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Section 1 further analyzes TAO annotations, including quality control and
statistics. Section 2 further analyzes metrics, comparing 3D IoU to MOT chal-
lenge [19] metrics. Finally, Section 3 further analyzes tracking methods, providing
results on non-LVIS categories, improved initialization for user-initialized trackers,
and hyperparameter tuning experiments.

1 TAO annotations

This section presents additional details about TAO annotations. Section 1.1
assesses the diversity and quality of annotations. Section 1.2 analyzes the size,
length and motion statistics of labeled tracks. Finally, Section 1.3 provides further
information regarding the construction of dataset splits.

1.1 Annotation diversity and quality

We analyze the diversity and quality of TAO annotations by re-annotating 50
videos in the dataset.

Diversity. One might hope that this re-annotation closely matches the original
annotation. However, in our federated setup, annotators are instructed to label
only a subset of moving objects in each video. Thus, the annotations would only
match if annotators had a bias towards a specific set of objects, which would
hurt the diversity of TAO annotations. To verify whether this is the case, we
check whether each track in the re-annotation corresponds to an object labeled
in the original annotation. Concretely, if a re-annotated track has high overlap
(IoU > 0.75) with a track in the original annotation, we assume the annotator is
labeling the same object. Our re-annotation results in 310 tracks from 50 videos.
Of these 310 tracks, just over half (177, or 57%) overlapped with those in the
initial labeling with IoU > 0.75. The rest were new objects not originally labeled
in TAO, suggesting that annotators chose to label a diverse selection of objects.

Quality. Next, we evaluate the annotation agreement of the 177 re-annotated
tracks that correspond to tracks originally labeled in TAO. If our annotations
are of high quality, we expect these tracks to have a very high IoU (say, > 0.9),
as well as matching class labels. Indeed, the average IoU for the 177 overlapping
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tracks was 0.93, indicating annotators precisely labeled the spatial and temporal
extent of objects. Finally, we evaluate the quality of the class labels in TAO. 165
(93%) were labeled with the same category as in the initial labeling; an additional
6 (3%) were labeled with a more precise or more general category (e.g., ‘jeep’
vs. ‘car’); finally, 6 were labeled with similar labels (e.g., ‘kayak’ vs. ‘canoe’) or
other erroneous labels. This analysis indicates that despite the large vocabulary
in TAO, the class labels in TAO are of high quality.

If our annotations are of high quality, we expect these tracks to have a very
high IoU (say, > 0.9), as well as matching class labels.

Annotation details. We worked closely with a professional data-labeling com-
pany, Scale.ai, to label TAO. Each track was labeled by a Scale annotator,
reviewed by Scale reviewers, and finally manually inspected by the authors.

1.2 Annotation statistics

We present further analysis of the annotated tracks in TAO in Figure 1. We
compare TAO to MOT-17 [19] and ImageNet-Vid [22], which are benchmark
datasets where the Viterbi [10,8] and the Tracktor [1] approaches were originally
evaluated.

Figure 1(a) shows the distribution of changes in aspect ratio between two anno-
tated frames at 1FPS. Concretely, the aspect ratio change is (wt/ht)/(wt−1/ht−1),
where wt, ht are the width and height of the object at time t, respectively (see
[16]). This metric can be used to understand the types of motion in tracking
datasets. MOT-17 focuses on people, which largely have the same aspect ratio
over time. ImageNet-Vid has a slightly more diverse distribution of changes in
aspect ratio, but TAO has by far the most diverse distribution, due to its large
size and diversity of categories.

Figure 1(b) plots the distribution of bounding box resolution as a percentage
of the image. MOT-17 tends to have smaller bounding boxes, while TAO and
ImageNet-Vid have a variety of object sizes. Note again that TAO presents a
much larger number of tracks used for evaluation, visible even on the log-scale in
Figure 1(b), than ImageNet-Vid val.

