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Abstract. This paper proposes a hierarchical loss for monocular depth
estimation, which measures the differences between the prediction and
ground truth in hierarchical embedding spaces of depth maps. In order
to find an appropriate embedding space, we design different architec-
tures for hierarchical embedding generators (HEGs) and explore relevant
tasks to train their parameters. Compared to conventional depth loss-
es manually defined on a per-pixel basis, the proposed hierarchical loss
can be learned in a data-driven manner. As verified by our experiments,
the hierarchical loss even learned without additional labels can capture
multi-scale context information, is more robust to local outliers, and
thus delivers superior performance. To further improve depth accuracy,
a cross level identity feature fusion network (CLIFFNet) is proposed,
where low-level features with finer details are refined using more reli-
able high-level cues. Through end-to-end training, CLIFFNet can learn
to select the optimal combinations of low-level and high-level features,
leading to more effective cross level feature fusion. When trained using
the proposed hierarchical loss, CLIFFNet sets a new state of the art on
popular depth estimation benchmarks.

Keywords: Monocular Depth Estimation, Hierarchical Loss, Hierarchi-
cal Embedding Space, Feature Fusion.

1 Introduction

Depth estimation is traditionally tackled by shallow models [20, 22] with hand-
crafted features. More recent works [6, 14] have shown that the success of deep
convolutional neural networks (CNNs) in other computer vision areas can also be
transferred to monocular depth estimation. The hierarchical structure of train-
able CNN features provides stronger representation capabilities, yielding more
accurate monocular depth estimation.
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To train CNNs, a well defined loss function is required in the first place
to provide supervision by measuring the differences between predictions and
targets. A wide range of loss functions have been explored in the literature
of depth estimation. For instance, the reverse Huber loss [14] and depth aware
loss [11] are used to address the heavy-tailed distribution of depth values in some
existing datasets, while the scale invariant loss [6] and depth gradient loss [18]
are designed to balance depth relations and scales. Although good performance
has been achieved, these losses are manually designed, which require rich domain
knowledge. As such, their generalization ability across different datasets cannot
be guaranteed. Besides, the existing depth losses are mostly defined on a per
pixel basis, which fail to capture context information. Therefore, they may be
over sensitive to label noise and outliers, leading to unstable network training.
In order to address the above issues, it is interesting to investigate alternative
representation spaces where training losses can be more effective and robust for
depth supervision.

In light of the above observations, we propose to leverage a loss function com-
puted in a hierarchical embedding space for training depth estimation models.
To this purpose, we devise different hierarchical embedding generators (HEGs)
which take depth maps as input and generate their corresponding hierarchical
embedding spaces, which in our cases are hierarchical convolutional feature maps
extracted from the input depth maps. The loss function for training depth es-
timation networks is then computed on both the original depth space and the
generated embedding space, giving rise to a hierarchical embedding loss. In or-
der to seek desired hierarchical embeddings, we design multiple tasks to train
HEGs. It is found that training on relevant tasks even without additional an-
notations can effectively improve depth estimation performance. It can also be
shown that the widely adopted gradient loss is a special form of our hierarchical
loss computed by a HEG with hand-designed network parameters. However, our
experiments confirm that properly trained HEGs can significantly outperform
either hand-designed ones or those trained on irrelevant tasks.

Another contribution of this paper is a cross level identity feature fusion
(CLIFF) module acting as a basic building block of our depth estimation net-
work. Fully convolutional networks with multi-level feature pyramids have be-
come the de facto technique for solving pixel-level prediction tasks [23, 32] A
number of evidences [23, 28, 19] suggest that high-level features with more se-
mantic and global context information is able to facilitate more reliable and
accurate predictions. In comparison, low-level features with higher resolutions
contain more detailed local information, which may benefit high-resolution pre-
dictions. Nonetheless, the low-level features also carry more noise which may
reduce the reliability of the predictions. In light of the above observations, given
features of two different levels the proposed CLIFF module first enhances low-
level features using high-level ones through an attention scheme. In addition,
the proposed architecture allows our CLIFF module to learn to select optimal
features from the combination of high-level, original and enhanced low-level fea-
tures. Finally, an identity mapping path connecting the high-level input feature
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and output is built to preserve the reliable semantic information. By applying
CLIFF modules recursively, we obtain a new depth estimation network termed
as CLIFFNet.

