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Abstract. Data from new categories are continuously being discov-
ered, which has sparked significant amount of research in developing
approaches which generalizes to previously unseen categories, i.e. zero-
shot setting. Zero-shot sketch-based image retrieval (ZS-SBIR) is one
such problem in the context of cross-domain retrieval, which has received
lot of attention due to its various real-life applications. Since most real-
world training data have a fair amount of imbalance; in this work, for the
first time in literature, we extensively study the effect of training data
imbalance on the generalization to unseen categories, with ZS-SBIR as
the application area. We evaluate several state-of-the-art data imbalance
mitigating techniques and analyze their results. Furthermore, we propose
a novel framework AMDReg (Adaptive Margin Diversity Regularizer),
which ensures that the embeddings of the sketch and images in the latent
space are not only semantically meaningful, but they are also separated
according to their class-representations in the training set. The proposed
approach is model-independent, and it can be incorporated seamlessly
with several state-of-the-art ZS-SBIR methods to improve their perfor-
mance under imbalanced condition. Extensive experiments and analysis
justifies the effectiveness of the proposed AMDReg for mitigating the
effect of data imbalance for generalization to unseen classes in ZS-SBIR.

1 Introduction

Sketch-based image retrieval (SBIR) [15][35], which deals with retrieving natural
images, given a hand-drawn sketch query, has gained significant traction because
of its potential applications in e-commerce, forensics, etc. Since new categories of
data are continuously being added to the system, it is important for algorithms
to generalize well to unseen classes, which is termed as Zero-Shot Sketch-Based
Image Retrieval (ZS-SBIR) [6][5][16][7]. Majority of ZS-SBIR approaches learn
a shared latent-space representation for both sketch and image, where sketches
and images from same category come closer to each other and also incorporate
additional techniques to facilitate generalization to unseen classes.

One important factor that has been largely overlooked in this task of general-
ization to unseen classes is the distribution of the training data. Real-world data,
used to train the model, is not always class-wise or domain-wise well-balanced.
When training and test categories are same, as expected, class imbalance in
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the training data results in severe degradation in testing performance, specially
for the minority classes. Many seminal approaches have been proposed to mit-
igate this effect for the task of image classification [14][11][2][4], but the effect
of data imbalance on generalization to unseen classes is relatively unexplored,
both for single and cross-domain applications. In fact, both of the two large-scale
datasets, widely used for SBIR/ ZS-SBIR, namely Sketchy Extended [25] and
TU-Berlin Extended [8] have data imbalance. In cross-domain data, there can
be two types of imbalance: 1) domain imbalance - where the number of data
samples in one domain is significantly different compared to the other domain;
2) class imbalance - where there is a significant difference in the number of data
samples per class. TU-Berlin Ext. exhibits imbalance of both types. Although a
recent paper [5] has attributed poor retrieval performance for TU-Berlin Ext. to
data imbalance, no measures have been proposed to handle this.

Here, we aim to study the effect of class imbalance in the training data on the
retrieval performance of unseen classes in the context of ZS-SBIR, but interest-
ingly we observe that the proposed framework works well even when both types of
imbalances are present. We analyze several state-of-the-art approaches for miti-
gating the effect of training data imbalance on the final retrieval performance. To
this end, we propose a novel regularizer termed AMDReg - Adaptive Margin
Diversity Regularizer, which ensures that the embeddings of the data samples
in the latent space account for the distribution of classes in the training set. To
facilitate generalization to unseen classes for ZS-SBIR, majority of the ZS-SBIR
approaches impose a direct or indirect semantic constraint on the latent-space
which ensures that the sketch and image samples from unseen classes during
testing are embedded in the neighborhood of its related seen classes. But merely
imposing a semantic constraint does not account for the training class imbal-
ance. The proposed AMDReg, which is computed from the class-wise training
data distribution present in sketch and image domains helps to appropriately
position the semantic embeddings. It tries to enforce a broader margin / spread
for the classes for which less number of training samples are available as com-
pared to the classes which have larger number of samples. Extensive analysis and
evaluation on two benchmark datasets validate the effectiveness of the proposed
approach. The contributions of this paper have been summarized below.

