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Abstract. In this paper we consider the problem of Structure-from-
Motion from images with unknown intrinsic calibration. Instead of es-
timating the internal camera parameters through some self-calibration
procedure, we propose to use a subset of the reprojection constraints that
is invariant to radial displacement. This allows us to recover metric 3D
reconstructions without explicitly estimating the cameras’ focal length
or radial distortion parameters. The weaker projection model makes ini-
tializing the reconstruction especially difficult. To handle this additional
challenge we propose two novel minimal solvers for radial trifocal tensor
estimation. We evaluate our approach on real images and show that even
for extreme optical systems, such as fisheye or catadioptric, we are able
to get accurate reconstructions without performing any calibration.

1 Introduction

In this paper we revisit the classical Structure-from-Motion problem [19], which
is to recover the camera poses (the motion) and the 3D scene geometry (the
structure) from a set of images. Structure-from-Motion pipelines generally fall
into one of two categories; incremental or global. Incremental SfM methods (see
e.g. [45,53,42]) work by incrementally growing an initial reconstruction by al-
ternating posing in new images and triangulating new 3D points. Global SfM
methods (see e.g. [38,37,9,56]) instead first estimate pairwise epipolar geometries.
In a second step the relative poses are then fused into a single reconstruction,
typically using some form of rotation averaging [18,7,14]. There are also SfM
methods which combine the two approaches (e.g. [8,33]).

In all of the above methods it is necessary to know the cameras’ internal
parameters (camera intrinsics and lens-distortion) to achieve accurate recon-
struction results. These parameters can either be found during an offline cali-
bration procedure (e.g. using some calibration object with known structure such
as checkerboards, see [55,44]), or they are estimated during the reconstruction.

The second set of methods can be further divided into two approaches. Meth-
ods which first perform a projective reconstruction followed by a self-calibration
step (see e.g. [20,21,34]). The self-calibration step entails estimating the Dual
Absolute Quadric (see [19,6]) by adding assumptions on the camera intrinsics,
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Fig. 1. Structure-from-Motion using radial
alignment constraints. Instead of requiring
the 3D point to project onto the 2D-point,
we only require the projection to lie on the
radial lines going through the image point.
This makes projection equations invariant
to focal length and radial distortion.

such as unit aspect ratio and zero skew. The other approach is to estimate
the camera intrinsics during the initial pose estimation process. This can be
done either by using solvers which also estimate the internal camera parameters
(e.g. [54,28,29,30]) or the camera parameters are initialized with some heuristic
guess (e.g. using EXIF tags) followed by bundle adjustment. This approach is
used in the open-source framework COLMAP [42,43] that uses focal length sam-
pling [41] and zero-initialized distortion parameters, which are then refined in
the bundle-adjustment step. For global SfM with unknown calibration, Sweeney
et al. [47] proposed a method which optimizes the consistency of fundamental
matrices in order to estimate a consistent focal length for each camera.

While the above approaches can work well in practice, they typically only
work reliably for cameras with no or negligible radial distortion. Methods based
on finding the calibration during reconstruction are prone to failure for cameras
with severe distortion, especially for images where most point correspondences
are in regions with high distortion (e.g. close to the image borders).

In this paper we propose a Structure-from-Motion pipeline that does not re-
quire knowing or estimating the camera calibration. We only make the assump-
tions that the camera has square pixels and approximately centered principal
point (which is satisfied for essentially all consumer cameras today). The main
idea is to use a subset of the geometric constraints which are invariant to any ra-
dial change in the projection (such as focal length and most lens-distortion). We
show that it is possible to recover high quality reconstructions from this weaker
set of constraints even for images from very extreme distortions (e.g. fisheye
and catadioptric cameras). In contrast to previous work we do not estimate any
distortion model or perform self-calibration.