Our main contribution can be summarized into three folds.

– A new form of hierarchical loss computed in depth embedding spaces is
proposed for depth estimation.

– Different architectures and training schemes of hierarchical embedding gen-
erators are investigated to find desirable hierarchical losses.

– A new CLIFFNet architecture is designed with more effective cross level
feature fusion mechanism.

When trained using the proposed hierarchical losses, our CLIFFNet sets new
state-of-the-art performance on popular depth estimation benchmarks.

2 Related Work

Monocular depth estimation is a long standing problem in computer vision [10,
26, 20, 22]. Recent years have witnessed tremendous progress achieved by deep
learning based depth estimation methods. In the seminal work by Eigen et al. [6],
a multi-scale deep network based method is proposed, where a global network
is used to predict coarse-scale depth and a local network further refines the
prediction with finer details. This network is extended by [5] into three levels,
and is successfully applied to depth prediction, normal estimation and segmen-
tation. Later on, Laina et al. [14] propose one of the earliest fully convolutional
network architectures for monocular depth estimation, which significantly boost-
s the estimation accuracy. Motivated by [14], convolutional architectures have
been intensively studied for depth estimation. For instance, a two-stream con-
volutional network is proposed in [17], which simultaneously predicts depth and
depth gradients to restore fine depth details. Fu et al. [7] discretize depth val-
ues and propose a deep ordinal regression network. In contrast, [16] decomposes
metric depth prediction into relative depth prediction and recombination, where
a new convolutional network is proposed for relative depth estimation. Recently,
Zhi et al. [35] proposes a new type of convolution which condisers the camera
parameters to learn calibration-aware patterns for monocular depth estimation.
In addition, different training strategies have been explored to benefit monocular
depth estimation, including multi-task training [33, 35, 30], self-supervised learn-
ing with photometric losses [8, 31], and those with sparse ordinal [2] or relative
depth [32, 29] superivsions.

Although, the above deep learning based methods have significantly improved
depth prediction accuracy, the scheme of deep feature fusion across levels is not
thoroughly studied for depth estimation. Nonetheless, our experiments show that
effective multi-level feature fusion can yield considerable performance boost.

Another line of work which correlates to ours is the design of loss functions for
training depth estimation networks. Among others, [6] proposes a scale invariant
loss, which enforces the network to learn depth relations rather than scales. In a
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similar spirit, Li et al. [18] propose depth gradient loss, which computes the L1
losses in the gradient space of the predicted and ground truth depth. Meanwhile,
the heavy-tailed distribution of depth values have been observed in both [14] and
[11]. They propose to address this issue using the reverse Huber loss and depth-
aware loss, respectively, both of which attach higher weight towards samples with
large residuals. Our hierarchical losses differ from the above works mainly in two
aspects. First, most of the above losses are manually designed, whereas ours can
be learned in a data-driven manner on relevant tasks. Second, the above losses
are mostly defined in the original depth space on a per pixel basis. In comparison,
ours are defined in hierarchial embedding spaces of the depth. Our experiments
show that the hierarchical loss can capture contextual information and is more
robust to local noises, leading to significant performance gain. Our hierarchical
loss is also related to perceptual losses [12, 25]. However, the methods in [12,
25] aim to improve visual quality of image generation/reconstruction by directly
applying perceptual losses, while our focus is on architecture design and relevant
task exploration to achieve more superior hierarchical embeddings to compute
hierarchical losses.