1. We analyze the effect of class-imbalance on generalization to unseen classes
for the ZS-SBIR task. To the best of our knowledge, this is the first work
in literature which addresses the data-imbalance problem in the context of
cross-domain retrieval.

2. We analyze the performance of several state-of-the-art techniques for han-
dling data imbalance problem for this task.

3. We propose a novel regularizer termed AMDReg, which can seamlessly be
used with several ZS-SBIR methods to improve their performance. We have
observed significant improvement in the performance of three state-of-the-art
ZS-SBIR methods.

4. We obtain state-of-the-art performance for ZS-SBIR and generalized ZS-
SBIR for two large-scale benchmark datasets.
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2 Related Work

Here, we discuss relevant work in the literature for this study. We include recent
papers for sketch-based image retrieval (SBIR), zero-shot sketch-based image
retrieval (ZS-SBIR), as well as the class-imbalanced problems in classification.

Sketch-based Image Retrieval (SBIR): The primary goal of these approaches
is to bridge the domain-gap between natural images and hand-drawn sketches.
Early methods for SBIR, such as HOG [12], LKS [24] aim to extract hand-
crafted features from the sketches as well as from the edge-maps obtained from
natural images, which are then directly used for retrieval. The advent of deep
networks have advanced the state-of-the-art significantly. Siamese network [22]
with triplet-loss or contrastive-loss, GoogleNet [25] with triplet loss, etc. are some
of the initial architectures. Recently a number of hashing-based methods, such
as [15][35] have achieved significant success. [15] uses a heterogeneous network,
which employs the edge maps from images, along with the sketch-image train-
ing data to learn a shared representation space. In contrast, GDH [35] exploits
a generative model to learn the equivalent image representation from a given
sketch and performs the final retrieval in the image space.
Zero-shot Sketch-based Image Retrieval (ZS-SBIR): The knowledge-gap
encountered by the retrieval model, when a sketch query or database image is
from a previously unseen class makes ZS-SBIR extremely challenging. ZSIH [26],
generative-model based ZS-SBIR [32] are some of the pioneering works in this
direction. However, as identified by [6], ZSIH [26] requires a fusion-layer for
learning the model, which shoots up the learning cost and [32] requires strictly
paired sketch-image data for training. Some of the recent works, [5][6][7][16] have
reported improved performance for ZS-SBIR over the early techniques. [6] intro-
duces a further generalization in the evaluation protocol for ZS-SBIR, termed as
generalized ZS-SBIR; where the search set contains images from both the sets of
seen and unseen classes. This poses even greater challenge to the algorithm, and
the performances degrade significantly for this evaluation protocol [6][7]. Few of
the ZS-SBIR approaches are discussed in more details later.
Handling data Imbalance for Classification: Since real-world training data
are often imbalanced, recently, a number of works [14][11][2][4] have been pro-
posed to address this problem. [14] mitigates the problem of foreground back-
ground class imbalance problem in the context of object recognition and proposes
a modification to the traditional cross-entropy based classification loss. [4] in-
troduces an additional cost-sensitive term to be included with any classification
loss, designed on the basis of effective number of samples in a particular class. [2]
and [11] both propose a modification in the margin of the class-boundary learned
via minimizing intra-class variations and maximizing inter-class margin. [17] dis-
cusses a dynamic meta-embedding technique to address classification problem
under long-tailed training data scenario.

Equipped with the knowledge of recent algorithms for both ZS-SBIR and
single domain class imbalance mitigating techniques, we now move forward to
discuss the problem of imbalanced training data for cross-domain retrieval.
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3 Does Imbalanced Training Data Effect ZS-SBIR?

First, we analyze what is the effect of training data imbalance on generaliza-
tion to unseen classes in the context of ZS-SBIR. Here, for ease of analysis, we
consider only class imbalance, but our approach is effective for the mixed imbal-
ance too, as justified by the experimental results later. Since both the standard
datasets for this task, namely Sketchy Ext. [25] and TU-Berlin Ext. [8] are al-
ready imbalanced, to systematically study the effect of imbalance, we create
a smaller balanced dataset, which is a subset of Sketchy Ext. dataset. This is
termed as mini-Sketchy Dataset and contains sketches and images from 60
classes, with 500 images and sketches per class. Among them, randomly selected
10 classes are used as unseen classes and the rest 50 classes are used for training.