1.1 Background

The Radial Alignment Constraint (RAC) was first introduced by Tsai [51] for
camera calibration. The RAC simply states that the projection of a 3D point
should lie on the radial line5 passing through the image point (see Figure 1). This

5 Radial lines are lines passing through the image center.



Calibration-free SfM with Calibrated Radial Trifocal Tensors 3

constraint has the nice property that it does not depend on the camera’s focal
length or any purely radial distortion, since these only move the projections along
the lines. However, since forward motion also moves the projections radially it
is only possible to recover the pose of the camera up to an unknown forward
translation using these constraints. This constraint has been used for absolute
camera pose estimation with radial distortion, see Kukelova et al. [25] and more
recently Camposeco et al. [5] and Larsson et al. [30].

1.2 1D Radial Camera Model

The idea in the RAC later gave rise to the 1D-Radial camera model which
considers the mapping from 3D points to radial lines in the image. Formally,
this can be modelled as a projective mapping from P3 to P1. Similarly to pinhole
cameras, we can describe this mapping with a matrix acting on homogeneous
coordinates, i.e. x ∼ PX, where x ∈ P1, X ∈ P3, P ∈ R2×4. Note that in this
case the camera matrix P is a 2× 4 matrix instead of 3× 4. The camera matrix
can be thought of as the first two rows of the pinhole camera; giving only the
direction of the pinhole projection and not the radial scaling.

As for pinhole cameras we can consider calibrated cameras. In the pinhole
camera setting we require the first 3×3 block to be a rotation matrix; for radial
cameras we require the first 2× 3 block to consist of two orthonormal vectors,

P =

[
rT1 t1
rT2 t2

]
, rT1 r2 = 0, ‖r1‖ = ‖r2‖ = 1. (1)

It is important to note that this is not an approximation (like e.g. weak
or para-perspective), but instead we essentially consider a subset of the geo-
metric constraints which are independent. This means that for any perspective
reconstruction (possibly with non-linear radial distortion), there exists a corre-
sponding 1D radial reconstruction found by just taking the first two rows from
each camera. In this paper we show that we can recover this reconstruction with-
out ever estimating the focal length or radial distortion. Note also that the 1D
radial camera model is not only valid for central cameras, but any optical sys-
tem satisfying the RAC, e.g. spherical mirrors (chromeball images) or in general
any radially-symmetric mirror, axial cameras, etc. For more details about the
1D-radial camera model see the supplementary material.

1.3 Multiple View Geometry of 1D Radial Cameras

The multiple view geometry of 1D radial cameras was studied by Thirthala and
Pollefeys [48] in the framework of multi-focal tensors [49]. Since the radial model
only provides a single constraint from each projection, it was shown in [48] that
there does not exist any bi- or trifocal tensors for radial cameras in general po-
sition, and that it is first in four views that constraints appear. Furthermore,
[48] showed that the quadrifocal tensor itself has two internal constraints. Ignor-
ing these constraints the quadrifocal tensor can be linearly estimated from 15
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quadruplet point matches. However, as mentioned in [48], this solver is mostly
of theoretical interest and not usable for practical purposes due to the high-
number of points required. There is currently no known minimal solver for the
radial quadrifocal tensor which enforces the internal constraints. In [48] they also
consider three special camera configurations where trifocal tensors exist: 1) three
principal axes intersect, 2) the scene points are planar and 3) one pinhole cam-
era and two radial cameras. For the tensors they only consider the projective
setting, i.e. there are no constraints enforcing that the tensors they estimate can
be factorized into calibrated cameras, as in (1).

The tensors above describe projective mappings from P3 to P1. There has also
been a series of works which consider the multiple view geometry of cameras in
lower dimensional spaces, i.e. P2 to P1. The trifocal tensor in this setting was first
investigated by Quan and Kanade [39]. Faugeras et al. [16] showed that cameras
undergoing planar motion can be modeled with 1D cameras by projecting the
image measurements onto the ground plane, allowing for estimation with the
radial trifocal tensor from [39]. Later, Åström and Oskarsson [4] derived the
internal constraint for calibration for this tensor. In this simpler setting the
calibration constraint turns out to be linear. These lower dimensional radial
trifocal tensors were then used in [11,40,3] for localization of robotic platforms.