3 Method

3.1 Hierarchical Embedding Loss for Depth Estimation

For monocular depth estimation, a deep network takes a single image as input
and estimates its depth map d̂. Given the corresponding ground truth depth d
and a loss function L(d, d̂) measuring the differences between the prediction and
ground truth, the parameters of the network can then be learned by minimizing
the loss function. Instead of directly comparing the differences in the original
depth space, some existing works demonstrate that loss functions defined on
some manually designed embeddings (eg., vertical and horizontal gradients) of
the original depth may embody more appealing properties, leading to consid-
erable accuracy gains. Motivated by this fact, we aim to design an embedding
generator G(d,θ) parameterized by θ to map the input depth into an embedding
space. As such, the parameter θ can be learned in a data-driven manner rather
than through hand-engineering.

Inspired by the impressive performance of hierarchical structures in deep net-
works, we propose to transfer their success to the supervision domain by defining
loss functions on hierarchical embedding spaces. To this end, we implement the
hierarchical embedding generator (HEG) G using multi-layer CNNs5. By feeding
a depth map d into G, we obtain a set of K hierarchical convolutional feature
maps {G1(d), G2(d), . . . , GK(d)}, which are treated as an embedding hierarchy
of the input depth. The final loss function can then be computed as:

LD(d, d̂) =

K∑
k=0

wkL(Gk(d), Gk(d̂)), (1)

5 We drop the parameter θ for notational simplicity.
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Table 1. Architecture details of HEG-S. Conv, Max, FC, BN, NS, SM, and α denote
convolutional layers with kernel size 3 × 3, adaptive max pooling with output size
2× 2, fully connected layer, batch normalization, number of scenes, softmax layer and
negative slop of leaky ReLUs, respectively.

#Layer 1 2 3 4 5 6 7 8 9 10

Type Conv Conv Conv Conv Conv Conv
Max+

FC FC FC
Flatten

Output Channel 16 16 32 32 64 64 256 256 256 NS

Stride 1× 1 1× 1 2× 2 1× 1 2× 2 1× 1 – – – –

α 0.01 0.01 0.01 0.01 0.01 0.01 – 0.0 0.0 –

Normal. BN BN BN BN BN BN – BN BN SM

where G0 denotes the identify mapping, ie., G0(d) = d; wk indicates the loss
weight. As a result, the above loss function combines the supervision from both
the original depth space and its embedding spaces of different levels.

A essential problem remaining is how to learn the parameters of HEGs. In
this paper, we identify appropriate tasks for training HEGs according to the
following two standards.

– The task, including both the input and output target, should be relevant
to depth estimation. Otherwise, the learned HEGs can hardly benefit depth
estimation. Consider a HEG pre-trained on image classification, which can
also be adopted for training depth estimation. However, our experiments
show that its performance in terms of depth accuracy gain is similar to a
randomly initialized HEG.

– Although additional annotations maybe beneficial, we focus on tasks that
require limited additional manual annotations. As a result, the idea of learn-
ing hierarchical embedding losses can be more easily applied across different
datasets, and the comparison against baseline approaches trained without a
hierarchical loss is more fair.

According to the above standards, we mainly select depth-based scene clas-
sification and depth reconstruction as two tasks for training HEGs. We further
design appropriate HEG network architectures for the two tasks and study their
impact on depth estimation.

HEG-S trained on depth-based scene classification The image and depth
sample pairs in existing datasets are collected in various locations and scenes. For
instance, the NYU-Depth V2 dataset [27] contains 464 scenes, while the data of
Cityscape [3] belong to 50 scenes. The scene name of each sample can be easily
recorded as meta data when collecting the depth data (eg., in many datasets
the depth samples recorded under the same scene are stored in one folder),
and therefore does not require heavy manual labour for additional annotations.
Motivated by this observation, we propose a depth-based scene classification
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Table 2. Architecture details of HEG-R encoder. Conv, Max, FC, and α denote con-
volutional layers with kernel size 3 × 3, adaptive max pooling with output size 2 × 2,
fully connected layer, and negative slop of leaky ReLUs, respectively.