To study the effect of imbalance, motivated by the class-imbalance literature
in image classification [14][11], we introduce two different types of class imbal-
ance: 1) Step imbalance - where few of the classes in the training set contains less
amount of samples compared to other classes; 2) Long-tailed imbalance - where
the number of samples across the classes decrease gradually following the rule,

nltk = nkµ
k

Cseen−1 ; where nltk is the available samples for kth class under long-
tailed distribution and nk is the number of original samples of that class (=500
here). Here, k ∈ {1, 2, ..., Cseen}, i.e. Cseen is the number of training classes and
µ = 1

p . We define imbalance factor p for a particular data-distribution to be
the ratio of the highest number of samples in any class to the lowest number
of samples in any class in that data and higher value of p implies more severe
training class imbalance. Since the analysis is with class-imbalance, we assume
that the data samples in image and sketch domain is the same.

As mentioned earlier, the proposed regularizer is generic and can be used
with several baseline approaches to improve their performance in presence of
data imbalance. For this analysis, we choose one recent auto-encoder based ap-
proach [7]. We term this as Baseline Model for this discussion, since the analysis
is equally applicable for other approaches as well. We systematically introduce
both the step and long-tailed imbalances for two different values of p and observe
the performance for each of them. The results are reported in Table 1.

As compared to the balanced setting, we observe significant degradation in
performance of the baseline whenever any kind of imbalance is present in the
training data. This implies that training data imbalance not only effects the
test performance when the classes remain the same, it also adversely effects
the generalization performance significantly. This is due to the fact that unseen
classes are recognized by embedding them close to their semantically relevant
seen classes. Data imbalance results in (1) latent embedding space which is not
sufficiently discriminative and (2) improperly learnt embedding functions, both
of which negatively affects the embeddings of the unseen classes. The goal of
the proposed AMDReg is to mitigate these limitations, which in turn will help
in better generalization to unseen classes (Table 1 bottom row). Thus we see,
that if the imbalance is handled properly, it may reduce the need for collecting
large-scale balanced training samples.
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Table 1. Evaluation (MAP@200) of Baseline Model [7] for ZS SBIR on mini-Sketchy
dataset. Results for long-tailed and step imbalance with different imbalance factors are
reported. The final performance using the proposed AMDReg is also compared.

Experimental Protocol Balanced data
Imbalanced Data

Long-tailed Step
p = 10 p = 100 p = 10 p = 100

Baseline [7] 0.395 0.234 0.185 0.241 0.156
Baseline [7] + AMDReg 0.332 0.240 0.315 0.218

4 Proposed Approach

Here, we describe the proposed Adaptive Margin Diversity Regularizer (AM-
DReg), which when used with existing ZS-SBIR approaches can help to mitigate
the adverse effect of training data imbalance. We observe that majority of the
state-of-the-art ZS-SBIR [6][16][7] approaches have two objectives: (1) projecting
the sketches and images to a common discriminative latent space, where retrieval
can be performed; (2) to ensure that the latent space is semantically meaningful
so that the approach generalizes to unseen classes. For the first objective, a clas-
sification loss is used while learning the shared latent-space, which constraints
the latent-space embeddings of both sketches and images from same classes to
be clustered together, and samples from different classes to be well-separated.
For the second objective, different direct or indirect techniques are utilized to
make the embeddings semantically meaningful to ensure better generalization.

Semantically Meaningful Class Prototypes: Without loss of generality,
we again chose the same baseline [7] to explain how to incorporate the proposed
AMDReg into an existing ZS-SBIR approach. Let us consider that there are
Cseen number of classes present in the dataset, and d is the latent space di-
mension. The baseline model has two parallel branches Fim(θim) and Fsk(θsk)
for extracting features from images and sketches, {f (m)}, where m ∈ {im, sk},
respectively. These features are then passed through corresponding content en-
coder networks to learn the shared latent-space embeddings for the same, i.e.
z(m) = Em(f (m)). In [7], a distance-based cross-entropy loss is used to learn
these latent embeddings such that the embeddings is close to the semantic in-
formation. As is widely used, the class-name embeddings h(y) of the seen-class
labels y ∈ {1, 2, ..., Cseen} are used as the semantic information. These embed-
dings are extracted from a pre-trained language model, such as, word2vec [18]
or GloVe [20]. Please refer to Fig. 1 for illustration of the proposed AMDReg
with respect to this baseline model.

