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Abstract. Video recognition has been advanced in recent years by bench-
marks with rich annotations. However, research is still mainly limited to
human action or sports recognition - focusing on a highly specific video
understanding task and thus leaving a significant gap towards describing
the overall content of a video. We fill this gap by presenting a large-
scale “Holistic Video Understanding Dataset” (HVU). HVU is organized
hierarchically in a semantic taxonomy that focuses on multi-label and
multi-task video understanding as a comprehensive problem that en-
compasses the recognition of multiple semantic aspects in the dynamic
scene. HVU contains approx. 572k videos in total with 9 million anno-
tations for training, validation and test set spanning over 3142 labels.
HVU encompasses semantic aspects defined on categories of scenes, ob-
jects, actions, events, attributes and concepts which naturally captures
the real-world scenarios.

We demonstrate the generalisation capability of HVU on three challeng-
ing tasks: 1.) Video classification, 2.) Video captioning and 3.) Video
clustering tasks. In particular for video classification, we introduce a
new spatio-temporal deep neural network architecture called “Holistic
Appearance and Temporal Network” (HATNet) that builds on fusing 2D
and 3D architectures into one by combining intermediate representations
of appearance and temporal cues. HATNet focuses on the multi-label and
multi-task learning problem and is trained in an end-to-end manner. Via
our experiments, we validate the idea that holistic representation learning
is complementary, and can play a key role in enabling many real-world
applications. https://holistic-video-understanding.github.io/

1 Introduction

Video understanding is a comprehensive problem that encompasses the recog-
nition of multiple semantic aspects that include: a scene or an environment,
objects, actions, events, attributes, and concepts. Even if considerable progress
is made in video recognition, it is still rather limited to action recognition - this is
due to the fact that there is no established video benchmark that integrates joint
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Fig. 1: Holistic Video Understanding Dataset: A multi-label and multi-task fully
annotated dataset and HATNet as a new deep ConvNet for video classification.

recognition of multiple semantic aspects in the dynamic scene. While Convolu-
tional Networks(ConvNets) have caused several sub-fields of computer vision to
leap forward, one of the expected drawbacks of training the ConvNets for video
understanding with a single label per task is insufficiency to describe the con-
tent of a video. This issue primarily impedes the ConvNets to learn a generic
feature representation towards challenging holistic video analysis. To this end,
one can easily overcome this issue by recasting the video understanding problem
as multi-task classification, where multiple labels are assigned to a video from
multiple semantic aspects. Furthermore, it is possible to learn a generic feature
representation for video analysis and understanding. This is in line with im-
age classification ConvNets trained on ImageNet that facilitated the learning of
generic feature representation for several vision tasks. Thus, training ConvNets
on a multiple semantic aspects dataset can be directly applied for holistic recog-
nition and understanding of concepts in video data, which makes it very useful
to describe the content of a video.

To address the above drawbacks, this work presents the “Holistic Video Un-
derstanding Dataset” (HVU). HVU is organized hierarchically in a semantic
taxonomy that aims at providing a multi-label and multi-task large-scale video
benchmark with a comprehensive list of tasks and annotations for video analysis
and understanding. HVU dataset consists of 476k, 31k and 65k samples in train,
validation and test set, and is a sufficiently large dataset, which means that the
scale of dataset approaches that of image datasets. HVU contains approx. 572k
videos in total, with ~7.5M annotations for training set, ~600K for validation
set, and ~1.3M for test set spanning over 3142 labels. A full spectrum encom-
passes the recognition of multiple semantic aspects defined on them including
248 categories for scenes, 1678 for objects, 739 for actions, 69 for events, 117 for
attributes and 291 for concepts, which naturally captures the long tail distribu-
tion of visual concepts in the real world problems. All these tasks are supported
by rich annotations with an average of 2112 annotations per label. The HVU
action categories builds on action recognition datasets [23,27, 29,47, 64] and fur-
ther extend them by incorporating labels of scene, objects, events, attributes,
and concepts in a video. The above thorough annotations enable developments
of strong algorithms for a holistic video understanding to describe the content
of a video. Table 1 shows the dataset statistics.
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Fig.2: Left: Average number of samples per label in each of main categories.
Middle: Number of labels for each main category. Right: Number of samples per
main category.