#Layer 1 2 3 4 5 6 7 8

Type Conv Conv Conv Conv Conv Conv
Max+

FC
Flatten

Output Channel 16 16 32 32 64 64 256 256

Stride 1× 1 1× 1 2× 2 1× 1 2× 2 1× 1 – –

α 0.01 0.01 0.01 0.01 0.01 0.01 – 0.0

task to train HEG. Technically, the HEG takes as input a depth map, rather
than an RGB image, and is trained to infer its corresponding scene label from a
pre-defined label set. It is very likely that depth maps taken from the same scene
share similar properties, eg., depth scales and structures. By learning to identify
the correlation between depth and scenes, we hope the embeddings generated
by the trained HEG are able to capture the key properties of the input depth
map, and further benefit depth estimation training in the subsequent stage.

We design a CNN termed as HEG-S for depth-based scene classification. Ta-
ble 1 illustrates the detailed network architecture. The first 6 trainable layers
are 3× 3 convolutional layers. The output feature maps are spatially downsam-
pled to 2 × 2 using an adaptive max pooling layer and reshaped into a feature
vector, which is then consumed by 3 additional fully connected layers. A batch
normalization and leaky ReLU layer are appended to each intermediate train-
able layer. The final fully connected layer generates a score for each scene class,
which is further normalized into a probability via a softmax layer. Given the
inferred scene class probabilities and the ground truth labels, HEG-S is trained
by optimizing a cross-entropy loss. After training, the output feature maps of
the intermediate convolutional layers can be adopted as hierarchical embeddings
to compute supervisions for training the depth estimation network.

HEG-R trained on depth reconstruction Depth reconstruction aims to
extract representative features from the input depth and restore the depth in-
formation from the extracted features. For one thing, it can be learned without
additional labels. For another, it is highly relevant to depth estimation since
both the input and the target output are depth maps. As a result, we propose
to explore depth reconstruction as the second task for training HEGs.

We design a new HEG network with an encoder-decoder architecture for
depth reconstruction. The encoder network consists of 6 convolutional layers
and 1 fully connected layer. For a fair comparison, the detailed architecture
of the encoder (as shown in Table 2) mostly follows that of HEG-S, except
that batch normalization after each convolutional layer is discarded due to the
reconstruction purpose. The decoder architecture is symmetric to that of the
encoder, where only 2× 2 strided convolutional layers are replaced by transpose
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Fig. 1. Overview of the proposed CLIFFNet.

convolutional layers with a ×2 upsampling factor. One of the key ingredients
in the proposed network is the 256 dimensional feature vector generated by the
encoder, which serves as a bottleneck connecting the encoder and decoder. As the
bottleneck structure significantly squeezes the feature dimension, it forces the
convolutional layers of the encoder to capture the most representative features
from the input depth map, preventing the reconstruction network degenerating
into a trivial identity mapping.

We name the above HEG trained on depth reconstruction as HEG-R. The
multi-level convolutional feature maps generated by the encoder of HEG-R are
investigated as an embedding hierarchy for training depth estimation.

Discussion The proposed hierarchical loss is reminiscent of the perceptual loss-
es which are mainly adopted by generative models to produce photo-realistic
results. It has been shown that the perceptual losses can effectively improve the
visual quality but may hinder the quantitative performance [12]. In comparison,
we focus on analyzing different training tasks and HEG architectures to compute
hierarchical depth losses. Our experiment shows that the proposed hierarchical
loss can not only benefit the perceptual quality but also significantly improves
the quantitative performance in terms of depth metrics. It should also be not-
ed that although our current training strategies are selected according to the
proposed two standards, they are not directly coupled with our ultimate goal of
finding an optimal embedding space for a hierarchical loss. In our future work,
we will explore meta-learning techniques to learn optimal hierarchical embedding
spaces for depth supervision.