Figure 1(c) presents the distribution of object motion, proportional to the
size of the object. Concretely, let at be the area of the bounding box at time

t. We define the distance in x as dxt = ‖xt−xt−1‖
at−1

, and similarly for dyt . Then,

dt = ‖[dxt , d
y
t ]‖22. As with Figure 1(a), we plot these changes at 1FPS so that the

annotation rate does not impact the plot. We note that TAO contains a variety of
object motions, including extremely fast motions for small objects, as evidenced
by the number of boxes with motion change larger than 5.0.

Figure 1(d) shows the distribution of object track lengths in TAO. For clarity,
we group the tracks into 3 bins based on length: short, medium and long, which
correspond to less than 1/3, between 1/3 and 2/3, and greater than 2/3 of the
length of the video. The plot shows that TAO provides diversity in object track
length, requiring methods to be able to track for long periods of time, while also
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(a) Ratio between aspect ratio of bound-
ing boxes between two consecutive anno-
tated frames at 1FPS.
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Fig. 1. Additional statistics of the TAO dataset. See Section 1.2 for details.

being able to recognize when an object is missing. By contrast, MOT-17 is biased
towards short tracks, while ImageNet-Vid is biased towards long tracks.

Finally, we present statistics of recent benchmarks for user-initialized tracking
(or single-object tracking) in Table 1. We note that datasets tend to benchmark
tracking on a smaller number of categories than TAO, and on far fewer videos.
While this may be appealing from a computational perspective, we argue that
progress in tracking requires evaluating on a large, diverse set of scenarios,
ensuring that methods do not overfit to any small set of videos or environments.
Further, unlike standard user-initialized tracking datasets, TAO contains nearly
5x as many tracks per video, leading to a much larger number of total tracks
compared to prior benchmarks.

1.3 Split construction

We construct our ‘train’, ‘val’, and ‘test’ splits to respect the following constraints:
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Table 1. Statistics of major user-initialized tracking datasets.

Dataset
Classes

Eval. Train
Videos

Eval. Train
Avg

length (s)
Tracks
/ video

Min
resolution

Ann.
fps

Total Eval
length (s)

VOT 2019 LT [15] 0 16 0 50 143.5 1 290x217 ~30 7,176
GOT-10k [14]a 84 480 360 9,335 12.2 1 270x480 10 4,384
OxUvA [23] 22 0 366 0 141.2 1.1 192x144 1 51,667
LaSOT [7] 70 70 280 1,120 82.1 1 202x360 ~25 23,520
TrackingNet [20] 27 27 511 30,132 14.7 1 270x360 ~28 7,511

TAO (Ours)b 785 316 2,407 500 36.8 5.9 640x480 1 88,605

a Stats from the GOT-10k dataset release, which differ from those in [14].
b TAO train and eval contain partially overlapping subsets of the overall 833 categories.

– Charades contains videos recorded by mechanical turk workers, and one
worker may contribute multiple videos to Charades. We ensure that any two
videos uploaded by the same worker falls in the same split.

– ArgoVerse contains video recordings from different cameras from the same
driving sequence. We ensure that all videos from the same driving sequence
fall in the same split.

– HACS contains videos uploaded to YouTube. Any two videos uploaded by
the same YouTube user, or uploaded to the same YouTube channel, must
fall in the same split.

– AVA. We split AVA movies into multiple contiguous shots, and ensure shots
from the same movie fall in the same split.

– YFCC100M contains videos uploaded to Flickr. Any two videos uploaded
by the same Flickr user fall in the same split.

– BDD and LaSOT: No constraints are applied for split construction.

2 Metrics

In this section, we further analyze the 3D IoU metric (2.1), report results using
the MOT challenge [19] metrics (2.2), and finally present per-category APs for
SORT (2.3).