Calibrated Multiple View Geometry. In general, enforcing constraints
for calibration on multi-focal tensors is very difficult for higher order tensors.
For the two-view case (i.e. fundamental vs. essential matrix), these constraints
are the well-known trace-constraints6, 2EETE − tr(EET )E = 0. The con-
straints for the perspective trifocal tensor have received much attention recently
([32,22,35,13,15]), though currently the minimal solvers are based on homotopy
continuation or other iterative methods and have far from practical runtimes,
especially compared to their two-view counterparts. In this paper we will show
that there exist analogous calibration constraints for the radial trifocal tensor
as well as the mixed trifocal tensor. We also show that these constraints can be
used to develop fast minimal solvers for calibrated radial reconstruction.

Related work by Kim et al. [23]. Structure-from-Motion with the 1D ra-
dial camera model was previously considered by Kim et al. [23]. In [23] the
authors presented a method for performing projective reconstruction with 1D
radial cameras based on matrix factorization techniques, similar to previous work
on projective-factorization for perspective cameras [50,2,10]. In a post-processing
step, the method attempts to upgrade the reconstruction to metric by estimat-
ing the dual absolute quadric. However, their approach does not handle outlier
measurements which limits the applicability on real image sequences. Addition-
ally, due to the matrix factorization based approach, the method does not scale
to larger image collections, e.g. the largest reconstruction presented in [23] has
189 3D points from 79 images. For comparison, in Section 4.4 we present 3D
reconstructions from over a thousand images and more than 400k 3D points.

6 also known as the Demazure constraints [12].
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2 Calibrated Radial Trifocal Tensors

In this section we will present two new minimal solvers for calibrated radial
trifocal tensors. These will be used for initializing our incremental Structure-
from-Motion pipeline in Section 3. Next we show that there exists one additional
internal constraint for each of the two tensors we consider; the purely radial
trifocal tensor with intersecting principal axes, and the mixed trifocal tensor
with one central camera and two radial cameras in general position. In the
supplementary material we also discuss the third case considered by Thirthala
and Pollefeys [48] where the scene is planar.

2.1 Intersecting Principal Axes

First we consider the case of intersecting principal axes. Choosing the world-
coordinate frame such that the point of intersection is the origin, then the 2× 4
camera matrices will be of the form, Pk =

[
Ak 0

]
, k = 1, 2, 3, Ak ∈ R2×3. The

projection equations λx = A1X, λ′x′ = A2X and λ′′x′′ = A3X can be rewritten A1 x 0 0
A2 0 x′ 0
A3 0 0 x′′




X
−λ
−λ′
−λ′′

 = 0. (2)

This 6 × 6 matrix must thus be rank deficient and its determinant yields an
equation which depend on the image points,

∑
i,j,k Tijk xix

′
jx
′′
k = 0 where xi

denotes the ith image coordinate. The coefficients Tijk can be interpreted as the
2×2×2 multi-focal tensor [49] corresponding to this camera configuration. This
is the radial trifocal tensor from [48]. In the uncalibrated setting this camera
configuration has 3 · (2 · 3 − 1) − (3 · 3 − 1) = 7 degrees of freedom. Since the
corresponding multi-focal tensor is a homogeneous 2× 2× 2 tensor (which also
has 7 degrees of freedom), the radial trifocal tensor does not have any internal
constraint, as was also stated in [48].

Now if we consider the calibrated setting we require each matrix Ak to have
orthonormal rows, i.e. Pk =

[
Rk 0

]
where RkR

T
k = I2, Rk ∈ R2×3. In this case

each camera only has 3 degrees of freedom and similarly the gauge freedom in the
coordinate system is also reduced to 3 (since the projections are scale invariant)
resulting in 3 · 3 − 3 = 6 degrees of freedom. This means that there must exist
7− 6 = 1 internal constraint on the corresponding trifocal tensor.