3.2 CLIFFNet for Depth Estimation

Following most existing works [14, 33], the proposed CLIFFNet performs depth
estimation with a fully convolutional architecture, which consists of three com-
ponents: a feature extraction sub-network, a feature pyramid sub-network, and a
depth prediction sub-network. The feature extraction sub-network takes a single
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RGB image as input and extracts a collection of multi-level convolutional fea-
ture maps of various resolutions. The generated feature maps are then fed into
the feature pyramid sub-network through lateral connections, which propagates
the semantic information from high-level to low-level feature maps, producing
a feature pyramid. The depth prediction sub-network make the final prediction
based on the feature pyramid. Figure 1 provides an overview of the architecture.

In order to take full advantage of the feature pyramid, some prior method-
s adopt a direct fusion strategy. They first upsample all feature maps in the
pyramid into the same resolution, which are then combined through concate-
nation and used to estimate the depth map. Although high-level features with
rich semantic information are used to benefit robust predictions, they are di-
rectly upsampled from very low-resolutions, leading to blurry depth prediction.
An alternative idea is the progressive fusion strategy, where high-level features
are gradually upsampled (e.g., by ×2 each time) and combined with lower level
features of the same resolution. Though the blurry prediction issue can be alle-
viated, the output features are dominated by low-level cues which are not robust
to challenging scenarios. To address this issue, we propose the cross level identity
feature fusion (CLIFF) module, which not only enhances the visual quality but
also preserves high-level features to facilitate more robust depth estimation.

CLIFF Module The CLIFF module takes a high-level and low-level feature
map as input. We first upsample the high-level feature map using bilinear in-
terpolation to ensure that two input feature maps have the same spatial res-
olution. Since high-level feature is more reliable with less noise, we refine the
low-level feature through an attention mechanism by multiplying it with the
high-level feature. As such, accurate responses in the low-level feature are further
strengthened, while noisy responses are weakened. In order to achieve the opti-
mal combination of the high-level feature, original and refined low-level feature,
these features are further selected through two convolutional layers. Specifical-
ly, the first convolutional layer learns to select and aggregate low-level features
by taking the concatenation of the original and refined low-level feature as in-
put. Its output is then concatenated with the high-level feature and serves as
the input to the second convolutional layer, further allowing feature selection
between low-level and high-level feature maps. Finally, to facilitate gradients
back-propagation and to preserve high-level semantic cues, an identity mapping
from the high-level feature to the output feature is added. Denoting the low-level
feature as F l, the upsampled high-level feature as F h, and the output as F o,
the above operations can be formally described as:

F o = F c
2 + F h,

F c
2 = W2 ∗ [F c

1 ,F
h] + b2,

F c
1 = W1 ∗ [F l,F a] + b1,
F a = F l � F h,

(2)

where F c
i denotes the selected feature using convolutional layers parameterized

by weight Wi and bias bi. [·, ·] indicates the concatenation of two feature maps



CLIFFNet 9

along the channel dimension. The operators ∗ and � indicate convolution and
element-wise multiplication, respectively.

In the proposed depth prediction sub-network, the CLIFF modules are re-
peatedly applied to gradually perform feature fusion from high-level to low-level
features. The fused feature generated by the last CLIFF module is then fed into
a convolutional layer to produce the final depth prediction.

4 Experiments

4.1 Implementation Details

We compute L1 losses on embedding spaces for training depth estimation and
exhaustively search the optimal combination of embedding spaces generated by
the proposed HEGs. Our empirical results (See supplementary materials for
details) show that the combination of the original depth space and the embedding
spaces generated by the 2nd and 4th layer of HEGs delivers the best performance
when used for hierarchical loss computation. The result is consistent to both
HEG-S and HEG-R, giving rise to our final loss function as below:

LD(d, d̂) =
∑

k=∈{0,2,4}

wk‖Gk(d)−Gk(d̂‖1, (3)

where the loss weights are determined through grid-search and fixed as w0 =
1.0, w2 = 10.0, w4 = 15.0.