2.1 3D IoU Discussion

The mAP metric using 3D IoU provides a concise, interpretable evaluation of
tracking in the wild, as evidenced by its use in recent datasets for multi-object
tracking with many categories [6,27]. We further discuss this metric below:

Relation to identity swaps. Figure 2 shows that 3D IoU is correlated with a
key metric for tracking: identity swaps, as measured by the MOT challenge [19]
metrics.

Partial credit. Evaluating trackers with mAP requires specifying an IoU thresh-
old, which we set to 0.5 throughout the experiments in the main paper. Conse-
quentially, trackers do not receive partial credit for tracking an object for short
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Fig. 2. For each pair of predicted and groundtruth tracks matched to each other on
TAO, we compute the 3D IoU and number of ID swaps. Above, we plot the mean and
variance of 3D IoU vs. ID swaps across tracks, and show that 3D IoU drops as the
number of ID swaps increases.

time periods. Consider two trackers: Tracker A perfectly tracks an object for 30%
of its track length, while Tracker B only tracks the object 5% of the time. At an
IoU threshold of 0.5, A and B will result in the same mAP. By contrast, metrics
such as MOTA and ID-F1 will be significantly higher for A than for B. The 3D
IoU mAP metric takes inspiration from image-based detection metrics: as object
detectors receive no credit for loose localizations, object trackers receive no credit
for loosely tracking objects for a few frames. If desired, the mAP metric can
be modified to provide partial credit by averaging over multiple IoU thresholds,
similar to the COCO evaluation [18].

Confidence estimates. Metrics such as MOTA [2] and ID-F1 [25] metrics do
not evaluate the confidence provided by many modern tracking approaches. By
contrast, our mAP metric evaluates these explicitly when tracing out the precision-
recall curve. This allows us to evaluate methods across diverse application
scenarios, which may have different tradeoffs between precision and recall.

Impact of object size. 3D IoU is computed over spatio-temporal volumes. As
such, frames where an object’s bounding box is large have a greater impact on
the spatio-temporal volume than frames where an object’s bounding box is small,
thus factoring in more heavily into the IoU measure. We note that for many
applications, such as navigation, this is a desirable property, as accurate localiza-
tion and tracking is more important for nearby objects. For other applications,
additional diagnostics, such as MOTA (Section 2.2), can be used for further
analysis.

2.2 MOTA results

For completeness, we present results using the MOT challenge suite of met-
rics [19]: MOTA [2], ID-F1 [21], mostly-tracked (MT) tracks and mostly-lost
(ML) tracks [25], false-positives (FP), false-negatives (FN) and identity swaps
(ID Sw.), computed using the py-motmetrics library [13]. To do this, we first
make two modifications to the MOT metrics:
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Table 2. Results from tuning track score thresholds for multi-object trackers, user-
initialized trackers, and Tracktor++ on TAO train, reporting MOTA.

Tracker 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Detector -18.1 -9.7 -6.1 -3.8 -2.2 -1.3 -1.0 -0.3 -0.01 0.0

SORT -3.0 7.7 7.7 7.9 8.5 6.9 5.4 3.6 2.5 0.0
Viterbi -8.4 2.5 5.4 5.6 6.2 6.8 5.3 5.3 3.3 0.0

ATOM 21.8 21.8 21.8 21.8 21.8 21.8 27.2 19.8 8.2 0.0
DIMP 22.7 22.7 22.7 22.7 22.7 22.7 22.6 21.4 20.3 19.1
ECO 0.7 0.7 0.3 1.5 7.0 8.1 12.6 6.1 0.3 0.0
SiamMask 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.7 19.9 0.0
SiamRPN++ 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0 25.5 0.0
SiamRPN++ LT 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 22.9 0.0

Person-only evaluation

Tracktor++ 65.9 66.0 66.2 66.5 67.2 67.9 68.4 67.8 63.0

Federated MOTA and ID-F1. We update the MOTA and ID-F1 metrics
for a federated dataset by only counting false positives (FPs) for a category c in
video v if we know that all instances of category c are annotated in video v (i.e.,
if v is in Pc or Nc as defined in Sec. 3 of our paper). While this approach is not
perfect, as it can over-estimate the performance of a tracker, it provides a simple
adaptation to the federated setup.