In order to show the importance of holistic representation learning, we demon-
strate the influence of HVU on three challenging tasks: video classification, video
captioning and video clustering. Motivated by holistic representation learning,
for the task of video classification, we introduce a new spatio-temporal architec-
ture called “Holistic Appearance and Temporal Network” (HATNet) that focuses
on the multi-label and multi-task learning for jointly solving multiple spatio-
temporal problems simultaneously. HATNet fuses 2D and 3D architectures into
one by combining intermediate representations of appearance and temporal cues,
leading to a robust spatio-temporal representation. Our HATNet is evaluated
on challenging video classification datasets, namely HMDB51, UCF101 and Ki-
netics. We experimentally show that our HATNet achieves outstanding results.
Furthermore, we show the positive effect of training models using more semantic
concepts on transfer learning. In particular, we show that pre-training the model
on HVU with more semantic concepts improves the fine-tuning results on other
datasets and tasks compared to pre-training on single semantic category datasets
such as, Kinetics. This shows the richness of our dataset as well as the impor-
tance of multi-task learning. Furthermore, our experiments on video captioning
and video clustering demonstrates the generalisation capability of HVU on other
tasks by showing promising results in comparison to the state-of-the-art.

2 Related Work

Video Recognition with ConvNets: As to prior hand-engineered [8, 28, 30,
39,55,61] and low-level temporal structure [18,19,35,58] descriptor learning
there is a vast literature and is beyond the scope of this paper.

Recently ConvNets-based action recognition [16,26, 46,50, 59] has taken a
leap to exploit the appearance and the temporal information. These methods op-
erate on 2D (individual image-level) [12,14, 20,48, 49,59, 63] or 3D (video-clips
or snippets of K frames) [16, 50,51, 53]. The filters and pooling kernels for these
architectures are 3D (x, y, time) i.e. 3D convolutions (s x s x d) [63] where d is the
kernel’s temporal depth and s is the kernel’s spatial size. These 3D ConvNets are
intuitively effective because such 3D convolution can be used to directly extract
spatio-temporal features from raw videos. Carreira et al.proposed inception [25]
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Fig. 3: Coverage of different subsets of the 6 main semantic categories in videos.
16.6% of the videos have annotations of all categories.

based 3D CNNs, which they referred to as I3D [6]. More recently, some works
introduced temporal transition layer that models variable temporal convolution
kernel depths over shorter and longer temporal ranges, namely T3D [11]. Fur-
ther Diba et al. [10] propose spatio-temporal channel correlation that models
correlations between channels of a 3D ConvNets wrt. both spatial and temporal
dimensions. In contrast to these prior works, our work differs substantially in
scope and technical approach. We propose an architecture, HATNet, that ex-
ploits both 2D ConvNets and 3D ConvNets to learn an effective spatio-temporal
feature representation. Finally, it is worth noting the self-supervised ConvNet
training works from unlabeled sources [21,42,44], such as Fernando et al. [17]
and Mishra et al. [33] generate training data by shuffling the video frames;
Sharma et al. [37,40,41,43] mines labels using a distance matrix or clustering
based on similarity although for video face clustering; Wei et al. [60] predict
the ordering task; Ng et al. [34] estimates optical flow while recognizing actions;
Diba et al. [13] predicts short term future frames while recognizing actions. Self-
supervised and unsupervised representation learning is beyond the scope of this
paper.

The closest work to ours is by Ray et al. [36]. Ray et al.concatenate pre-
trained deep features, learned independently for the different tasks, scenes, object
and actions aiming to the recognition, in contrast our HATNet is trained end-
to-end for multi-task and multi-label recognition in videos.

