input to DPC is generated directly from the input
partial point cloud that we take as input for our approach. The resolution is
128 x 128. However, DPC-LIDAR performs poorly on real data, even with these
modifications. Fig 7 showcases some examples of DPC-LIDAR on our 3D vehicle
dataset.
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Input(Ours) Input(DPC) GT DPC DPC! Ours

Fig. 3: Qualitative results of 3D shape completion on the test set of ShapeNet.
All the point clouds are transformed to the ground-truth canonical frame and
visualized at a fixed viewpoint. For cars, we use the variant of our method.
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Input Ground truth Local-ICP  Global-ICP  Ours(shape) Ours(registration)

Fig.4: Qualitative results of our method compared against ground-truth and
ICP on our 3D vehicle dataset. All the point clouds are transformed to the
ground-truth canonical frame and visualized at a fixed viewpoint. We denote our
approach for 3D shape completion and point cloud registration by Ours(shape)
and Ours(registration).
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Input Ground truth Local-ICP  Global-ICP  Ours(shape) Ours(registration)
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Fig.5: Qualitative results of our method compared against ground-truth and
ICP on SemanticKITTI. All the point clouds are transformed to the ground-
truth canonical frame and visualized at a fixed viewpoint. We denote our ap-
proach for 3D shape completion and point cloud registration by Ours(shape) and
Ours(registration).
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Fig.6: t-SNE visualization of the shape features learned from our 3D vehicle
dataset. 200 samples from different instances are randomly chosen from the
validation set. For each sample, we visualize its corresponding GT point cloud.

Input GT DPC- Input GT DPC-
LIDAR LIDAR
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Fig. 7: Qualitative results of DPC-LIDAR on the test set of our 3D vehicle
dataset. All the point clouds are transformed to the ground-truth canonical
frame and visualized at a fixed viewpoint.
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