The last fully connected (fc) layer of the encoders is essentially the classifi-
cation layer and the weights of this layer, P = [p1,p2, ...,pCseen

],pi ∈ Rd can
be considered as the shared class-prototypes or the representatives of the corre-
sponding class [21]. To ensure a semantically meaningful latent representation,
one can learn the prototypes (pi’s) such that they are close to the class-name
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embeddings, or the prototypes can themselves be set equal to the semantic em-
beddings, i.e. pi = h(y) and kept fixed. If the training data is imbalanced,
just ensuring that the prototypes are semantically meaningful is not sufficient,
we should also ensure that they take into account the label distribution of the
training data. In our modification, to be able to adjust the prototypes properly,
instead of fixing them as the class-embeddings, we initialize them using these at-

tributes. Since the output of this fc layer is given by z(m) = [z
(m)
1 , z

(m)
2 , ..., z

(m)
Cseen

];
the encoder with the prototypes is learnt using standard cross-entropy loss as,

LCE(z(m), y) = −log
exp(z

(m)
y )

Cseen∑
j=1

exp(z
(m)
j )

(1)

Now, with this as the background, we will describe the proposed regularizer,
AMDReg, which ensures that the prototypes are modified in such a way that
they are spread out according to their class representation in the training set.

Adaptive Margin Diversity Regularizer: Our proposed AMDReg is in-
spired from the recently proposed Diversity Regularizer [11], which addresses
data imbalance in image classification by adjusting the classifier weights (here
prototypes) so that they are uniformly spread out in the feature space. In our
context, it can be enforced by the following regularizer

R(P) =
1

Cseen

∑
i<j

[||pi − pj ||22 − dmean]2, ∀j ∈ {1, 2, ..., Cseen} (2)

Here dmean is the mean distance between all the class prototypes and is computed
as

dmean =
2

C2
seen − Cseen

∑
i<j

||pi − pj ||22, ∀j ∈ {1, 2, ..., Cseen} (3)

The above regularizer tries to spread out all the class prototypes, without consid-
ering the amount of imbalance present in the training data. As has been observed
in many recent works [2], due to insufficient number of samples of the minority
classes, it is more likely that their test samples will have a wider spread instead of
being clustered around the class prototype during testing. For our problem, this
implies greater uncertainty for samples of unseen classes, which are semantically
similar to the minority classes in the training set.

Towards this end, we propose to adjust the class prototypes adaptively, which
takes into account the data imbalance. Since there can be both class and domain
imbalance in the cross-domain retrieval problem, we propose to use the total
number of sketch and image samples per class in the training set, and we refer
to this combined number for kth-class as the effective number of samples, neffk ,
in this work. We then define the imbalance-based margin for the kth class as,

∆k =
K

neffk

(4)
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Fig. 1. Illustration of the proposed Adaptive Margin Diversity Regularizer (AMDReg).
The AMDReg ensures that the embeddings of the shared prototypes of the images and
sketches are not only placed away from each other, but also account for the increased
uncertainty when the training class distribution is imbalanced. This results in better
generalization to unseen classes.

This is similar to the inverse frequency of occurrence, except for the experimental
hyper-parameter K. Thus the final AMDReg is given by

R∆(P) =
1

Cseen

∑
i<j

[||pi − pj ||22 − (dmean +∆j)]
2, ∀j ∈ {1, 2, ..., Cseen} (5)

Thus, we adjust the relative distance between pi’s such that they are atleast
separated by a distance which is more than the mean-distance by the class
imbalance margin. This ensures that the prototypes for the minority classes
have more margin around them, which will reduce the chances of confusion for
the semantically similar unseen classes during testing. Finally, the encoder with
the prototypes are learnt using the CE loss along with the AMDReg as

LAMDReg
CE = LCE + λR∆ (6)

where λ is an experimental hyper-parameter, which controls the contribution of
the regularizer towards the learning.

