
AABO: Adaptive Anchor Box Optimization for
Object Detection via Bayesian Sub-sampling

Wenshuo Ma1, Tingzhong Tian1, Hang Xu†2,
Yimin Huang2, Zhenguo Li2

1 Tsinghua University
2 Huawei Noah’s Ark Lab

Abstract. Most state-of-the-art object detection systems follow an
anchor-based diagram. Anchor boxes are densely proposed over the im-
ages and the network is trained to predict the boxes position offset as
well as the classification confidence. Existing systems pre-define anchor
box shapes and sizes and ad-hoc heuristic adjustments are used to define
the anchor configurations. However, this might be sub-optimal or even
wrong when a new dataset or a new model is adopted. In this paper,
we study the problem of automatically optimizing anchor boxes for ob-
ject detection. We first demonstrate that the number of anchors, anchor
scales and ratios are crucial factors for a reliable object detection sys-
tem. By carefully analyzing the existing bounding box patterns on the
feature hierarchy, we design a flexible and tight hyper-parameter space
for anchor configurations. Then we propose a novel hyper-parameter op-
timization method named AABO to determine more appropriate anchor
boxes for a certain dataset, in which Bayesian Optimization and sub-
sampling method are combined to achieve precise and efficient anchor
configuration optimization. Experiments demonstrate the effectiveness
of our proposed method on different detectors and datasets, e.g. achiev-
ing around 2.4% mAP improvement on COCO, 1.6% on ADE and 1.5%
on VG, and the optimal anchors can bring 1.4% ∼ 2.4% mAP improve-
ment on SOTA detectors by only optimizing anchor configurations, e.g.
boosting Mask RCNN from 40.3% to 42.3%, and HTC detector from
46.8% to 48.2%.

Keywords: Object detection, Hyper-parameter optimization, Bayesian
optimization, Sub-sampling

1 Introduction

Object detection is a fundamental and core problem in many computer vision
tasks and is widely applied on autonomous vehicles [3], surveillance camera [21],
facial recognition [2], to name a few. Object detection aims to recognize the lo-
cation of objects and predict the associated class labels in an image. Recently,
significant progress has been made on object detection tasks using deep con-
volution neural network [20, 25, 27, 17]. In many of those deep learning based

† Corresponding Author: xbjxh@live.com

2 Wenshuo Ma et al.

detection techniques, anchor boxes (or default boxes) are the fundamental com-
ponents, serving as initial suggestions of object’s bounding boxes. Specifically,
a large set of densely distributed anchors with pre-defined scales and aspect ra-
tios are sampled uniformly over the feature maps, then both shape offsets and
position offsets relative to the anchors, as well as classification confidence, are
predicted using a neural network.

While anchor configurations are rather critical hyper-parameters of the neu-
ral network, the design of anchors always follows straight-forward strategies like
handcrafting or using statistical methods such as clustering. Taking some widely
used detection frameworks for instance, Faster R-CNN [27] uses pre-defined an-
chor shapes with 3 scales (1282, 2562, 5122) and 3 aspect ratios (1 : 1, 1 : 2, 2 : 1),
and YOLOv2 [26] models anchor shapes by performing k-means clustering on the
ground-truth of bounding boxes. And when the detectors are extended to a new
certain problem, anchor configurations must be manually modified to adapt the
property and distribution of this new domain, which is difficult and inefficient,
and could be sub-optimal for the detectors.

While it is irrational to determine hyper-parameters manually, recent years
have seen great development in hyper-parameter optimization (HPO) problems
and a great quantity of HPO methods are proposed. The most efficient meth-
ods include Bayesian Optimization (BO) and bandit-based policies. BO iterates
over the following three steps: a) Select the point that maximizes the acquisi-
tion function. b) Evaluate the objective function. c) Add the new observation
to the data and refit the model, which provides an efficacious method to se-
lect promising hyper-parameters with sufficient resources. Different from BO,
Bandit-based policies are proposed to efficiently measure the performance of
hyper-parameters. Among them, Hyperband [16] (HB) makes use of cheap-to-
evaluate approximations of the acquisition function on smaller budgets, which
calls SuccessiveHalving [13] as inner loop to identify the best out of n randomly-
sampled configurations. Bayesian Optimization and Hyperband (BOHB) intro-
duced in [9] combined these two methods to deal with HPO problems in a huge
search space, and it is regarded as a very advanced HPO method. However,
BOHB is less applicable to our anchor optimization problems, because the ap-
propriate anchors for small objects are always hard to converge, then the optimal
anchor configurations could be early-stopped and discarded by SuccesiveHalving.

In this paper, we propose an adaptive anchor box optimization method
named AABO to automatically discover optimal anchor configurations, which
can fully exploit the potential of the modern object detectors. Specifically, we il-
lustrate that anchor configurations such as the number of anchors, anchor scales
and aspect ratios are crucial factors for a reliable object detector, and demon-
strate that appropriate anchor boxes can improve the performance of object
detection systems. Then we prove that anchor shapes and distributions vary dis-
tinctly across different feature maps, so it is irrational to share identical anchor
settings through all those feature maps. So we design a tight and adaptive search
space for feature map pyramids after meticulous analysis of the distribution and
pattern of the bounding boxes in existing datasets, to make full use of the search

AABO 3

resources. After optimizing the anchor search space, we propose a novel hyper-
parameter optimization method combining the benefits of both Bayesian Opti-
mization and sub-sampling method. Compared with existing HPO methods, our
proposed approach uses sub-sampling method to estimate acquisition function
as accurately as possible, and gives opportunity to the configuration to be as-
signed with more budgets if it has chance to be the best configuration, which can
ensure that the promising configurations will not be discarded too early. So our
method can efficiently determine more appropriate anchor boxes for a certain
dataset using limited computation resources, and achieves better performance
than previous HPO methods such as random search and BOHB.