For the proposed CLIFFNet, we adopt the first 5 residual block of a pre-
trained ResNet-50 network [9] as the feature extraction sub-network. The feature
pyramid sub-network are designed closely following [19] (See supplementary ma-
terials for architecture details). We resize each input image to have a minimum
side of 228 pixels by maintaining its aspect ratio. All the networks are trained us-
ing Adam optimizer [13] with a batch size of 8 images and initial learning rates
1e-3, 1e-4, and 1e-4 for HEG-S, HEG-R, and CLIFFNet, respectively. Source
code will be made publicly available6.

Our experiments are conducted on NYU-Depth V2 [27] and Cityscapes [3]
dataset. The NYU-Depth V2 dataset contains 464 indoor scenes, where 249 of
them are for training and the rest for testing. 40K image-depth pairs are sampled
from all the 120K training samples. We first use the sampled depth to train HEG-
S for 249 scene classification and HEG-R for depth reconstruction, then use the
trained HEGs to compute losses to learn CLIFFNet for depth estimation. On
one NVIDIA 1080Ti GPU, the training processes of HEG-S and HEG-R take
around 4 hours, respecitvely, while the depth network is trained for around 22
hours. The depth network with 36.89M parameters runs at 37.86 FPS during
inference. As in [6, 7], we evaluate the proposed method using 7 widely adopted
metrics defined in Table 3. We compute these metrics using the implementation
provided by [7]. Due to page limits, we present the results on Cityscapes in the
supplementary materials.

6 https://github.com/scott89/CLIFFNet
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Table 3. Adopted evaluation metrics for depth estimation. di and d̂i denote the ground
truth and estimated depth value of pixel i. N denotes the total number of pixels.

Metric Definition Metric Definition

RMSE ( 1
N

∑
i(d̂i − di)

2)(
1
2
) RMSE (log) ( 1

N

∑
i(log d̂i − log di)

2)(
1
2
)

Abs Rel 1
N

∑
i |d̂i − di|/di Sq Rel 1

N

∑
i(d̂i − di)

2/di

Pn
Percentage of di such that

max{ di
d̂i
, d̂i
di
} < 1.25n

Table 4. Comparison with state-of-the-art methods on NYU-Depth V2 dataset [27].
The best and second best results are in bold font and underlined, respectively.

Method
Error Accuracy

RMSE RMSE (log) Abs Rel Sq Rel P1 P2 P3

Eigen et al. [6] 0.874 0.284 0.218 0.207 0.616 0.889 0.971

Liu et al. [21] 0.756 0.261 0.209 0.180 0.662 0.913 0.979

Eigen and Fergus [5] 0.874 0.284 0.218 0.207 0.616 0.889 0.971

Laina et al. [14] 0.584 0.198 0.136 0.101 0.822 0.956 0.989

Chakrabarti et al. [1] 0.620 0.205 0.149 0.118 0.806 0.958 0.987

Xu et al. [34] 0.593 - 0.125 – 0.806 0.952 0.986

Qi et al. [24] 0.569 - 0.128 – 0.834 0.960 0.990

Lee et al. [15] 0.572 0.193 0.139 0.096 0.815 0.963 0.991

Fu et al. [7] 0.509 0.188 0.116 0.089 0.828 0.965 0.986

Xu et al. [33] 0.582 - 0.120 – 0.817 0.954 0.987

CLIFFNet-R 0.497 0.180 0.129 0.089 0.841 0.963 0.991

CLIFFNet-S 0.493 0.171 0.128 0.089 0.844 0.964 0.991

4.2 Comparison to State of the Arts

On NYU-Depth V2, we compare with 10 state-of-the-art methods. The quan-
titative results are reported in Table 4, where CLIFFNet-R and CLIFFNet-S
denote the proposed CLIFFNet trained with hierarchical losses computed using
HEG-R and HEG-S, respectively. Both CLIFFNet-R and CLIFFNet-S compare
favorably against state-of-the-art methods. Among others, CLIFFNet-S consis-
tently outperforms the other methods and achieves the top performance in terms
of 5 metrics. Though the performance of CLIFFNet-R is slightly worse than
CLIFFNet-S, it also delivers state-of-the-art performance in terms of all the 7
metrics. In particular, its performance in terms of RMSE, RMSE (log) and P2 is
also comparable to CLIFFNet-R. It should be noted that some of the compared
approaches [6, 7] use all the 120K training images, while our proposed methods
use only a subset of the training data.
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Image L1 SI [6] Grad [18] HEG-S Ground Truth

Fig. 2. Depth maps predicted using different loss functions.