Video Classification Datasets: Over the last decade, several video classifi-
cation datasets [4,5,29,38,47] have been made publicly available with a focus
on action recognition, as summarized in Table 2. We briefly review some of the
most influential action datasets available. The HMDB51 [29] and UCF101 [47]
has been very important in the field of action recognition. However, they are sim-
ply not large enough for training deep ConvNets from scratch. Recently, some
large action recognition datasets were introduced, such as ActivityNet [5] and
Kinetics [27]. ActivityNet contains 849 hours of videos, including 28,000 action
instances. Kinetics-600 contains 500k videos spanning 600 human action classes
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Task Category‘ Scene Object Action Event  Attribute  Concept Total

#Labels ‘ 248 1678 739 69 117 291 3142
#Annotations ‘ 672,622 3,418,198 1,473,216 245,868 581,449 1,108,552 7,499,905
#Videos ‘ 251,794 471,068 479,568 164,924 316,040 410,711 481,417

Table 1: Statistics of the HVU training set for different categories. The category
with the highest number of labels and annotations is the object category.

Dataset ‘ Scene Object Action Event Attribute Concept #Videos Year
HMDB51 [29] - - 51 - - - 7K 11
UCF101 [47] - - 101 - - - 13K 12
ActivityNet [5] - - 200 - - - 20K 15
AVA [23] - - 30 - - - 57.6K 18
Something-Something [22] - - 174 - - - 108K 17
HACS [64] - - 200 - - - 140K 19
Kinetics [27] - - 600 - - - 500K 17
EPIC-KITCHEN [9] - 323 149 - - - 39.6K 18
SOA [36] 49 356 148 - - - 562K 18
HVU (Ours) ‘ 248 1678 739 69 117 291 572K 20

Table 2: Comparison of the HVU dataset with other publicly available video
recognition datasets in terms of #labels per category. Note that SOA is not
publicly available.

with more than 400 examples for each class. The current experimental strategy is
to first pre-train models on these large-scale video datasets [5, 26, 27] from scratch
and then fine-tune them on small-scale datasets [29,47] to analyze their trans-
fer behavior. Recently, a few other action datasets have been introduced with
more samples, temporal duration and the diversity of category taxonomy, they
are HACS [64], AVA [23], Charades [45] and Something-Something [22]. Sports-
1M [26] and YouTube-8M [3] are the video datasets with million-scale samples.
They consist quite longer videos rather than the other datasets and their anno-
tations are provided in video-level and not temporally stamped. YouTube-8M
labels are machine-generated without any human verification in the loop and
Sports-1M is just focused on sport activities.

A similar spirit of HVU is observed in SOA dataset [36]. SOA aims to rec-
ognize visual concepts, such as scenes, objects and actions. In contrast, HVU
has several orders of magnitude more semantic labels(6 times larger than SOA)
and not just limited to scenes, objects, actions only, but also including events,
attributes, and concepts. Our HVU dataset can help the computer vision com-
munity and bring more attention to holistic video understanding as a compre-
hensive, multi-faceted problem. Noticeably, the SOA paper was published in
2018, however the dataset is not released while our dataset is ready to become
publicly available.

Motivated by efforts in large-scale benchmarks for object recognition in static
images, i.e. the Large Scale Visual Recognition Challenge (ILSVRC) to learn a
generic feature representation is now a back-bone to support several related
vision tasks. We are driven by the same spirit towards learning a generic feature
representation at the video level for holistic video understanding.
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3 HVU Dataset