Internal Constraint for Calibration. Using techniques from numerical linear
algebra we found that the internal constraint is a homogeneous quartic polyno-
mial in the tensor elements. See the supplementary material for details on the
constraint and how we found it. We have verified the validity of the constraint
both empirically and symbolically using computer algebra software.

Estimation from Minimal Point Sets. As shown above, each triplet corre-
spondence (x,x′,x′′) in the images yields one linear constraint on the elements
of the radial trifocal tensor (see also [48]). To get a minimal problem we therefore
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Fig. 2. The radial trifocal tensor describes three views with intersecting principal axes,
e.g. from pure rotation (Left), panoramic motion (Middle) and orbital motion (Right).

need we need six triplet correspondences in total. From the six correspondences
we can then find the two-dimensional linear subspace of possible 2×2×2 tensors
that satisfy the trifocal constraints, i.e.

T = α1N1 + α2N2, (3)

where N1 and N2 are basis vectors to the nullspace. Since the tensor is homoge-
neous we can fix the scale by setting α2 = 1. To solve for the remaining unknown
we insert (3) into the internal constraint from the previous section, yielding a
single univariate quartic polynomial in α1 that can be solved in closed form. In
Section 4.1 we evaluate the proposed minimal solver.

2.2 Mixed Trifocal Tensor

Now we consider heterogeneous camera setups with both radial and pinhole
cameras. The different minimal problems for heterogeneous camera setups were
listed in Kozuka and Sato [24], though only in the projective setting. For the
trifocal case there are two possibilities: 1) one pinhole and two radial cameras,
2) two pinhole and one radial camera. The second case becomes trivial since the
minimal problem decouples into independent relative pose estimation between
the pinhole cameras followed by pose estimation of the radial camera.

One Pinhole and Two Radial. The minimal solution for this camera case was
first presented in [48] in the uncalibrated setting. In this case there are 11 + 7 +
7−15 = 10 degrees of freedom7. Since the corresponding tensor is a homogeneous
3×2×2 tensor with 11 degrees of freedom, there exist a single internal constraint.
This constraint was derived in [48] and is a degree 6 polynomial in the tensor.

In the calibrated setting we have 6 d.o.f. in the calibrated pinhole camera,
5 in each of the calibrated 1D radial cameras and the coordinate system has
7 d.o.f., yielding 6 + 5 + 5 − 7 = 9 degrees of freedom. Thus there must exist
one additional internal constraint in the case of calibrated cameras. Similarly to
Section 2.1 we used numerical techniques to recover the internal constraint. For
this case it was more difficult to recover the constraint, both due to its higher
degree, and having to consider the multiples of the original internal constraint
from [48]. The internal constraint is a homogeneous degree 8 polynomial in the

7 The projective coordinate system has 15 d.o.f.
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Fig. 3. Initialization for Structure-from-Motion with 1D radial cameras. Left: First
we estimate a calibrated radial tensor describing the relative motion of three cameras
with intersecting principal axes. Middle: Intersecting the backprojected feature corre-
spondences of the three cameras we synthesize the image of a central camera with the
intersection point as the projection center. Right: Finally we estimate a mixed trifo-
cal tensor describing the relative motion of the synthesized central camera and two
additional radial cameras.

elements of the tensor. For space reasons we do not print the full polynomial
here (it has 3357 monomials). See the supplementary material for more details.

Estimation from Minimal Point Sets Each point correspondence yields a
single linear constraint on the 12 elements of the mixed trifocal tensor. From
the minimal sample of nine point correspondences we get a three dimensional
nullspace where the tensor must lie, T = α1N1 + α2N2 + α3N3. Fixing α3 = 1
and inserting into the two internal constraints we get two polynomials in two
unknowns of degree 6 and 8. Empirically we found that the coefficients of the
two polynomials are completely generic which means that we have 48 solutions
in general. Note that in practice many of these solutions end up being complex
and only a small subset needs to be verified in the end. Using the generator from
Larsson et al. [27] we created a Groebner basis solver for this polynomial system,
but other techniques such as resultants could have been used as well.