We conduct extensive experiments to demonstrate the effectiveness of our
proposed approach. Significant improvements over the default anchor configura-
tions are observed on multiple benchmarks. In particular, AABO achieves 2.4%
mAP improvement on COCO, 1.6% on ADE and 1.5% on VG by only changing
the anchor configurations, and consistently improves the performance of SOTA
detectors by 1.4% ∼ 2.4%, e.g. boosts Mask RCNN [10] from 40.3% to 42.3%
and HTC [6] from 46.8% to 48.2% in terms of mAP.

2 Related Work

Anchor-Based Object Detection. Modern object detection pipelines based
on CNN can be categorized into two groups: One-stage methods such as SSD [20]
and YOLOv2 [26], and two-stage methods such as Faster R-CNN [27] and R-
FCN [8]. Most of those methods make use of a great deal of densely distributed
anchor boxes. In brief, those modern detectors regard anchor boxes as initial
references to the bounding boxes of objects in an image. The anchor shapes in
those methods are typically determined by manual selection [20, 27, 8] or naive
clustering methods [26]. Different from the traditional methods, there are sev-
eral works focusing on utilizing anchors more effectively and efficiently [31, 33].
MetaAnchor [31] introduces meta-learning to anchor generation, which models
anchors using an extra neural network and computes anchors from customized
priors. However, the network becomes more complicated. Zhong et al. [33] tries
to learn the anchor shapes during training via a gradient-based method while
the continuous relaxation may be not appropriate.

Hyper-paramter Optimization. Although deep learning has achieved great
successes in a wide range, the performance of deep learning models depends
strongly on the correct setting of many internal hyper-parameters, which calls for
an effective and practical solution to the hyper-parameter optimization (HPO)
problems. Bayesian Optimization (BO) has been successfully applied to many
HPO works. For example, [29] obtained state-of-the-art performance on CIFAR-
10 using BO to search out the optimal hyper-parameters for convolution neural
networks. And [22] won 3 datasets in the 2016 AutoML challenge by automat-
ically finding the proper architecture and hyper-parameters via BO methods.

4 Wenshuo Ma et al.

Feature Map

1x1 conv

Regression

classification

1x1 conv

Location of ReLUNumber of conv layers

Kernel size
Dilation size in conv	 layers	

Fig. 1. (Left) The performance of Faster-R-CNN [27] under different anchor configu-
rations on 10% data of COCO [19]. Randomly-sampled anchors significantly influence
the performance of the detector. (Right) The search space for RPN Head in FPN [17]
consists of the number of convolution layers, kernel size, dilation size, and the location
of nonlinear activation functions ReLU, which are illustrated in the dialogue boxes.

While BO approach can converge to the best configurations theoretically, it re-
quires an awful lot of resources and is typically computational expensive. Com-
pared to Bayesian method, there exist bandit-based configuration evaluation ap-
proaches based on random search such as Hyperband [16], which could dynami-
cally allocate resources and use SuccessiveHalving [13] to stop poorly performing
configurations. Recently, some works combining Bayesian Optimization with Hy-
perband are proposed like BOHB [9], which can obtain strong performance as
well as fast convergence to optimal configurations. Other non-parametric meth-
ods that have been proposed include ε-greedy and Boltzmann exploration [30].
[4] proposed an efficient non-parametric solution and proved optimal efficiency
of the policy which would be extended in our work. However, there exist some
problems in those advanced HPO methods such as expensive computation in BO
and early-stop in BOHB.

3 The Proposed Approach

3.1 Preliminary Analysis

As mentioned before, mainstream detectors, including one-stage and two-stage
detectors, rely on anchor boxes to provide initial guess of the object’s bounding
box. And most detectors pre-define anchors and manually modify them when
applied on new datasets. We believe that those manual methods can hardly
find optimal anchor configurations and sub-optimal anchors will prevent the
detectors from obtaining the optimal performance. To confirm this assumption,
we construct two preliminary experiments.

Default Anchors Are Not Optimal. We randomly sample 100 sets of
different anchor settings, each with 3 scales and 3 ratios. Then we examine the
performance of Faster-RCNN [27] under those anchor configurations. The results
are shown in Figure 1.

It’s obvious that compared with default anchor setting (3 anchor scales:
1282, 2562, 5122 and 3 aspect ratios: 1 : 1, 1 : 2, and 2 : 1), randomly-sampled an-
chor settings could significantly influence the performance of the detector, which

AABO 5

Table 1. The respective contributions of RPN head architecture and anchor configu-
rations. Anchor optimization could obviously improve the mAP of the detectors while
architecture optimization produces very little positive effect, or even negative effect.
All the experiments are conducted on COCO, using FPN as detector. Note that the
search space for RPN head architecture and anchor settings are both relatively small,
then the performance improvements are not that significant.