Difference with Related Works: Even though the proposed AMDReg is
inspired from [11], there are significant differences, namely (1) [11] addresses the
imbalanced classification task for a single domain, while our work address gen-
eralization to unseen classes in the context of cross-domain retrieval (ZS-SBIR);
(2) While [11] ensures that the weight vectors are equally spread out, AMDReg
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accounts for the training data distribution while designing the relative distances
between the semantic embeddings; (3) Finally, [11] works with the max-margin
loss, but AMDReg is used with the standard CE loss while learning the semantic
class prototypes.

The proposed approach also differs from another closely related work LDAM [2].
LDAM loss is a modification on the standard cross-entropy or Hinge-loss to in-
corporate class-wise margin. In contrast, proposed AMDReg is a margin-based
regularizer with adaptive margins between class-prototypes, based on the corre-
sponding representation of classes in the training set. Thus, while [2] is inspired
from margin-based generalization bound, the proposed AMDReg is inspired from
the widely used inverse frequency of occurance.

4.1 Analysis with standard & SOTA imbalance-aware approaches

Here, we analyze how the proposed AMDReg compares with several existing
state-of-the-art techniques used for addressing the problem of imbalance in the
training data mainly for the task of image classification. These techniques can
be broadly classified into two categories, (1) re-sampling techniques to balance
the existing imbalanced dataset and (2) cost-sensitive learning or modification
of the classifier. For this analysis also, we use the same retrieval backbone [7].
In this context, we first compute the average number of samples in the dataset.
Any class which has lesser number of samples than the average are considered
minority classes, and the remaining are considered majority classes.
1) Re-balancing the dataset: Re-sampling is a standard and effective tech-
nique used to balance out the dataset distribution bias. The most common meth-
ods are under-sampling of the majority classes [1] or over-sampling of minority
classes [3]. We systematically use such imbalance data-sampling techniques on
the training data to address the class imbalance for ZS-SBIR as discussed below.
Here, the re-sampled / balanced dataset created by individual re-sampling op-
erations described below is used for training the baseline network and reporting
the retrieval performance.

1. Naive under-sampling: Here, we randomly select 1/p-th of total samples
per class for the majority classes and discard their remaining samples. Natu-
rally, we loose a significant amount of important samples with such random
sampling technique.

2. Selective Decontamination [1]: This technique is used to intelligently
under-sample the majority classes instead of randomly throwing away ex-
cess samples. As per [1], we also modify the Euclidean distance function
dE(xi,xj) between two samples of cth class, xi and xj as,

dmodified(xi,xj) = (
nc
N

)(1/m)dE(xi,xj) (7)

where nc and N are the number of samples in cth class and in all classes,
respectively. m represents the dimension of the feature space. We retain
only those samples in the majority classes for which the classes of majority
of samples in top-K nearest neighbors agree completely.
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3. Naive over-sampling: Here, the minority classes are augmented by re-
peating the instances (as in [35]) and using the standard image augmentation
techniques (such as, rotation, translation, flipping etc.).

4. SMOTE [3]: In this intelligent over-sampling technique, instead of replacing
the samples, the minority classes are augmented by generating synthetic
features along the line-segment joining each minority class sample with its
K-nearest neighbors.

5. GAN Based Augmentation [29]: Finally, we propose to augment the
minority classes by generating features with the help of generative models,
which have been very successful for zero-shot [29] / few-shot [19] / any-
shot [30] image classification. Towards that goal, we use f-GAN [29] model
to generate synthetic features for the minority classes using their attributes
and augment those features with the available training dataset to reduce the
imbalance.

2) Cost-sensitive Learning of Classifier: The goal of cost-sensitive learning
based methods is to learn a better classifier using the original imbalanced training
data, but with a more suitable loss function which can account for the data
imbalance. To observe the effect of the different kinds of losses, we modify the
distance-based CE-loss in the baseline model to the following ones, keeping the
rest of the network fixed.

1. Focal loss: This loss [14] was proposed to address foreground-background
class imbalance issue in the context of object detection. It is based on a
simple yet effective modification of standard cross-entropy loss, such that
while computation, the easy or well-classified samples are given less weights
compared to the difficult samples.