The HVU dataset is organized hierarchically in a semantic taxonomy of holistic
video understanding. Almost all real-wold conditioned video datasets are tar-
geting human action recognition. However, a video is not only about an action
which provides a human-centric description of the video. By focusing on human-
centric descriptions, we ignore the information about scene, objects, events and
also attributes of the scenes or objects available in the video. While SOA [36]
has categories of scenes, objects, and actions, to our knowledge it is not publicly
available. Furthermore, HVU has more categories as it is shown in Table 2. One
of the important research questions which is not addressed well in recent works
on action recognition, is leveraging the other contextual information in a video.
The HVU dataset makes it possible to assess the effect of learning and knowl-
edge transfer among different tasks, such as enabling transfer learning of object
recognition in videos to action recognition and vice-versa. In summary, HVU
can help the vision community and bring more interesting solutions to holistic
video understanding. Our dataset focuses on the recognition of scenes, objects,
actions, attributes, events, and concepts in user generated videos. Scene, object,
action and event categories definition is the same and standard as in other im-
age and datasets. For attribute labels, we target attributes describing scenes,
actions, objects or events. The concept category refers to any noun and label
which present a grouping definition or related higher level in the taxonomy tree
for labels of other categories.

3.1 HVU Statistics

HVU consists of 572k videos. The number of video-clips for train, validation,
and test set are 481k, 31k and 65k respectively. The dataset consists of trimmed
video clips. In practice, the duration of the videos are different with a maximum
of 10 seconds length. HVU has 6 main categories: scene, object, action, event,
attribute, and concept. In total, there are 3142 labels with approx. 7.56M anno-
tations for the training, validation and test set. On average, there are ~2112
annotations per label. We depict the distribution of categories with respect to
the number of annotations, labels, and annotations per label in Fig. 2. We can
observe that the object category has the highest quota of labels and annota-
tions, which is due to the abundance of objects in video. Despite having the
highest quota of the labels and annotations, the object category does not have
the highest annotations per label ratio. However, the average number of ~2112
annotations per label is a reasonable amount of training data for each label. The
scene category does not have a large amount of labels and annotations which is
due to two reasons: the trimmed videos of the dataset and the short duration of
the videos. This distribution is somewhat the same for the action category. The
dataset statistics for each category are shown in Table 1 for the training set.
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3.2 Collection and Annotation

Building a large-scale video understanding dataset is a time-consuming task. In
practice, there are two main tasks which are usually most time consuming for
creating a large-scale video dataset: (a) data collection and (b) data annotation.
Recent popular datasets, such as ActivityNet, Kinetics, and YouTube-8M are col-
lected from Internet sources like YouTube. For the annotation of these datasets,
usually a semi-automatic crowdsourcing strategy is used, in which a human man-
ually verifies the crawled videos from the web. We adopt a similar strategy with
difference in the technical approach to reduce the cost of data collection and
annotation. Since, we are interested in the user generated videos, thanks to the
taxonomy diversity of YouTube-8M [3], Kinetics-600 [27] and HACS [64], we use
these datasets as main source of the HVU. By using these datasets as the source,
we also do not have to deal with copyright or privacy issues so we can publicly
release the dataset. Moreover, this ensures that none of the test videos of existing
datasets is part of the training set of HVU. Note that, all of the aforementioned
datasets are action recognition datasets.

Manually annotating a large number of videos with multiple semantic cat-
egories (i.e thousands of concepts and tags) has two major shortcomings, (a)
manual annotations are error-prone because a human cannot be attentive to
every detail occurring in the video that leads to mislabeling and are difficult to
eradicate; (b) large scale video annotation in specific is a very time consuming
task due to the amount and temporal duration of the videos. To overcome these
issues, we employ a two-stage framework for the HVU annotation. In the first
stage, we utilize the Google Vision API [1] and Sensifai Video Tagging APT [2]
to get rough annotations of the videos. The APIs predict 30 tags per video. We
keep the probability threshold of the APIs relative low (~ 30%) as a guarantee
to avoid false rejects of tags in the video. The tags were chosen from a dictionary
with almost 8K words. This process resulted in almost 18 million tags for the
whole dataset. In the second stage, we apply human verification to remove any
possible mislabeled noisy tags and also add possible missing tags missed by the
APIs from some recommended tags of similar videos. The human annotation
step resulted in 9 million tags for the whole dataset with ~3500 different tags.

We provide more detailed statistics and discusion regarding the annotation
process in the supplementary materials.