Table 5. Comparison of different losses on NYU-Depth V2 dataset [27]. The best
results are in bold font.

Methods L1 Grad SI DA MT HEG-Rn HEG-Im HEG-R HEG-S

RMS 0.529 0.513 0.520 0.511 0.530 0.517 0.523 0.497 0.493

Abs Rel 0.135 0.132 0.134 0.130 0.134 0.134 0.132 0.129 0.128

P1 0.817 0.830 0.820 0.835 0.815 0.815 0.829 0.841 0.844

P2 0.961 0.964 0.963 0.964 0.960 0.961 0.963 0.963 0.964

4.3 Ablation Study

Effectiveness of Hierarchical Loss To further verify the effectiveness of the
proposed hierarchical losses, we evaluate the performance of our CLIFFNet vari-
ants trained with different losses. Since the network architectures are the same,
we refer to different variants using the name of the adopted loss function. Among
them, L1 represents only using the L1 loss computed on the original depth space,
while all the other variants combine the depth space L1 loss with other form of
loss functions. Specifically, Grad indicates the combination of depth space L1
loss and depth gradient loss [18]. SI denotes the scale invariant loss [6]. DA indi-
cates the depth aware loss. HEG-S and HEG-R represent the hierarchical losses
proposed in Section 3.1. HEG-Rn denotes the proposed hierarchical loss com-
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puted using a randomly initialized HEG. HEG-Im indicates the hierarchical loss
computed by a HEG with the same architecture as HEG-S trained on ImageNet
classification task [4]. The input channels of the kernels on the first convolutional
layer are averaged in order to take depth map as input.

Table 5 shows the comparison results of different variants on NYU-Depth
V2 dataset. The comparison of L1 against SI and DA confirms the advantage
of loss functions defined on additional embeddings over those computed only on
the original depth space. However, compared with the hand-designed losses SI
and DA, the proposed hierarchical embeddings generated by HEG-S and HEG-R
are learned in a data-driven manner, leading to more superior performance. The
proposed HEG-S and HEG-R trained on carefully designed tasks significantly
outperform the randomly initialized HEG-Rn and HEG-Im trained on irrelevant
image classification. Figure 2 shows the predicted depth maps of our CLIFFNet
trained with different losses. It can be observed that the predictions using HEG-
S are perceptually more realistic than other losses. The performance of HEG-
Rn and HEG-Im further justifies the importance of seeking relevant tasks for
learning loss embeddings.

One may wonder that the advantages of HEG-S may be caused by using ad-
ditional scene labels. To verify this, we design another variant model named MT,
which adds an additional scene classification module on top of the Res-5 feature
map generated by the feature extraction sub-network. It consists of a global
average pooling followed by two fully connected layers. We then train MT on
both depth estimation (using depth space L1 loss) and scene classification (using
cross-entropy loss) in a multi-task training manner. As illustrated in Table 5, the
depth estimation performance of MT trained on additional scene classification
task is similar to that of the baseline L1, and is worse to our proposed HEG-
R and HEG-S by a considerable margin. The results suggest that compared to
muti-task learning the proposed HEG-S can serve as a more superior strategy
to benefit depth estimation with additional scene classification annotations.