Performance mAP AP50 AP75 APS APM APL

Baseline 36.4 58.2 39.1 21.3 40.1 46.5

Only Anchor 37.1+0.7 58.4 40.0 20.6 40.8 49.5

Only Architecture 36.3−0.1 58.3 38.9 21.6 40.2 46.1

Anchor+Architecture 37.2+0.8 58.7 40.2 20.9 41.3 49.1

clearly demonstrates that the default anchor settings may be less appropriate
and the optimization of anchor boxes is necessary.

Anchors Influence More Than RPN Structure. Feature Pyramid Net-
works [17] (FPN) introduces a top-down pathway and lateral connections to
enhance the semantic representation of low-level features and is a widely used
feature fusion scheme in modern detectors. In this section, we use BOHB [9] to
search RPN head architecture in FPN as well as anchor settings simultaneously.
The search space of RPN Head is illustrated in Figure 1. The searched config-
urations, including RPN head architecture and anchor settings, are reported in
the appendix. Then we analyze the respective contributions of RPN head archi-
tecture and anchor settings, and the results are shown in Table 1. Here, mean
Average Precision is used to measure the performance and is denoted by mAP.

The results in Table 1 illustrate that searching for proper anchor configura-
tions could bring more performance improvement than searching for RPN head
architecture to a certain extent.

Thus, the conclusion comes clearly that anchor settings affect detectors sub-
stantially, and proper anchor settings could bring considerable improvement than
doing neural architecture search (NAS) on the architecture of RPN head. Those
conclusions indicate that the optimization of anchor configurations is essential
and rewarding, which motivates us to view anchor configurations as hyper-
parameters and propose a better HPO method for our anchor optimization case.

3.2 Search Space Optimization for Anchors

Since we have decided to search appropriate anchor configurations to increase
the performance of detectors over a certain dataset, one critical problem is how
to design the search space. In the preliminary analysis, we construct two exper-
iments whose search space is roughly determined regardless of the distribution
of bounding boxes. In this section, we will design a much tighter search space
by analyzing the distribution characteristics of object’s bounding boxes.

For a certain detection task, we find that anchor distribution satisfies some
properties and patterns as follows.

6 Wenshuo Ma et al.

1

10

100

1000

10000

1 2 3 4 5 6 7 8

nu
m
be
r

ratio

FPN-Layer-1

FPN-Layer-2

FPN-Layer-3

FPN-Layer-4

FPN-Layer-5

Fig. 2. (Left) Bounding boxes in COCO [19] dataset apparently only distribute in
a certain area determined by the yellow curves. The region inside the black rectangle
represents the previous search space which is coarse and unreasonable as analyzed. The
intersecting regions between the 5 red rectangles and the anchor distribution bounds
are our designed feature-map-wise search space, which is more accurate and adaptive.
(Right) Numbers and shapes of bounding boxes vary a lot across different feature maps.
In this figure, X-axis is the anchor ratio while Y-axis is the number of bounding boxes.
It’s obvious that the number of bounding boxes decreases rapidly, and the range of
anchor ratios also becomes rather smaller in higher feature map.

Upper and Lower Limits of the Anchors. Note that the anchor scale
and anchor ratio are calculated from the width and height of the anchor, which
are not independent. Besides, we discover that both anchor width and height
are limited within fixed values, denoted by Wand H. Then the anchor ratio and
scale must satisfy constraints as follows:

scale =
√
width ∗ height

ratio = height/width

width ≤W, height ≤ H.
(1)

From the formulas above, we calculate the upper bound and lower bound of
the ratio for the anchor boxes:

scale2

W 2
≤ ratio ≤ H2

scale2
. (2)

Figure 2 shows an instance of the distribution of bounding boxes (the blue
points) as well as the upper and lower bounds of anchors (the yellow curves) in
COCO [19] dataset. And the region inside the black rectangle is the previous
search space using in preliminary experiments. We can observe that there exists
an area which is beyond the upper and lower bounds so that bounding boxes
won’t appear, while the search algorithm will still sample anchors here. So it’s
necessary to limit the search space within the upper and lower bounds.

Adaptive Feature-Map-Wised Search Space. We then study the distri-
bution of anchor boxes in different feature maps of Feature Pyramid Networks
(FPN)[17] and discover that the numbers, scales and ratios of anchor boxes vary
a lot across different feature maps, shown in the right subgraph of Figure 2.
There are more and bigger bounding boxes in lower feature maps whose recep-
tive fields are smaller, less and tinier bounding boxes in higher feature maps
whose respective fields are wider.

AABO 7

(a) Single FPN Search Space (b) Feature-map-wised FPN Search Space

Fig. 3. We design an adaptive feature-map-wised search space for anchor configuration
optimization. Compared to the former single search space illustrated in (a), where there
exist exactly identical anchors among different feature maps, feature-map-wised search
space illustrated in (b) takes bounding-box distribution into consideration, so extreme
anchors are fewer in higher feature maps. That is, in lower feature layers, there are
more diverse, larger and more anchors, while in higher feature layers, there are less
diverse, smaller and fewer anchors.