2. Class-balanced Focal Loss: It is a variant of focal loss, recently proposed
in [4], which incorporates the effective number of samples for a class in the
imbalanced dataset.

3. Diversity Regularizer: This recently proposed regularizer [11] ensures
that both the majority and minority classes are at equal distance from each
other in the latent-space and reported significant performance improvement
for imbalanced training data for image classification.

4. LDAM: [2] proposes a margin-based modification of standard cross-entropy
loss or hinge loss, to ensure that the classes are well-separated from each
other.

The retrieval performance obtained with these imbalance-handling methods are
reported in Table 2. We observe that all the techniques result in varying de-
gree of improvement over the base model. Among the data augmentation tech-
niques, GAN-based augmentation outperforms the other approaches. In general,
all the cost-sensitive learning techniques performs quite well, specially the re-
cently proposed diversity regularizer and the LDAM cross-entropy loss. However,
the proposed AMDReg outperforms both the data balancing and cost-sensitive
learning approaches, giving the best performance across all types and degrees of
imbalance.
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Table 2. ZS-SBIR performance (MAP@200) of different kinds of imbalance handling
techniques applied on the Baseline Model [7] for the mini-Sketchy dataset. Results of
the original Baseline Model is also reported for reference.

Imbalance
Methods

Long-tailed Step
Handler p = 10 p = 100 p = 10 p = 100

Baseline Model [7] 0.234 0.185 0.241 0.156

Data Naive under-sampling 0.235 0.191 0.256 0.159
balancing Naive over-sampling 0.269 0.219 0.258 0.155
methods Selective decontamination [1] 0.268 0.221 0.251 0.164

SMOTE [3] 0.269 0.217 0.269 0.183
GAN-based Augmentation [29] 0.305 0.229 0.274 0.188

Loss- Focal loss [14] 0.273 0.228 0.289 0.195
Modification Class-balanced Focal Loss [4] 0.299 0.236 0.296 0.210
Techniques Diversity-Regularizer [11] 0.296 0.222 0.285 0.207

LDAM-CE loss [2] 0.329 0.234 0.310 0.213
Proposed AMDReg 0.332 0.240 0.315 0.218

5 Experimental Evaluation on ZS-SBIR

Here, we provide details of the extensive experiments performed to evaluate the
effectiveness of the proposed AMDReg for handing data imbalance in ZS-SBIR.

Datasets Used and Experimental Protocol: We have used two large-
scale standard benchmarks for evaluating ZS-SBIR approaches, namely, Sketchy
Ext. [25] and TU-Berlin Ext. [8].
Sketchy Ext. [25] dataset originally contained approximately 75, 000 sketches
and 12, 500 images from 125 object categories. Later, [15] collected and added
additional 60, 502 images to this dataset. Following the standard protocol [6][16],
we randomly choose 25 classes as unseen-classes (sketches as query and images
in the search set) and the rest 100 classes for training.
TU-Berlin Ext. [8] originally contained 80 hand-drawn sketches per class from
total 250 classes. To make it a better fit for large-scale experiments, [34] included
additional 2, 04, 489 images. As followed in literature [6] [7], we randomly select
30-classes as unseen, while the rest 220-classes are used for training.

The dataset statistics are shown in Fig. 2, which depicts data imbalance in
both the datasets. This is specially evident in TU-Berlin Ext., which has huge
domain-wise imbalance as well as class-wise imbalance. These real-world datasets
reinforce the importance of handling data imbalance for the ZS-SBIR task.

5.1 State-of-the-art ZS-SBIR approaches integrated with AMDReg

As already mentioned, the proposed AMDReg is generic and can be seam-
lessly integrated with most state-of-the-art ZS-SBIR approaches for handling the
training data imbalance. Here, we have integrated AMDReg with three state-of-
the-art approaches, namely (1) Semantically-tied paired cycle-consistency based
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Fig. 2. Dataset statistics of sketches and images of Sketchy-extended and TU-Berlin-
extended are shown in the first two and last two plots respectively in that order.

network (SEM-PCYC) [6]; (2) Semantic-aware knowledge preservation for ZS-
SBIR (SAKE) [16]. (3) Style-guided network for ZS-SBIR [7]. Now, we briefly
describe the three approaches along with the integration of AMDReg.