Multiple categories. The MOT metrics are usually reported for a single
category [19], or separately for a small number categories [9]. This is not a scalable
strategy for TAO, which contains 833 categories. Instead, we compute metrics
separately per category, and combine them across categories. Concretely, for met-
rics such as MOTA and ID-F1, we report the average value across categories. For
counters, including MT (mostly-tracked), ML (mostly-lost), FP (false-positives),
FN (false-negatives) and ID Sw. (identity switches), we report the sum across
categories. Note that while MOTA and ID-F1 are balanced across categories, the
‘counters’ are heavily dominated by the most frequent categories.

Thresholds. Unlike mAP, the MOT metrics require picking a confidence
threshold for evaluation. To do this, we search over track score thresholds on
TAO train and report results in Table 2. For Viterbi and user-initialized trackers,
the track score threshold is applied after the tracker per-frame score threshold
tuned in Section 3.3. Hence, the MOTA for track thresholds below the per-frame
threshold are equivalent (e.g., for DIMP, the optimal per-frame threshold is 0.5,
and so the MOTA for thresholds below 0.5 is exactly the same: 22.7).

We use the optimal thresholds from the train set to report results on the
validation set for multi-object trackers in Table 3, for user-initialized trackers
in Table 4, and for person-tracking in Table 5. In general, we find that the
conclusions drawn in our main paper using mAP are consistent with experiments
using MOTA, with two exceptions.
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Table 3. MOT challenge metrics for multi-object trackers on TAO validation. As the
‘Track’ oracle implicitly removes false positive detections, we set score thresholds to 0
when it is used.

Oracle
Method Class Track MOTA ↑ ID-F1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

Detection -2.3 1.3 1,495 1,941 3,492 60,776 48,377

Viterbi 5.6 10.0 1,407 2,409 5,367 62,341 10,262
SORT 6.7 10.4 1,687 2,117 4,146 59,481 4,772
Detection 3 38.8 48.4 2,191 919 0 42,796 0

Viterbi 3 8.3 13.8 1447 2361 5595 60787 10292
SORT 3 11.3 15.6 1,725 2,066 4,165 58,418 4,773
Detection 3 3 83.2 89.6 3,806 188 0 17018 6

User init. First, Table 4 shows that user-initialized trackers provide significant
improvements over SORT using MOTA and ID-F1, while this did not hold for
mAP. These metrics provide partial credit for tracking objects for short periods
of time, while mAP (with an 3D IoU threshold of 0.5) requires tracking an object
for at least half its track length (see Section 2.1). One can obtain mAP rankings
consistent with MOTA/ID-F1 by using an artificially low IoU threshold; at a
threshold of 0.1, DIMP strongly outperforms SORT, 71.0 mAP to 36.9 mAP.
These results reinforce the notion that user-initialization is helpful for tracking
short periods after initialization, but less helpful in the long term.

Table 4. MOT challenge metrics on TAO validation, comparing user-initialized trackers
with SORT using a class oracle.

Oracle
Method Box Init Class MOTA ↑ ID-F1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

SORT 3 11.3 15.6 1,725 2,066 4,165 58,418 4,773

ECO 3 3 11.8 24.0 753 4341 5395 85415 42
SiamRPN++ LT 3 3 13.1 54.0 2,292 753 19282 42255 2103
SiamRPN++ 3 3 14.6 49.9 2,110 1229 16630 45612 1411
ATOM 3 3 16.9 46.7 1,694 2,274 14,625 55,875 481
DIMP 3 3 24.4 55.1 2,279 870 16,966 42,729 1,290

MOTA-Person. Second, as noted in the main paper, Table 5 shows that MOTA-
person is significantly higher than MOTA-overall (6.7 vs 54.8 for SORT), whereas
the delta is smaller under mAP (13.2 vs 18.5 for SORT). We find MOT metrics
heavily reward accurate detection while 3D IoU heavily penalizes inaccurate
tracking. Because person detectors strongly outperform other category detectors
on average, this is manifested as a high MOTA-person score.
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Table 5. MOT challenge metrics on TAO validation for the ‘person’ category.