3 Calibration-free Structure-from-Motion

In this section we present our incremental pipeline for Structure-from-Motion
based on the 1D radial camera model (see Section 1.2). We base our method
on the incremental SfM pipeline COLMAP [42]. The main steps in our pipeline
are: Initialization (Section 3.1), Triangulation (Section 3.2), Camera Resection-
ing (Section 3.3) and Bundle Adjustment (Section 3.4). The main difference to
traditional SfM frameworks is that each point-observation now only gives a sin-
gle constraint on the reconstruction instead of two. This makes the geometric
estimation problems significantly harder, e.g. 3D points require at least three
views to triangulate. The benefit of this camera model is that we can perform
reconstructions which are invariant to focal length or radial distortion. Note that
at no point in our reconstruction pipeline do we estimate these parameters. We
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only make the assumption of square pixels and centered principal point. The
next sections detail the different parts of our framework.

3.1 Initialization

Initializing Structure-from-Motion is significantly harder for the 1D radial cam-
era model compared to normal pinhole-like camera models. Without additional
assumptions on the camera motion, the first constraints on the reconstruction
appear in four views, i.e. it is (in general) impossible to estimate the structure
and motion from only two or three views. The projective four-view case was
investigated by Thirthala and Pollefeys in [48], but due to the high number of
points required (15 for the linear solver presented in [48]), it is not useful in
practice where we need to deal with outlier-contaminated data.

Now we present our approach for finding the initial reconstruction for the
incremental Structure-from-Motion pipeline. It is based on the assumption that
we can find three images where the principal axes are (approximately) inter-
secting (see Figure 2). Note that while a purely rotating camera satisfies this
assumption, intersecting principal axes is a weaker constraint since the camera
centers are not required to coincide. This also covers the spherical type of mo-
tion common in handheld panoramic image capture (see e.g. [52,46]) as well as
orbital motion. This camera configuration is also common in photo collections
where the cameras are often pointed towards some object of interest. The ini-
tialization consists of three stages and is performed using a combination of the
minimal solvers described in Section 2.1 and 2.2. See Figure 3 for an overview.

a) Estimate Calibrated Radial Trifocal Tensor. Using the 6 point minimal
solver from Section 2.1 in a RANSAC framework [31] we estimate a calibrated
radial trifocal tensor for the first three images (which we assume have approxi-
mately intersecting principal axes). In Section 3.5 we present a simple heuristic
we use for finding such image triplets in an image collection and in Section 4.3
evaluate the quality of the estimated camera poses on real images.

b) Create Synthetic Central Camera. From the three images with inter-
secting principal axes it is not possible to triangulate any 3D points. Each 2D
observation backprojects to a 3D plane which contain the 3D point as well as
the principal axis of the camera. If we intersect all three backprojected planes,
the intersection will contain both the true 3D point and the intersection point
of the three principal axes, and thus also the entire line between them. Thus
we can only determine the direction towards the 3D point from the principal
axes’ intersection point. The idea is now that we can interpret these directions
as the viewing rays from a central camera with projection center at the inter-
section point. Note that this automatically becomes a calibrated central image,
since the directions were triangulated in the coordinate system defined by the
calibrated radial trifocal tensor from the previous step. Note that we only tri-
angulate the directions of the sparse set of correspondences we have and not
generate a full synthetic image. The idea of generating synthetic pinhole images
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from the radial trifocal tensor was also used in [36] to create undistorted images
from three views.

c) Estimate Calibrated Mixed Trifocal Tensor. Finally we use the 9
point solver from Section 2.2 in RANSAC [31] to estimate the calibrated mixed
trifocal tensor between the synthetic central camera and two additional views
(which are modeled as radial cameras and can be in general position). Once we
have a reconstruction with the five radial cameras in the same coordinate system
we perform bundle adjustment (Section 3.4). For the refinement we remove the
constraint that the first three views have intersecting principal axes.