SEM-PCYC [6] with AMDReg: SEM-PCYC is a generative model with two
separate branches for image and sketch; for visual-to-semantic mapping along
with cyclic consistency loss. Further, to ensure that the semantic output of the
generators is also class-discriminative, a classification loss is used. This classi-
fier is pre-trained on seen-class training data and kept frozen while the whole
retrieval model is trained. We modify the training methodology by enabling the
classifier to train along with the rest of the model, by including the AMDReg
with the CE-loss. Here, the semantic information is enforced through an auto-
encoder, which uses a hierarchical and a text-based model as input, and thus
the weights are randomly initialized. Please refer to [6] for more details.

SAKE [16] with AMDReg: This ZS-SBIR method extends the concept of
domain-adaptation for fine-tuning a pre-trained model on ImageNet [23] for the
specific ZS-SBIR datasets. The network contains a shared branch to extract
features from both sketches and images, which are later used for the categori-
cal classification task using the soft-max CE-loss. Simultaneously, the semantic
structure with respect to the ImageNet [23] classes are maintained. Here also, we
modify the CE-loss using the proposed AMDReg to mitigate the adverse effect
of training data imbalance. The rest of the branches and the proposed SAKE-
loss remain unchanged. Please refer to [16] for more details of the base algorithm.

Style-guide [7] with AMDReg: This is a two-step process, where the shared
latent-space is learnt first. Then, the latent-space content extracted from the
sketch query is combined with the styles of the relevant images to obtain the
final retrieval in the image-space. While learning the latent-space, a distance-
based cross-entropy loss is used, which is modified as explained in details earlier.
Please refer to [7] for more details of the base algorithm.

Implementation Details The proposed regularizer is implemented using Py-
torch. We use a single Nvidia GeForce GTX TITAN X for all our experiments.



12 T. Dutta et al.

Table 3. Performance of several state-of-the-art approaches for ZS-SBIR and general-
ized ZS-SBIR.

Algorithms
TU-Berlin extended Sketchy-extended
MAP@all Prec@100 MAP@all Prec@100

SBIR

Softmax Baseline 0.089 0.143 0.114 0.172
Siamese CNN [22] 0.109 0.141 0.132 0.175
SaN [33] 0.089 0.108 0.115 0.125
GN Triplet [25] 0.175 0.253 0.204 0.296
3D shape [28] 0.054 0.067 0.067 0.078
DSH (binary) [15] 0.129 0.189 0.171 0.231
GDH (binary) [35] 0.135 0.212 0.187 0.259

ZSL

CMT [27] 0.062 0.078 0.087 0.102
DeViSE [10] 0.059 0.071 0.067 0.077
SSE [36] 0.089 0.121 0.116 0.161
JLSE [37] 0.109 0.155 0.131 0.185
SAE [13] 0.167 0.221 0.216 0.293
FRWGAN [9] 0.110 0.157 0.127 0.169
ZSH [31] 0.141 0.177 0.159 0.214

Zero-Shot
SBIR

ZSIH (binary) [26] 0.223 0.294 0.258 0.342
ZS-SBIR [32] 0.005 0.001 0.196 0.284

SEM-PCYC [6] 0.297 0.426 0.349 0.463
SEM-PCYC + AMDReg 0.330 0.473 0.397 0.494

Style-guide [7] 0.254 0.355 0.375 0.484
Style-guide + AMDReg 0.291 0.376 0.410 0.512

SAKE [16] 0.428* 0.534* 0.547 0.692
SAKE + AMDReg 0.447 0.574 0.551 0.715

Generalized
Zero-shot
SBIR

Style-guide [7] 0.149 0.226 0.330 0.381
SEM-PCYC [6] 0.192 0.298 0.307 0.364
SEM-PCYC + AMDReg 0.245 0.303 0.320 0.398

For all the experiments, we set λ = 103 and K = 1. Adam optimizer has been
used with β1 = 0.5, β2 = 0.999 and a learning rate of lr = 10−3. The im-
plementation of different baselines and the choice of hyper-parameters for their
implementation has been done as described in the corresponding papers.