As a result, we design an adaptive search space for FPN [17] as shown in the
left subgraph of Figure 2. The regions within 5 red rectangles and the anchor
distribution bounds represent the search space for each feature map in FPN. As
feature maps become higher and smaller, the numbers of anchor boxes are less,
as well as the anchor scales and ratios are limited to a narrower range.

Compared with the initial naive search space, we define a tighter and more
adaptive search space for FPN [17], as shown in Figure 3. Actually, the new
feature-map-wised search space is much bigger than the previous one, which
makes it possible to select more flexible anchors and cover more diverse objects
with different sizes and shapes. Besides, the tightness of the search space can
help HPO algorithms concentrate limited resources on more meaningful areas
and avoid wasting resources in sparsely distributed regions of anchors.

3.3 Bayesian Anchor Optimization via Sub-sampling

As described before, we regard anchor configurations as hyper-parameters and
try to use HPO method to choose optimal anchor settings automatically. How-
ever, existing HPO methods are not suitable for solving our problems. For ran-
dom search or grid search, it’s unlikely to find a good solution because the search
space is too big for those methods. For Hyperband or BOHB, the proper config-
urations for the small objects could be discarded very early since the anchors of
small objects are always slowly-converged. So we propose a novel method which
combines Bayesian Optimization and sub-sampling method, to search out the
optimal configurations as quickly as possible.

Specifically, our proposed approach makes use of BO to select potential con-
figurations, which estimates the acquisition function based on the configura-
tions already evaluated, and then maximizes the acquisition fuction to identify
promising new configurations. Meanwhile, sub-sampling method is employed to
determine which configurations should be allocated more budgets, and explore
more configurations in the search space. Figure 4 illustrates the process of our

8 Wenshuo Ma et al.

Select a new configuration

Evaluate all the
configurations

Refit the model by the new data
Bayesian Optimization

Sub-Sample
bandit policy

Get better data for
estimation

Fig. 4. Our proposed method iterates over the following four steps: (a) Select the
point that maximizes the acquisition function. (b) Evaluate the objective function on
the whole configurations with Sub-Sampling policy. (c) Get more appropriate data for
estimating the densities in the model. (d) Add the new observation to the data and
refit the model.

proposed method. In conclusion, our approach can achieve good performance as
well as better speed, and take full advantage of models built on previous budgets.

Bayesian Optimization. Bayesian Optimization (BO) is a sequential de-
sign strategy for parameter optimization of black-box functions. In hyper-parameter
optimization problems, the validation performance of machine learning algo-
rithms is regarded as a function f : χ → R of hyper-parameters x ∈ χ, and
hyper-parameter optimization problem aims to determine the optimal x∗ ∈
argminχf(x) . In most machine learning problems, f(x) is unobservable, so
Bayesian Optimization approach treats it as a random function with a prior
over it. Then some data points are sampled and BO updates the prior and mod-
els the function based on those gathering data points and evaluations. Then new
data points are selected and observed to refit the model function.

In our approach, we use Tree Parzen Estimator (TPE) [1] which uses a ker-
nel density estimator to model the probability density functions l(x) = p(y <
α|x,D) and g(x) = p(y > α|x,D) instead of modeling function p(f |D) directly,
where D = {(x0, y0), . . . , (xn, yn)} and α = min{y0, . . . , yn}, as seen in BOHB
[9]. Note that there exists a serious problem that the theory of Hyperband only
guarantees to return the best xi which has the smallest yi among all these
configurations, while the quality of other configurations may be very poor. Con-
sequently, larger responses lead to an inaccurate estimation of l(x), which plays
an important role in TPE. Thus, we need to propose a policy that has a better
sequence of responses yi to solve this problem.

Sub-Sample Method. To better explain the sub-sampling method used
in our proposed approach, we first introduce the standard multi-armed bandit
problem with K arms in this section. Recall the traditional setup for the classic
multi-armed bandit problem. Let I = {1, 2, . . . ,K} be a given set of K ≥ 2 arms.
Consider a sequential procedure based on past observations for selecting an arm
to pull. Let Nk be the number of observations from the arm k, and N =

∑K
k=1Nk

is the number of total observations. Observations Y
(k)
1 , Y

(k)
2 , . . ., 1 ≤ k ≤ K

are also called rewards from the arm k. In each arm, rewards {Y (k)
t }t≥1 are

assumed to be independent and identically distributed with expectation given

by E(Y
(k)
t) = µk and µ∗ = max1≤k≤K µk. For simplicity, assume without loss of

generality that the best arm is unique which is also assumed in [24] and [4].

AABO 9

Algorithm 1 Sub-sample Mean Comparisons.

Input: The set of configurations I = {1, . . . ,K}, parameter cn, minimum budget b.
Output: π̂1, . . . , π̂N ∈ I.
1: r = 1, evaluate each configuration with budget b.
2: for r = 2, 3, . . . do
3: The configuration with the most budgets is denoted by ζr and called the leader;
4: for k 6= ζr do
5: Evaluate the k-th configuration with one more budget b if it is “better” than

the ζr-th configuration.
6: end for
7: If there is no configuration “better” than the leader, evaluate the leader with

one more budget b.
8: end for

A policy π = {πt} is a sequence of random variables πt ∈ {1, 2, . . . ,K}
denoting that at each time t = 1, 2, . . . , N , the arm πt is selected to pull. Note
that πt depends only on previous t − 1 observations. The objective of a good
policy π is to minimize the regret

RN (π) =

K∑
k=1

(µ∗ − µk)ENk =

N∑
t=1

(µ∗ − µπt
). (3)

Note that for a data-driven policy π̂, the regret monotonically increases with
respect to N . Hence, minimizing the growth rate of RN becomes an important
criterion which will be considered later.