Visualization of Loss Gradients To gain more intuitive understanding of
the hierarchical losses, we perform additional visualization experiments to an-
alyze the impact of different loss functions on network training. During one
intermediate training iteration, we forward-propagate an input image through
CLIFFNet, compute different losses using the predicted and ground truth depth
maps, and then back-propagate the gradients of the loss functions to the pre-
dicted depth space. Figure 3 provides the visualization of depth space gradients
back-propagated from different loss functions. It can be observed that the gra-
dient magnitude of L1 is almost uniform in each pixels, while DA [11] attaches
a higher weight on distant regions with larger depth values. The Grad loss fo-
cuses more on the low-level boundary regions. In comparison, the gradients of
HEG-S demonstrates more clear hierarchical patterns. The behavior of HEG-S2
(with loss computed in the 2nd layer of HEG-S) is similar to Grad, but seems to
be more robust to noisy depth edges. Meanwhile, HEG-S4 (with loss computed
in the 4th layer of HEG-S) focuses on more on interior of object regions with
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Image Depth GT Prediction HEG-Rn2 HEG-Rn4

L1 DA [11] Grad [18] HEG-S2 HEG-S4

Negative gradient Positive gradient

Fig. 3. Gradients backpropagated to the predicted depth space from different losses.
L1: L1 loss computed on the original depth space. DA: depth aware loss [11]. Grad:
depth gradient loss [18]. HEG-Rn: L1 loss on the embedding produced by the i-th layer
of a randomly initialized HEG. HEG-Si: L1 loss on the embedding produced by the
i-th layer of a HEG pre-trained on scene classification.

semantic meaning. Compared with HEG-S, the gradients of randomly initial-
ized HEG-Rn fail to exhibit such hierarchical patterns. The above observations
on HEG-S also hold for HEG-R. According to their behaviors, we conjecture
that the proposed hierarchical losses is able to capture multi-scale contexts and
therefore more robust to local noise labels and outliers.

Impact of CLIFF Module The core architecture designs of the proposed
CLIFF module include a) attention based low-level feature refinement, b) multi-
level feature selection, and c) identity mapping of high-level features. We ablate
these core designs by comparing 4 variants of CLIFF module for cross level
feature fusion. Among them, CLIFF-w/o-att discards attention based feature
refinement. It select the input features by applying two convolutional layers on
their concatenation. An identity mapping of high-level features is then added
to the selected feature to produce the output. CLIFF-w/o-sel discards feature
selection, where two convolutional features are directly applied to the sum of
the original and refined low-level features and high-level features. CLIFF-w/o-id
removes the identity mapping. Finally, a baseline module that does not contain
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Fig. 4. Comparison results of different CLIFF variants on NYU-Depth V2 in terms of
errors (the first row) and accuracy (the second row).

any of the above 3 architecture design is developed. It combines two input fea-
ture maps through addition and then produces the output features with two
convolutional layers.

We apply the above 4 variants to the depth prediction module in the same way
as the proposed CLIFF module, leading to 4 variants of the proposed method.
We then train the 4 variants as well as the proposed CLIFFNet using hierarchical
embedding losses computed by HEG-S. Figure 4 demonstrates the comparison
results on NYU-Depth V2 dataset. It can be observed that each of the three
core architecture designs can effectively improve depth estimation performance.
By combining all the architecture designs, CLIFF outperforms the baseline for
a large margin, suggesting the contribution of each design is relative orthogonal
to the others. We also performs additional ablation studies to investigate the
performance of intermediate output from CLIFF modules. We leave the detailed
results in the supplementary materials due to page limits.

5 Conclusion

We propose hierarchical losses for monocular depth estimation. Rather than de-
fined on a per pixel basis, they are computed in hierarchical embedding spaces
and can be automatically learned from training data. To obtain superior hier-
archical embeddings, we design two embedding generators, named as HEG-S
and HEG-R, which are trained on scene classification and depth reconstruc-
tion, respectively. Experiments show that learned hierarchical losses can capture
multi-scale contexts and are more robust to outliers, leading to significant per-
formance gain. In addition, we further propose CLIFFNet for depth estimation,
which provides a more effective manner for cross level feature fusion. CLIFFNet
trained with hierarchical losses sets new record on popular benchmarks.
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