5.2 Evaluation for ZS-SBIR

Here, we report the results of the modifications to the state-of-the-art approaches
for ZS-SBIR. We first train all the three original models (as described before) to
replicate the results reported in the respective papers. We use the codes given by
the authors and are able to replicate all the results for SEM-PCYC and Style-
guide as reported. However, for SAKE, in two cases, the results we obtained are
slightly different from that reported in the paper. So we report the results as we
obtained, for fair evaluation of proposed improvement (marked with a star to
indicate that they are different from the reported numbers in the paper).

We incorporate the proposed modifications for AMDReg in all three ap-
proaches and retrained the models. The results are reported in Table 3. All the
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Fig. 3. Performance comparison of the base model (SEM-PCYC) and the modified
base-model using proposed AMDReg: (a) Few examples of top-5 retrieved images
against the given unseen sketch query from TU-Berlin dataset; (b) P-R curve on
Sketchy dataset; (c) P-R curve on TU-Berlin dataset.

results of the other approaches are taken directly from [6]. We observe signifi-
cant improvement in the performance of all the state-of-the-art approaches, when
trained using the proposed regularizer. This experiment throws insight that by
handling the data-imabalance, which is inherently present in the collected data,
it is possible to gain siginificant improvement in the final performance. Since
AMDReg is generic, it can potentially be incorporated with other approaches,
developed for the ZS-SBIR task, to handle the training data imbalance problem.

Fig. 3 shows top-5 retrieved results for a few unseen queries (first column),
using SEM-PCYC as the baseline model, without and with AMDReg, respec-
tively. We observe significant improvement when AMDReg is used, justifying its
effectiveness. We make similar observations from the P-R curves in Fig. 3.

5.3 Evaluation for Generalized ZS-SBIR

In real scenarios, the search set may consist of both the seen and unseen image
samples, which makes the problem much more challenging. This is termed as
the generalized ZS-SBIR. To evaluate the effectiveness of proposed AMDReg for
this scenario, we follow the experimental protocol in [6] and SEM-PCYC [6] as
the base model. From the results in Table 3, we observe that AMDReg is able
to significantly improve the performance of the base model and yields state-of-
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the-art results for three out of the four cases. Only for Sketchy Ext., it performs
slightly less than Style-Guide, but still improves upon its baseline performance.

5.4 Evaluation for SBIR

Though the main purpose of this work is to analyze the effect of training data
imbalance on generalization to unseen classes, this approach should also benefit
standard SBIR in presence of imbalance. We observe from Table 4, that the

Table 4. SBIR evaluation (MAP@200) of Baseline Model [7] on mini-Sketchy.

Balanced Step Imb. GAN-based CB Diversity Proposed
Data (p = 100) Aug. [29] Focal Loss [4] Regularizer [11] AMDReg

0.839 0.571 0.580 0.613 0.636 0.647

performance of SBIR indeed decreases drastically with training data imbalance.
Proposed AMDReg is able to mitigate this by a significant margin as compared
to the other state-of-the-art imbalance handing techniques. We further analyze
the performance of SEM-PCYC [6] on Sketchy Ext. dataset for standard SBIR
protocol with and without AMDReg. We observe significant improvement when
proposed AMDReg is used (MAP@all: 0.811; Prec@100: 0.897) as compared to
the baseline SEM-PCYC (MAP@all: 0.771; Prec@100: 0.871).

6 Conclusion

In this work, for the first time in literature, we analyzed the effect of training
data imbalance for the task of generalization to unseen classes in context of ZS-
SBIR. We observe that most real-world SBIR datasets are in-fact imbalanced,
and that this imbalance does effect the generalization adversely. We system-
atically evaluate several state-of-the-art imbalanced mitigating approaches (for
classification) for this problem. Additionally, we propose a novel adaptive mar-
gin diversity regularizer (AMDReg), which ensures that the shared latent space
embeddings of the images and sketches account for the data imbalance in the
training set. The proposed regularizer is generic, and we show how it can be
seamlessly incorporated in three existing state-of-the-art ZS-SBIR approaches
with slight modifications. Finally, we show that the proposed AMDReg results
in significant improvement in both ZS-SBIR and generalized ZS-SBIR protocols,
setting the new state-of-the-art result.
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