3.2 Triangulation

Each 2D-3D correspondence yields a single constraint,

(−y, x)

[
rT1 t1
rT2 t2

](
X
1

)
= 0 (4)

Geometrically this can be interpreted as restricting the 3D point X to lie on
the plane nTX + d = 0, where n = xr2 − yr1 and d = xt2 − yt1. Given at
least three correspondences (for cameras in general position) we can find the
intersection point of the planes by solving the corresponding linear system of
equations (possibly in a least squares sense for overconstrained problems). Note
that the triangulation problem is minimal with three views which means that
the triangulated point will always have zero reprojection error. Therefore it is
not possible to determine if the matches used were correct or not. To avoid
this problem we only triangulate points seen in at least four views. For pinhole
cameras the same number of constraints is achieved from two views.

3.3 Camera Resectioning

Resectioning is the problem of estimating the camera pose given 2D-3D cor-
respondences. For calibrated radial cameras each camera has five degrees of
freedom and thus we require at least five correspondences for estimation. The
minimal solver for this problem was proposed by Kukelova et al. [25], where
it was used in a two-step approach for radial distortion estimation. Note that
for the case where the principal point is not known, the 1D radial solver from
[29] which also estimates principal point, could in principle be used as a drop-in
replacement. However, this solver has significantly larger runtime and requires
two additional correspondences. We did not use this solver and found that the
method is stable for the principal point offsets observed in practice.

3.4 Bundle Adjustment

We measure the reprojection error as the orthogonal distance from the projected
radial line to the 2D point correspondence, i.e. for a camera [R t] ∈ R2×4, 3D
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point X ∈ R3 and 2D-observation x ∈ R2, we measure

ε =

∥∥∥∥(nnT

nTn
− I
)
x

∥∥∥∥ , where n = RX + t (5)

For the Bundle-Adjustment step in our pipeline we minimize the squared repro-
jection errors using the Ceres Solver [1]. If we have multiple images from the
same camera we also refine the principal point.

3.5 Implementation Details

We have implemented our Structure-from-Motion pipeline by extending the
open-source framework COLMAP [42]. The trifocal tensors estimated by the
solvers in Section 2.1 and 2.2 can be factorized into the respective camera ma-
trices. To perform this factorization we use the methods from [39,17], see the
supplementary material for more detail. The runtimes of the solvers are 3.6µs
(radial trifocal) and 0.8 ms (mixed trifocal). In the synthetic experiments the
solvers returned 3.09 / 4 and 8.76 / 48 real solutions in average.
Initialization Image Selection. The proposed initialization method (Sec-
tion 3.1) requires three images with intersecting principal axes. These images
can either be manually selected by the user, or we use a simple heuristic for
finding suitable image triplets to initialize from. We restrict ourselves to the case
where the camera is undergoing purely rotational motion. For normal Structure-
from-Motion this is a degenerate case for initialization which is avoided. In [42]
this is detected by checking if a homography fits the image pair. We use this to
identify potential image triplets for initialization. For a triplet we can then geo-
metrically verify if the image triplet has intersecting principal axes by fitting a
radial trifocal tensor. With this simple heuristic we could find good initialization
images for all datasets used in the evaluation in Section 4.4.

4 Experimental Evaluation

4.1 Solver Stability, Robustness and Runtime

In this section we evaluate the numerical stability of the two proposed minimal
solvers. Figure 4 (Left) shows the log10-residuals for 10,000 synthetically gen-
erated instances. For the residuals we compute the `2-distance to the ground
truth tensor after normalizing each tensor to unit length (i.e. ‖vec(T )‖2 = 1). In
the experiment 0.03% (radial trifocal) and 4.25% (mixed trifocal) instances had
errors larger than 10−8. The mixed trifocal tensor is slightly less numerically
stable and had a few failures as can be seen in the figure.