Method MOTA ↑ ID-F1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ ID Sw. ↓

Viterbi 44.5 50.4 939 741 21,678 3,167 7,128
SORT 54.8 56.2 1,078 542 20,025 2,432 3,567
Tracktor++ 66.6 64.8 1,529 411 12,910 2,821 3,487

Other benchmarks. Finally, we directly compare Tracktor++ on TAO with
its performance on the MOT-17 dataset. Table 6 shows that the more sophisticated
components of Tracktor++ (re-identification and motion compensation) lead to
significant improvements on TAO, suggesting TAO encourages trackers robust to
common tracking challenges, including occlusion and camera motion.

Table 6. MOTA on TAO val vs. MOT-17, for Tracktor. TAO encourages trackers
robust to camera motion and occlusion, as noted by the significant improvement to
Tracktor using the reID and camera motion compensation (CMC) components.

TAO MOT-17
Method train val train test

Tracktor 63.8 61.6 61.5 -
Tracktor++ (reID + CMC) 68.4 66.6 61.9 53.5

2.3 AP per category

We present per-category APs in Figure 3 for the SORT algorithm reported in
the main paper, though we note that AP for individual categories can be noisy
in a federated setup [11]. Note that for 180 categories, this algorithm achieves 0
AP; for conciseness, we plot only the categories with non-zero AP.

3 Additional tracking results

Section 3.1 presents results for user-initialized trackers on all categories in TAO,
Section 3.2 analyzes the improvement to user-initialized trackers by using a more
informative initialization. Section 3.3 reports results from tuning trackers on
TAO train.

3.1 User-initialized trackers on all categories

In the main paper, we focus our analysis on a subset of TAO categories which
exist in the LVIS [11] dataset, allowing us to repurpose existing object detectors
for multi-object tracking. Here, we evaluate user-initialized trackers (which do
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Fig. 3. Per-category AP for the SORT algorithm, omitting 180 categories which result
in zero AP for conciseness. As common in large-vocabulary datasets (LVIS, ADE-20K,
LabelMe), average accuracy is dominated by classes in the tail, many of which result in
0 AP. Note that AP for individual categories can be noisy in a federated setup [11].
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not require object detectors) on the remaining categories in TAO (Table 7).
We generally find that the results are consistent with the results on the LVIS
categories.

Table 7. Results on non-LVIS, free-form text categories in TAO validation.

Method Non-LVIS categories, validation

ECO 24.1
SiamMask 27.0
SiamRPN++ 27.7
SiamRPN++ LT 25.1
ATOM 29.5
DIMP 29.6

3.2 Improved initialization for user-initialized trackers

The standard approach for initializing user-initialized trackers (denoted ‘Init
first’) initializes trackers using the first frame an object appears in, and runs
trackers for the rest of the video. As the object may be partially occluded in this
first frame, we additionally report a variant in Table 8 which initializes trackers
using the frame with the largest bounding box (denoted ‘Init biggest’), and runs
trackers forwards and backwards in time. The ‘Init biggest’ strategy provides
stronger improvements over SORT by initializing with easier frames, but cannot
be used in online applications, as it requires access to the entire video.

3.3 Hyperparameter tuning

This section reports detailed results of tuning each tracker on TAO train, as well
as information about the detector used for SORT, Viterbi and Tracktor++ (3.4).

Preliminary: Score thresholds. Before discussing the details of each
tracker, we define three different score thresholds used by trackers, and refer to
them by name throughout the appendix:

1. Detection score: This is the confidence reported by a detector for each object
at each frame, before any tracking has taken place.