3.3 Taxonomy

Based on the predicted tags from the Google and the Sensifai APIs, we found
that the number of obtained tags is approximately ~8K before cleaning. The
services can recognize videos with tags spanning over categories of scenes, ob-
jects, events, attributes, concepts, logos, emotions, and actions. As mentioned
earlier, we remove tags with imbalanced distribution and finally, refine the tags
to get the final taxonomy by using the WordNet [32] ontology. The refinement
and pruning process aims to preserve the true distribution of labels. Finally, we



8 Diba, Fayyaz, Sharma et al.

2DConv Blocks Blocks 2DConv Blocks

Fig.4: HATNet: A new 2D/3D deep neural network with 2DConv, 3DConv
blocks and merge and reduction (M&R) block to fuse 2D and 3D feature maps
in intermediate stages of the network. HATNet combines the appearance and
temporal cues with the overall goal to compress them into a more compact rep-
resentation.

ask the human annotators to classify the tags into 6 main semantic categories,
which are scenes, objects, actions, events, attributes and concepts.

In fact, each video can be assigned to multiple semantic categories. Almost
100K of the videos have all of the semantic categories. In comparison to SOA,
almost half of HVU videos have labels for scene, object and action together.
Figure 3 shows the percentage of the different subsets of the main categories.

4 Holistic Appearance and Temporal Network

We first briefly discuss state-of-the-art 3D ConvNets for video classification
and then propose our new proposed “Holistic Appearance and Temporal Net-
work” (HATNet) for multi-task and multi-label video classification.

4.1 3D-ConvNets Baselines

3D ConvNets are designed to handle temporal cues available in video clips and
are shown to be efficient performance-wise for video classification. 3D ConvNets
exploit both spatial and temporal information in one pipeline. In this work, we
chose 3D-ResNet [51] and STCnet [10] as our 3D CNNs baseline which have
competitive results on Kinetics and UCF101. To measure the performance on
the multi-label HVU dataset, we use mean average precision (mAP) over all
labels. We also report the individual performance on each category separately.
The comparison between all of the methods can be found in Table 3. These
networks are trained with binary cross entropy loss.

4.2 Multi-Task Learning 3D-ConvNets

Another approach which is studied in this work to tackle the HVU dataset is to
have the problem solved with multi-task learning or a joint training method. As
we know the HVU dataset consists of high-level categories like objects, scenes,
events, attributes, and concepts, so each of these categories can be dealt like sep-
arate tasks. In our experiments, we have defined six tasks, scene, object, action,
event, attribute, and concept classification. So our multi-task learning network
is trained with six objective functions, that is with multi-label classification for
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each task. The trained network is a 3D-ConvNet which has separate Conv layers
as separate heads for each of the tasks at the end of the network.

For each head we use the binary cross entropy loss since it is a multi-label
classification for each of the categories.

4.3 2D/3D HATNet

Our “Holistic Appearance and Temporal Network” (HATNet) is a spatio-temporal
neural network, which extracts temporal and appearance information in a novel
way to maximize engagement of the two sources of information and also the ef-
ficiency of video recognition. The motivation of proposing this method is deeply
rooted in a need of handling different levels of concepts in holistic video recogni-
tion. Since we are dealing with still objects, dynamic scenes, different attributes
and also different human activities, we need a deep neural network that is able to
focus on different levels of semantic information. We propose a flexible method
to use a 2D pre-trained model on a large image dataset like ImageNet and a 3D
pre-trained model on video datasets like Kinetics to fasten the process of training
but the model can be trained from scratch as it is shown in our experiments as
well. The proposed HATNet is capable of learning a hierarchy of spatio-temporal
feature representation using appearance and temporal neural modules.

Appearance Neural Module. In HATNet design, we use 2D ConvNets
with 2D Convolutional (2DConv) blocks to extract static cues of individual
frames in a video-clip. Since we aim to recognize objects, scenes and attributes
alongside of actions, it is necessary to have this module in the network which
can handle these concepts better. Specifically, we use 2DConv to capture the
spatial structure in the frame.