We also performed an experiment where we evaluate how the solutions for
the radial trifocal tensor degrade as the assumption of intersecting principal
axes is violated. We generate randomized synthetic scenes with three pinhole
cameras looking at the origin from unit-distance. We then perturb the cameras
by rotating each camera around a random axis with the camera center being
fixed. Figure 4 (Right) shows how the rotation estimates from the radial trifocal
tensor degrades as the rotation angle increases.
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Fig. 4. Left: Numerical stability. The figure shows the distribution of the errors for
10,000 synthetically generated scenes. Right: Stability to non-intersecting princi-
pal axes. The graph shows the median errors in the relative rotations (in degrees) for
the estimated calibrated radial trifocal tensor as the intersection constraint is violated.
The shaded regions show the quartiles.

4.2 Comparison with Thirthala & Pollefeys [48]

In [48] the authors propose minimal solvers for estimating the radial trifocal ten-
sor (intersecting principal axes) and the mixed radial trifocal tensor (perspective
+ two radial cameras) in the projective setting. These solvers do not enforce the
additional constraint that ensures the tensors can be factorized into calibrated
cameras (see Section 2.1 and Section 2.2). Since they use less constraints on the
tensor itself, they also require one additional point correspondence. We gener-
ated synthetic scenes with varying levels of noise and compared how close the
resulting cameras were to calibrated after factorizing the tensor and attempting
metric upgrade (see supplementary material). Figure 5 shows the error in the
rotation matrix constraint, ‖RiR

T
i − I2‖, for varying levels of noise added to the

image coordinates. Even for low noise levels the solvers from [48] yields solutions
which are quite far from calibrated.

4.3 Evaluation of the Initialization on Real Data

The initialization pipeline we propose requires five images where three of them
have close to intersecting principal axes. Intersecting principal axes can e.g. come
from a purely rotating camera. In Section 3.5 we proposed a simple heuristic for
finding this type of motion. To evaluate the initialization method we use the
aforementioned method to find potential image triplets to initialize from. We
select 1000 triplets from the Lund Cathedral dataset from [38]. For each triplet
we estimate the trifocal tensor and compute the errors in the relative rotations
w.r.t. the reconstruction provided in [38]. This is shown in Figure 6 (Left). Note
that some of the selected triplets do not satisfy the assumption of intersecting
principal axes, leading to large errors. For the 100 best triplets (highest inlier
ratio) we try to further initialize by selecting the two additional images with the
most matches. Figure 6 (Right) shows the distribution of the rotation errors for
all five cameras used to initialize.
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Fig. 5. Comparison with projective solvers from [48]. The graphs show the median
error of the rotation matrix constraint (shadowed region shows quartiles) for 10,000
random instances. Left: Radial trifocal tensor. (Section 2.1) Right: Mixed trifocal ten-
sor. (Section 2.2)
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Fig. 6. Rotation errors (in degrees) for the initialization. Left: Three-view radial trifocal
tensor estimation. Right: Full initialization pipeline (five views).

4.4 Structure-from-Motion Evaluation

For the quantitative evaluation of our SfM pipeline we consider five datasets
from Olsson et al. [38]. We compare with vanilla COLMAP [42] using the ground
truth camera intrinsics. Since we use a subset of the geometric constraints used
in COLMAP, this provides an upper bound on the reconstruction quality we can
achieve. The reconstructions from [38] are used as a pseudo-ground truth. Table 1
shows the camera pose errors and statistics after robustly aligning the coordinate
systems to the ground truth. Since we only recover the camera position up to an
unknown forward translation, the position error measures the distance from the
ground truth camera center to the principal axis for both our and the baseline
method [42]. The scales of the reconstructions from [38] were manually corrected.
Image are considered correctly registered if the rotation error is below 5 degrees
and it has at least 100 inliers. The table shows that we are able to achieve
comparable reconstructions to the state-of-the-art pipeline [42] without knowing
the intrinsic calibration. As expected, our reprojection errors are lower since
they ignore the radial component of the errors. Figure 9 shows some qualitative
results. For the Spilled Blood dataset the scene is highly symmetric and some
images are being incorrectly registered to the wrong side of the building. Since
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Table 1. Quantitative evaluation of the proposed Structure-from-Motion pipeline on
the datasets from [38]. The errors are w.r.t. the reconstructions from [38]. Note that
we only evaluate on the images that the method from [38] were able to register.

