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Appendix for AABO: Adaptive Anchor Box Optimization
for Object Detection via Bayesian Sub-sampling

Optimal FPN Hyper-parameters in Preliminary Analysis

In preliminary analysis, we search for better RPN head architecture in FPN
[6] as well as anchor settings simultaneously, to compare the respective contri-
butions of changing RPN head architecture and anchor settings. The optimal
hyper-parameters are shown in Table 1. Since the search space for RPN head
architecture and anchor settings are both relatively small, the performance in-
crease is not very significant.

Table 1. The optimal hyper-parameters of FPN [6] on COCO determined by BOHB
[3] in preliminary analysis. Both RPN head architecture and anchor boxes are different
from default settings in FPN. Note that the anchor scales here are the basic anchor
scales without multiplying the strides of the feature maps.

Hyper-parameter Conv Layers Kernel Size Dilation Size

Optimal Configuration 2 5x5 1

Hyper-parameter Location of ReLU Anchor Scales Anchor Ratios

Optimal Configuration Behind 5x5 Conv 2.5, 5.7, 13.4 2:5, 1:2, 1, 2:1, 5:2

Optimal Anchor Configurations

In this section, we record the best configurations searched out by AABO and
analyze the difference between the results of default Faster-RCNN [8] and opti-
mized Faster-RCNN.

As we design an adaptive feature-map-wised search space for anchor opti-
mization, anchor configurations distribute variously in different layers of FPN
[6]. Table 2 shows the optimal anchor configurations in FPN for COCO [7]
dataset. We can observe that anchor scales and anchor ratios are larger and
more diverse in shallower layers of FPN, while anchors tend to be smaller and
more square in deeper layers.

Table 2. The optimal anchor configurations of FPN [6] for COCO [7] searched out by
AABO. There are different anchor boxes in different layers of FPN.

FPN-Layer Anchor Number Anchor Scales Anchor Ratios

Layer-1 9 {5.2, 6.1, 3.4, 4.9, 5.8, 4.8, 14.6, 7.4, 10.3} {6.0, 0.3, 0.5, 1.6, 1.7, 2.6, 0.5, 0.5, 0.6}

Layer-2 6 {11.0, 7.6, 11.8, 4.7, 5.7, 3.8} {0.2, 2.0, 2.3, 2.8, 1.0, 0.5}

Layer-3 7 {10.5, 11.1, 8.5, 6.7, 12.4, 4.6, 3.5} {0.4, 4.2, 2.2, 1.6, 2.3, 0.5, 1.1}

Layer-4 6 {5.7, 8.5, 7.0, 11.2, 15.2, 15.5} {0.3, 0.4, 0.8, 0.7, 2.9, 2.8}

Layer-5 5 {5.0, 4.2, 14.0, 10.1, 7.8} {1.1, 1.4, 0.8, 0.7, 2.5}
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Improvements on SOTA Detectors over COCO Test-Dev

After searching out optimal anchor configurations via AABO, we apply them
on several SOTA detectors to study the generalization property of the anchor
settings. In this section, we report the performance of these optimized detectors
on COCO test-dev split. The results are shown in Table 3.

It can be seen that the optimal anchors can consistently boost the perfor-
mance of SOTA detectors on both COCO val split and COCO test-dev. Actually,
the mAP of the optimized detectors on test-dev is even higher than the mAP on
val, which illustrates that the optimized anchor settings could bring consistent
performance improvements on val split and test-dev.

Table 3. Benefit of the optimal anchor settings on some SOTA methods evaluated
on both COCO val and test-dev. Here HTC* means 2x training of HTC. The results
indicate that the optimal anchors can consistently boost the performance of SOTA
detectors, whether on COCO val or test-dev.

Model Anchor Setting Eval on mAP

Mask RCNN[4] w r101

Default val 40.3

Searched via AABO val 42.3+2.0

Searched via AABO test-dev 42.6+2.3

DCNv2[9] w x101

Default val 43.4

Searched via AABO val 45.8+2.4

Searched via AABO test-dev 46.1+2.7

Cascade Mask RCNN[1] w x101

Default val 44.3

Searched via AABO val 46.8+2.5

Searched via AABO test-dev 47.2+2.9

HTC*[2] w x101

Default val 47.5

Searched via AABO val 50.1+2.6

Searched via AABO test-dev 50.6+3.1

Additional Qualitative Results

In this section, Figure 1 and Figure 2 give some qualitative result comparisons
of Faster-RCNN [8] with default anchors and optimal anchors.

As illustrated in Figure 1, more larger and smaller objects can be detected us-
ing our optimal anchors, which demonstrates that our optimal anchors are more
diverse and suitable for a certain dataset. And there are some other differences
shown in Figure 2: Using optimal anchor settings, the predictions of Faster-
RCNN are usually tighter, more precise and concise. While the predictions are
more inaccurate and messy when using pre-defined anchors. Specifically, there
exist many bounding boxes in a certain position, which usually are different
parts of one same object and overlap a lot.
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Fig. 1. Some qualitative result comparison on COCO [7] dataset. Using optimized
anchor configurations, more large and small objects are detected. We use ResNet-50
[5] as backbones.
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Fig. 2. Some qualitative result comparisons on COCO [7] dataset. The bounding boxes
given by Faster-RCNN [8] with optimized anchor configurations are much tighter and
clearer, while bounding boxes given by default Faster-RCNN are more messy and over-
lap a lot. We use ResNet-50 [5] as backbones.
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