2. Tracker per-frame score: This is the confidence reported by the tracker for
each object at each frame, after tracking is complete.

3. Track score: This is the confidence reported by the tracker for each object track
throughout the video. This confidence is used to rank tracks when computing
mAP. When computing MOTA, we tune the threshold for reporting tracks
using the track score, as described in Section 2.2.

SORT. We tune three parameters internal to SORT, as well as parameters of
the underlying detector in Table 9. We tune the following SORT parameters:
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Table 8. User-initialized tracking results on ‘val’, reporting with a more informative
initialization strategy (‘Init biggest’, see ??), which provides improvements for user-
initialized trackers. Because some user-initialized trackers are trained on videos in TAO,
we re-train them on their original train set with TAO videos removed, denoting this
with *.

Oracle Track mAP
Method Box Init Class Init first Init biggest

SORT 3 30.2

ECO [5] 3 3 23.7 30.4
SiamMask [24] 3 3 30.8 37.0
SiamRPN++ LT [17] 3 3 27.2 30.4
SiamRPN++ [17] 3 3 29.7 35.9
ATOM* [4] 3 3 30.9 38.6
DIMP* [3] 3 3 33.2 38.5

1. Det / image: Max number of detections output by the detector per image.
2. Detection score
3. max age: How many frames tracks are kept ‘alive’ for, without any detections

being matched to them.
4. min hits: How many frames a track must be alive for before it is considered

‘confirmed’ and output.
5. min iou: Minimum IoU between a track and a detection required for linking

the two.
6. NMS Thresh: The NMS IoU threshold used by the detector. We experiment

with more aggressive NMS, which may make the task of linking detections
using IoU easier.

The first row in Table 9 corresponds to the default SORT parameters. Due to
the significant motion and long duration of sequences in TAO (see Section 1.2),
we find that increasing max age and decreasing min iou and min hits helps
significantly with accuracy. Additionally, we find that outputting more boxes
per image consistently improves accuracy. Lowering the score threshold from 0.1
to 0.0005 results in a 2.1 point improvement from 8.2 to 11.3, and lowering the
NMS and score thresholds provides even more significant improvements, from
11.3 to 16.3.

Viterbi. The Viterbi approach has a number of tunable parameters. Unfortu-
nately, the code for this approach is prohibitively expensive to run, taking over a
week of compute time to process TAO train in parallel on 4 machines. Due to this
constraint, we do not tune the internal parameters of this approach. However,
Table 10 shows that tuning the tracker’s per-frame score post-hoc can provide
small improvements in accuracy, from 8.5 to 9.0.

Tracktor++. Tracktor++ by default thresholds the output of a detector at
0.5. Table 11 shows the results of tuning this threshold on TAO train. Perhaps
surprisingly, we find that Tracktor++ is fairly robust to this parameter, unlike
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Table 9. Results from tuning SORT parameters (by coordinate descent) on TAO train,
where the active coordinate (parameter) is highlighted.

Params
NMS Thresh Det / image Det score max age min hits min iou Track mAP

0.5 300 0.1 1 3 0.3 4.3

0.5 300 0.1 1 3 0.1 5.0
0.5 300 0.1 1 3 0.5 4.3

0.5 300 0.1 1 1 0.1 5.1
0.5 300 0.1 1 5 0.1 4.9
0.5 300 0.1 1 10 0.1 4.9

0.5 300 0.1 10 1 0.1 6.5
0.5 300 0.1 50 1 0.1 8.1
0.5 300 0.1 100 1 0.1 8.2

0.5 300 0.001 100 1 0.1 10.5
0.5 300 0.0005 100 1 0.1 11.3
0.5 300 0.0001 100 1 0.1 10.9

0.5 10,000 0.0005 100 1 0.1 9.4
0.1 10,000 0.0005 100 1 0.1 15.3
0 10,000 0.0005 100 1 0.1 16.3

Table 10. Results from tuning the Viterbi tracker’s per-frame score threshold TAO
train.