Then we introduce an efficient nonparametric solution to the multi-armed
bandit problem. First, we revisit the Sub-sample Mean Comparisons (SMC) in-
troduced in [4] for the HPO case. The set of configurations I = {1, . . . ,K},minimum
budget b and parameter cn are inputs. Output is the sequence of the configura-
tions π̂1, . . . , π̂N ∈ I to be evaluated in order.

First, it is defined that the k-th configuration is “better” than the k′-th
configuration, if one of the following conditions holds:

1. nk < nk′ and nk < cn.

2. cn ≤ nk < nk′ and Ȳ
(k)
1:nk

≥ Ȳ
(k′)
j:(j+nk−1) , for some 1 ≤ j ≤ nk′ − nk + 1, where

Ȳ
(k)
l:u =

∑u
v=l Y

(k)
v /(u− l + 1).

In SMC, let r denotes the round number. In the first round, all configurations
are evaluated since there is no information about them. In round r ≥ 2, we define
the leader of configurations which has been evaluated with the most budgets.
And, the k-th configuration will be evaluated with one more budget b, if it is
“better” than the leader. Otherwise, if there is no configuration “better” than
the leader, the leader will be evaluated again. Hence, in each round, there are
at most K − 1 configurations and at least one configuration to be evaluated.
Let nr be the total number of evaluations at the beginning of round r, and
nrk be the corresponding number from the k-th configuration. Then, we have
K + r − 2 ≤ n ≤ K + (K − 1)(r − 2).

10 Wenshuo Ma et al.

The Sub-sample Mean Comparisons(SMC) is shown in Algorithm 1. In SMC,
the parameter cn is a non-negative monotone increasing threshold for SMC sat-
isfied that cn = o(log n) and cn/ log log n → ∞ as n → ∞. In [4], they set
cn =

√
log n for efficiency of SMC.

Note that when the round r ends, the number of evaluations nr usually
doesn’t equal to N exactly, i.e., nr < N < nr+1. For this case, N − nr con-
figurations are randomly chosen from the nr+1 − nr configurations selected by
SMC in the r-th round. A main advantage of SMC is that unlike the UCB-based
procedures, underlying probability distributions need not be specified. Still, it
remains asymptotic optimal efficiency. The detailed discussion about theoretical
results refers to [12].

4 Experiments

4.1 Datasets, Metrics and Implementation Details

We conduct experiments to evaluate the performance of our proposed method
AABO on three object detection datasets: COCO 2017 [19], Visual Genome(VG)
[15], and ADE [34]. COCO is a common object detection dataset with 80 object
classes, containing 118K training images (train), 5K validation images (val) and
20K unannotated testing images (test-dev). VG and ADE are two large-scale
object detection benchmarks with thousands of object classes. For COCO, we
use the train split for training and val split for testing. For VG, we use release
v1.4 and synsets [28] instead of raw names of the categories due to inconsistent
annotations. Specifically, we consider two sets containing different target classes:
VG1000 and VG3000, with 1000 most frequent classes and 3000 most frequent
classes respectively. In both VG1000 and VG3000, we use 88K images for training,
5K images for testing, following [7, 14]. For ADE, we consider 445 classes, use
20K images for training and 1K images for testing, following [7, 14]. Besides, the
ground-truths of ADE are given as segmentation masks, so we first convert them
to bounding boxes for all instances before training.

As for evaluation, the results of the detection tasks are estimated with
standard COCO metrics, including mean Average Precision (mAP) across IoU
thresholds from 0.5 to 0.95 with an interval of 0.05 and AP50, AP75, as well as
APS, APM and APL, which respectively concentrate on objects of small size
(32× 32−), medium size (32× 32 ∼ 96× 96) and large size (96× 96+).

During anchor configurations searching, we sample anchor configurations and
train Faster-RCNN [27] (combined with FPN [17]) using the sampled anchor
configurations, then compare the performance of these models (regrading mAP
as evaluation metrics) to reserve better anchor configurations and stop the poorer
ones, following the method we proposed before. The search space is feature-map-
wised as introduced. All the experiments are conducted on 4 servers with 8 Tesla
V100 GPUs, using the Pytorch framework [23, 5]. ResNet-50 [11] pre-trained on
ImageNet [28] is used as the shared backbone networks. We use SGD (momentum
= 0.9) with batch size of 64 and train 12 epochs in total with an initial learning
rate of 0.02, and decay the learning rate by 0.1 twice during training.

AABO 11

Table 2. The results of our proposed method on some large-scale methods. We use
Faster-RCNN [27] combined with FPN [17] as detectors and ResNet-50 as backbones.