Reg. Images 3D Points εrotation (deg) εposition (m) εreproj (px)

Dataset Images Our [42] Our [42] Our [42] Our [42] Our [42]

Lund Cathedral 1208 99.6% 100% 422k 535k 0.93 0.39 0.929 0.180 0.287 0.578
Orebro Castle 761 100.0% 100% 197k 246k 0.15 0.10 0.387 0.089 0.276 0.532

San Marco 1498 100.0% 100% 293k 325k 0.50 0.29 0.614 0.140 0.443 0.751
Spilled Blood 781 80.3% 100% 285k 328k 0.72 0.26 0.231 0.134 0.409 0.571
Doge Palace 241 100.0% 100% 74k 93k 0.20 0.20 0.154 0.110 0.293 0.605

we use weaker projection constraints it is more difficult to disambiguate these
incorrect matches.

Reconstruction with Severe Radial Distortion. Next we present qualita-
tive results of our method applied to highly distorted images and show that we
achieve accurate reconstruction without directly modeling the non-linear distor-
tion. Figure 7 shows the reconstruction results from images taken with fisheye
camera (from Camposeco et al. [5]) and Figure 8 from a GoPro camera (from
Kukelova et al. [26]). In Figure 10 we show a reconstruction from 148 fisheye im-
ages. For comparison we also show the result of running COLMAP [42] without
providing it intrinsic/distortion parameters, which fails to reconstruct the scene.
This experiment shows that COLMAP [42] is not always able to converge to
the correct intrinsic/distortion parameters during the bundle adjustment which
motivates our method. More results can be found in the supplementary material.

5 Conclusions

We have presented an incremental Structure-from-Motion pipeline using the 1D
radial camera model. Since the model is invariant to radial displacements in
the image, we can directly perform reconstruction from heavily distorted images
without any offline calibration or even explicitly modelling the type of distortion.

In this paper we deliberately focused on the most difficult setup where every
camera is modeled as a radial camera, making the initialization more complex.
In practice, for heterogeneous image collections it is possible to only model the
cameras with high distortion effects as radial cameras and use a pinhole-like
model for the others. This would allow for an easier and more general initial-
ization procedure; either from two pinhole cameras, or from one pinhole camera
together with two radial cameras (Section 2.2). In principle it is possible to use
the reconstructions we recover to calibrate the cameras, e.g. using [25,30] for
parametric distortion models or [5] for non-parametric. Even without this post-
calibration step we have shown that we can achieve accurate 3D reconstruction.

Acknowledgements: Viktor Larsson was supported by an ETH Zurich
Postdoctoral Fellowship.
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Fig. 7. Building dataset from [5]. 60 images, 8984 3D-points, 0.38 px average reprojec-
tion error.

Fig. 8. Rotunda dataset from [26]. 62 images, 16292 3D-points, 0.41 px average repro-
jection error.

Fig. 9. Qualitative results for Lund Cathedral from Section 4.4. 1226 images, 422939
3D-points, 0.29 px average reprojection error.

Our COLMAP[42]

Fig. 10. Fisheye Dataset, 148 images, 14893 points, 0.51 px average reprojection er-
ror. Without known intrinsic/distortion parameters COLMAP fails to reconstruct the
scene, while the proposed method successfully reconstructs it.
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