Tracker per-frame score 0 0.1 0.2 0.3 0.4 0.5

Track mAP 8.5 9.0 8.4 8.4 7.8 7.3

SORT (as seen in Table 9). We hypothesize that this may be because of two
Tracktor++ components: (1) the use of detections at time t as proposal at time
t + 1 may make detectors more likely to consistently output high-confidence
detections for tracks, and (2) the re-id component may allow Tracktor++ to
more accurately recover tracks with no matching detections for a few frames.

Table 11. Results from tuning Tracktor’s detection score threshold on TAO’s train set.

Detection score 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Track mAP 35.1 35.5 35.5 35.7 35.0 34.7 34.6 33.0 29.8

User-initialized trackers. As user-initialized trackers do not explicitly report
when an object is absent, we modify each method to report an object as absent
when the confidence drops below a threshold. We tune this threshold on TAO
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Table 12. Results from tuning user-initialized trackers’ per-frame score threshold on
TAO train.

Tracker Tracker per-frame score
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

ATOM 34.3 34.3 36.2 36.6 36.7 34.4 31.9 26.3 17.8 9.9 2.1
DIMP 31.2 33.2 35.3 36.1 36.2 36.4 34.8 33.2 30.3 27.8 19.7
ECO 25.4 25.4 26.3 27.3 27.1 25.6 20.6 14.7 8.9 3.0 2.7
SiamMask 27.9 28.6 28.8 28.8 29.3 29.4 30.0 30.7 30.9 30.5 27.3
SiamRPN++ 28.6 29.2 29.3 30.3 30.0 30.9 31.1 31.5 31.2 31.4 28.1
SiamRPN++-LT 27.0 26.6 27.1 27.2 27.0 27.7 28.0 27.9 28.0 28.2 26.7

train. Table 12 shows that the optimal threshold varies by tracker, and tuning
this parameter can lead to significant changes in accuracy (e.g., 5.2% in the case
of DIMP when using a threshold of 0.5 as opposed to the default of 0).

Fig. 4. Qualitative comparison between a Mask R-CNN model trained on LVIS (left)
and one trained on LVIS+COCO (right). Training on additional COCO data is critical
for accurately detecting common categories, such as people and cars.

3.4 Detector details

Throughout our experiments, we used a Mask R-CNN model [12] using a ResNet-
101 backbone. We re-train this model on a combination of the LVIS and COCO
datasets (described below) using the default training parameters for training
on LVIS (including repeat factor sampling). Specifically, we used the detectron2
repository [26], with the configuration file at https://github.com/facebookr

esearch/detectron2/blob/b6fe828a2f3b2133f24cb93c1d0d74cb59c6a15d/c

onfigs/LVIS-InstanceSegmentation/mask rcnn R 101 FPN 1x.yaml.
We found that training on a combination of COCO and LVIS annotations leads

to a noticeable improvement in detection quality, which is particularly significant

https://github.com/facebookresearch/detectron2/blob/b6fe828a2f3b2133f24cb93c1d0d74cb59c6a15d/configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
https://github.com/facebookresearch/detectron2/blob/b6fe828a2f3b2133f24cb93c1d0d74cb59c6a15d/configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
https://github.com/facebookresearch/detectron2/blob/b6fe828a2f3b2133f24cb93c1d0d74cb59c6a15d/configs/LVIS-InstanceSegmentation/mask_rcnn_R_101_FPN_1x.yaml
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for people, compared to training on LVIS alone. To build this combination, we
add COCO annotations to every image in the LVIS dataset. To avoid duplicates,
we remove COCO annotations that have IoU > 0.7 with an LVIS annotation. We
show qualitative results of this improvement in Figure 4.
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