Dataset Method mAP AP50 AP75 APS APM APL

COCO
Faster-RCNN w FPN 36.4 58.2 39.1 21.3 40.1 46.5

Search via AABO 38.8+2.4 60.7+2.5 41.6+2.5 23.7+2.4 42.5+2.4 51.5+5.0

VG1000

Faster-RCNN w FPN 6.5 12.0 6.4 3.7 7.2 9.5

Search via AABO 8.0+1.5 13.2+1.2 8.2+1.8 4.2+0.5 8.3+1.1 12.0+2.5

VG3000

Faster-RCNN w FPN 3.7 6.5 3.6 2.3 4.9 6.8

Search via AABO 4.2+0.5 6.9+0.4 4.6+1.0 3.0+0.7 5.8+0.9 7.9+1.1

ADE
Faster-RCNN w FPN 10.3 19.1 10.0 6.1 11.2 16.0

Search via AABO 11.9+1.6 20.7+1.6 11.9+1.9 7.4+1.3 12.2+1.0 17.5+1.5

4.2 Anchor Optimization Results

We first evaluate the effectiveness of AABO over 3 large-scale detection datasets:
COCO [19], VG [15] (including VG1000 and VG3000) and ADE [34]. We use
Faster-RCNN [27] combined with FPN [17] as our detector, and the baseline
model is FPN with default anchor configurations. The results are shown in Table
2 and the optimal anchors searched out by AABO are reported in the appendix.

It’s obvious that AABO outperforms Faster-RCNN with default anchor set-
tings among all the 3 datasets. Specifically, AABO improves mAP by 2.4% on
COCO, 1.5% on VG1000, 0.5% on VG3000, and 1.6% on ADE. The results il-
lustrate that the pre-defined anchor used in common-used detectors are not
optimal. Treat anchor configurations as hyper-parameters and optimize them
using AABO can assist to determine better anchor settings and improve the
performance of the detectors without increasing the complexity of the network.

Note that the searched anchors increase all the AP metrics, and the improve-
ments on APL are always more significant than APS and APM : AABO boosts
APL by 5% on COCO, 2.5% on VG1000, 1.1% on VG3000, and 1.5% on ADE.
These results indicate that anchor configurations determined by AABO concen-
trate better on all objects, especially on the larger ones. It can also be found
that AABO is especially useful for the large-scale object detection dataset such
as VG3000. We conjecture that this is because the searched anchors can better
capture the various sizes and shapes of objects in a large number of categories.

4.3 Benefit of the Optimal Anchor Settings on SOTA Methods

After searching out optimal anchor configurations via AABO, we apply them
on several other backbones and detectors to study the generalization property
of the anchor settings. For backbone, we change ResNet-50 [11] to ResNet-101
[11] and ResNeXt-101 [32], with detector (FPN) and other conditions constant.
For detectors, we apply our searched anchor settings on several state-of-the-art
detectors: a) Mask RCNN [10], b) RetinaNet [18], which is a one-stage detector,
c) DCNv2 [35], and d) Hybrid Task Cascade (HTC) [6], with different backbones:
ResNet-101 and ResNeXt-101. All the experiments are conducted on COCO.

12 Wenshuo Ma et al.

Table 3. Improvements on SOTA detectors over COCO val. The optimal anchors are
applied on several SOTA detectors with different backbones.

Model mAP AP50 AP75 APS APM APL

FPN[17] w r101
Default 38.4 60.1 41.7 21.6 42.7 50.1

Searched 40.5+2.1 61.8 43.3 23.4 43.6 51.3

FPN[17] w x101
Default 40.1 62.0 43.8 24.0 44.8 51.7

Searched 42.0+1.9 63.9 65.1 25.2 46.3 54.4

Mask RCNN[10] w r101
Default 40.3 61.5 44.1 22.2 44.8 52.9

Searched 42.3+2.0 63.6 46.3 26.1 46.3 55.3

RetinaNet[18] w r101
Default 38.1 58.1 40.6 20.2 41.8 50.8

Searched 39.5+1.4 60.2 41.9 21.7 42.7 53.7

DCNv2[35] w x101
Default 43.4 61.3 47.0 24.3 46.7 58.0

Searched 45.8+2.4 67.5 49.7 28.9 49.4 60.9

HTC[6] w x101
Default 46.8 66.2 51.2 28.0 50.6 62.0

Searched 48.2+1.4 67.3 52.2 28.6 51.9 62.7

The results are reported in Table 3. We can observe that the optimal anchors
can consistently boost the performance of SOTA detectors, whether one-stage
methods or two-stage methods. Concretely, the optimal anchors bring 2.1% mAP
improvement on FPN with ResNet-101, 1.9% on FPN with ResNeXt-101, 2.0%
on Mask RCNN, 1.4% on RetinaNet, 2.4% on DCNv2, and 1.4% improvement on
HTC. The results demonstrate that our optimal anchors can be widely applicable
across different network backbones and SOTA detection algorithms, including
both one-stage and two-stage detectors. We also evaluate these optimized SOTA
detectors on COCO test-dev, and the results are reported in the appendix. The
performance improvements on val split and test-dev are consistent.

4.4 Comparison with Other Optimization Methods

Comparison with other anchor initialization methods. In this section, we
compare AABO with several existing anchor initialization methods: a) Pre-define
anchor settings, which is used in most modern detectors. b) Use k-means to ob-
tain clusters and treat them as default anchors, which is used in YOLOv2 [26]. c)
Use random search to determine anchors. d) Use AABO combined with Hyper-
band [16] to determine anchors. e) Use AABO (combined with sub-sampling) to
determine anchors. Among all these methods, the latter three use HPO methods
to select anchor boxes automatically, while a) and b) use naive methods like
handcrafting and k-means. The results are recorded in Table 4.

Among all these anchor initialization methods, our proposed approach can
boost the performance most significantly, bring 2.4% improvement than using
default anchors, while the improvements of other methods including statistical
methods and previous HPO methods are less remarkable. The results illustrate
that the widely used anchor initialization approaches might be sub-optimal,
while AABO can fully utilize the ability of advanced detection systems.

AABO 13

Table 4. Comparison with other anchor initialization methods. Here HB denotes Hy-
perband while SS denotes sub-sampling. The experiments are conducted on COCO,
using FPN (with ResNet-50) as detector. Note that feature-map-wised search space is
much huger than the single one, so random search fails to converge.

Methods to Determine Anchor mAP AP50 AP75 APS APM APL

Manual Methods Pre-defined 36.4 58.2 39.1 21.3 40.1 46.5

Statistical Methods K-Means 37.0+0.6 58.9 39.8 21.9 40.5 48.5

HPO

Random Search 11.5−24.9 19.1 8.2 4.5 10.1 13.6

AABO w HB 38.2+1.8 59.3 40.7 22.6 42.1 50.1

AABO w SS 38.8+2.4 60.7 41.6 23.7 42.5 51.5

Table 5. The search efficiency of some HPO methods on COCO with FPN (with
ResNet-50). HB denotes Hyperband while SS denotes sub-sampling.

Search Space
Search mAP of number of searched

Method optimal anchor parameters

Single

Random 37.2 100

AABO w HB 37.8+0.6 64

AABO w SS 38.3+1.1 64

Feature-Map-Wised

Random 11.5 100

AABO w HB 38.2+26.7 64

AABO w SS 38.8+27.3 64

Comparison with other HPO methods. As Table 5 shows, our proposed
method could find better anchor configurations in fewer trials and can improve
the performance of the detector significantly: With single search space, AABO
combined with HB and SS boosts the mAP of FPN [17] from 36.4% to 37.8%
and 38.3% respectively, while random search only boosts 36.4% to 37.2%. With
feature-map-wised search space, AABO combined with HB and SS can obtain
38.2% and 38.8% mAP respectively, while random search fails to converge due
to the huge and flexible search space. The results illustrate the effectiveness and
the high efficiency of our proposed approach.

Comparison with other anchor optimization methods. We also com-
pare AABO with some previous anchor optimization methods like [33] and
MetaAnchor [31]. As shown in Table 6, all these methods can boost the per-
formance of detectors, while our method brings 2.4% mAP improvement on
Faster-RCNN and 1.4% on RetinaNet, and the other two methods only bring
1.0% improvement, which demonstrates the superiority of our proposed AABO.

4.5 Ablation Study

In this section, we study the effects of all the components used in AABO: a)
Treat anchor settings as hyper-parameters, then use HPO methods to search
them automatically. b) Use Bayesian Optimization method. c) Use sub-sampling
method to determine the reserved anchors. d) Feature-map-wised search space.

14 Wenshuo Ma et al.

Table 6. Comparison with previous anchor optimization methods: Zhong’s method
[33] and MetaAnchor [31]. The results are extracted from their papers respectively.
Note that we search optimal anchors for Faster-RCNN originally, then directly apply
them to RetinaNet. Therefore, the performance improvement on RetinaNet is not as
significant as Faster-RCNN, but still better than the other methods.

Methods
YOLOv2 RetinaNet Faster-RCNN RetinaNet

w Zhong’s Method [33] w MetaAnchor [31] w AABO w AABO

mAP of Baseline 23.5 36.9 36.4 38.1

mAP after Optimization 24.5+1.0 37.9+1.0 38.8+2.4 39.5+1.4

Table 7. Regard Bayesian Optimization (BO), Sub-sampling (SS), Feature-map-wised
search space as key components of AABO, we study the effectiveness of all these com-
ponents. HB denotes Hyperband and SS denotes sub-sampling. The experiments are
conducted on COCO, using FPN (with ResNet-50) as detector. Note that random
search fails to converge due to the huge feature-map-wised search space.

Model Search BO SS Feature-map-wised mAP AP50 AP75 APS APM APL

Default 36.4 58.2 39.1 21.3 40.1 46.5

Random Search
� 37.2+0.8 58.8 39.9 21.7 40.6 48.1

� � 11.5−24.9 19.1 8.2 4.5 10.1 13.6

AABO w HB
� � 37.8+1.4 58.9 40.4 22.7 41.3 49.9

� � � 38.2+1.8 59.3 40.7 22.6 42.1 50.1

AABO w SS
� � � 38.3+1.9 59.6 40.9 22.9 42.2 50.8

� � � � 38.8+2.4 60.7 41.6 23.7 42.5 51.5

As shown in Table 7, using HPO methods such as random search to op-
timize anchors can bring 0.8% performance improvement, which indicates the
default anchors are sub-optimal. Using single search space (not feature-map-
wised), AABO combined with HB brings 1.4% mAP improvement, and AABO
combined with SS brings 1.9% mAP improvement, which demonstrates the ad-
vantage of BO and accurate estimation of acquisition function. Besides, our tight
and adaptive feature-map-wised search space can give a guarantee to search out
better anchors with limited computation resources, and brings about 0.5% mAP
improvement as well. Our method AABO can increase mAP by 2.4% overall.

5 Conclusion

In this work, we propose AABO, an adaptive anchor box optimization method for
object detection via Bayesian sub-sampling, where optimal anchor configurations
for a certain dataset and detector are determined automatically without manu-
ally adjustment. We demonstrate that AABO outperforms both hand-adjusted
methods and HPO methods on popular SOTA detectors over multiple datasets,
which indicates that anchor configurations play an important role in object de-
tection frameworks and our proposed method could help exploit the potential of
detectors in a more effective way.

AABO 15

References

1. Bergstra, J.S., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter
optimization. In: NIPS (2011)

2. Bhagavatula, C., Zhu, C., Luu, K., Savvides, M.: Faster than real-time facial align-
ment: A 3d spatial transformer network approach in unconstrained poses. In: ICCV
(2017)

3. Chabot, F., Chaouch, M., Rabarisoa, J., Teuliere, C., Chateau, T.: Deep manta: A
coarse-to-fine many-task network for joint 2d and 3d vehicle analysis from monoc-
ular image. In: CVPR (2017)

4. Chan, H.P.: The multi-armed bandit problem: An efficient non-parametric solution.
Annals of Statistics p. To appear (2019)

5. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z.,
Shi, J., Ouyang, W., Loy, C.C., Lin, D.: mmdetection. https://github.com/open-
mmlab/mmdetection (2018)

6. Chen, K., Pang, J., Wang, J., Xiong, Y., Li, X., Sun, S., Feng, W., Liu, Z., Shi, J.,
Ouyang, W., Loy, C.C., Lin, D.: Hybrid task cascade for instance segmentation.
In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

7. Chen, X., Li, L.J., Fei-Fei, L., Gupta, A.: Iterative visual reasoning beyond convo-
lutions. In: CVPR (2018)

8. Dai, J., Li, Y., He, K., Sun, J.: R-fcn: Object detection via region-based fully
convolutional networks. In: NIPS (2016)

9. Falkner, S., Klein, A., Hutter, F.: Bohb: Robust and efficient hyperparameter op-
timization at scale. arXiv preprint arXiv:1807.01774 (2018)

10. He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask r-cnn. In: 2017 IEEE Interna-
tional Conference on Computer Vision (ICCV) (2017)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR (2016)

12. Huang, Y., Li, Y., Li, Z., Zhang, Z.: An Asymptotically Optimal Multi-Armed Ban-
dit Algorithm and Hyperparameter Optimization. arXiv e-prints arXiv:2007.05670
(2020)

13. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperpa-
rameter optimization. In: Artificial Intelligence and Statistics. pp. 240–248 (2016)

14. Jiang, C., Xu, H., Liang, X., Lin, L.: Hybrid knowledge routed modules for large-
scale object detection. In: NIPS (2018)

15. Krishna, R., Zhu, Y., Groth, O., Johnson, J., Hata, K., Kravitz, J., Chen, S.,
Kalantidis, Y., Li, L.J., Shamma, D.A., Bernstein, M., Fei-Fei, L.: Visual genome:
Connecting language and vision using crowdsourced dense image annotations. In-
ternational Journal of Computer Vision (2016)

16. Li, L., Jamieson, K., Desalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine
Learning Research 18, 1–52 (2016)

17. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature
pyramid networks for object detection. In: CVPR (2017)

18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV. pp. 2980–2988 (2017)

19. Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft coco: Common objects in context. In: ECCV (2014)

20. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., Berg, A.C.: Ssd:
Single shot multibox detector. In: ECCV (2016)

16 Wenshuo Ma et al.

21. Luo, P., Tian, Y., Wang, X., Tang, X.: Switchable deep network for pedestrian
detection. In: CVPR (2014)

22. Mendoza, H., Klein, A., Feurer, M., Springenberg, J.T., Hutter, F.: Towards
automatically-tuned neural networks. In: Workshop on Automatic Machine Learn-
ing. pp. 58–65 (2016)

23. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch. In:
NIPS Workshop (2017)

24. Perchet, V., Rigollet, P.: The multi-armed bandit problem with covariates. Annals
of Statistics 41(2), 693–721 (2013)

25. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified,
real-time object detection. In: CVPR (2016)

26. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR (2017)
27. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object de-

tection with region proposal networks. In: NIPS (2015)
28. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,

Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recog-
nition challenge. IJCV 115(3), 211–252 (2015)

29. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: NIPS (2012)

30. Sutton, R.S., Barto, A.G.: Reinforcement learning: An introduction. MIT press
(2018)

31. Tong, Y., Zhang, X., Zhang, W., Jian, S.: Metaanchor: Learning to detect objects
with customized anchors (2018)

32. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: CVPR. pp. 1492–1500 (2017)

33. Zhong, Y., Wang, J., Peng, J., Zhang, L.: Anchor box optimization for object
detection. arXiv preprint arXiv:1812.00469 (2018)

34. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing
through ade20k dataset. In: CVPR (2017)

35. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: More deformable, better
results. arXiv preprint arXiv:1811.11168 (2018)