Temporal Neural Module. In HATNet architecture, the 3D Convolu-
tions (3DConv) module handles temporal cues dealing with interaction in a batch
of frames. 3DConv aims to capture the relative temporal information between
frames. It is crucial to have 3D convolutions in the network to learn relational
motion cues for efficiently understanding dynamic scenes and human activities.
We use ResNet18/50 for both the 3D and 2D modules, so that they have the
same spatial kernel sizes, and thus we can combine the output of the appearance
and temporal branches at any intermediate stage of the network.

Figure 4 shows how we combine the 2DConv and 3DConv branches and
use merge and reduction blocks to fuse feature maps at the intermediate stages
of HATNet. Intuitively, combining the appearance and temporal features are
complementary for video understanding and this fusion step aims to compress
them into a more compact and robust representation. In the experiment sec-
tion, we discuss in more detail about the HATNet design and how we apply
merge and reduction modules between 2D and 3D neural modules. Supported
by our extensive experiments, we show that HATNet complements the holistic
video recognition, including understanding the dynamic and static aspects of
a scene and also human action recognition. In our experiments, we have also
performed tests on HATNet based multi-task learning similar to 3D-ConvNets
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Model ‘ Scene Object Action Event Attribute Concept ‘ HVU Overall %
3D-ResNet | 50.6 286 482  35.9 29 225 | 35.8
3D-STCNet | 51.9  30.1  50.3  35.8 29.9 22.7 | 36.7
HATNet | 55.8 34.2 51.8 38.5  33.6 26.1 | 40

Table 3: MAP (%) performance of different architecture on the HVU dataset.
The backbone ConvNet for all models is ResNet18.

Model ‘Scene Object Action Event Attribute Concept‘Overall
3D-ResNet (Standard) 50.6 28.6 48.2 35.9 29 22.5 |35.8
HATNet (Standard) 55.8  34.2 51.8 385 33.6 26.1 |40
3D-ResNet (Multi-Task) | 51.7  29.6 48.9  36.6 31.1 24.1 |37
HATNet (Multi-Task) 57.2 35.1 53.5 39.8 34.9 27.3 |41.3

Table 4: Multi-task learning performance (mAP (%) comparison of 3D-ResNet18
and HATNet, when trained on HVU with all categories in the multi-task pipeline.
The backbone ConvNet for all models is ResNet18.

based multi-task learning discussed in Section 4.2. HATNet has some similar-
ity to the SlowFast [15] network but there are major differences. SlowFast uses
two 3D-CNN networks for a slow and a fast branch. HATNet has one 3D-CNN
branch to handle motion and dynamic information and one 2D-CNN to handle
static information and appearance. HATNet also has skip connections with M&R
blocks between 3D and 2D convolutional blocks to exploit more information.

2D /3D HATNet Design. The HATNet includes two branches: first is the
3D-Conv blocks with merging and reduction block and second branch is 2D-
Conv blocks. After each 2D/3D blocks, we merge the feature maps from each
block and perform a channel reduction by applying a 1 x1x 1 convolution. Given
the feature maps of the first block of both 2DConv and 3DConv, that have 64
channels each. We first concatenate these maps, resulting in 128 channels, and
then apply 1 x 1 x 1 convolution with 64 kernels for channel reduction, resulting
in an output with 64 channels. The merging and reduction is done in the 3D
and 2D branches, and continues independently until the last merging with two
branches.

We employ 3D-ResNet and STCnet [10] with ResNet18/50 as the HATNet
backbone in our experiments. The STCnet is a model of 3D networks with spatio-
temporal channel correlation modules which improves 3D networks performance
significantly. We also had to make a small change to the 2D branch and remove
pooling layers right after the first 2D Conv to maintain a similar feature map
size between the 2D and 3D branches since we use 112x112 as input-size.

5 Experiments

In this section, we demonstrate the importance of HVU on three different tasks:
video classification, video captioning and video clustering. First, we introduce
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Pre-Training Dataset ‘ UCF101 HMDBb51  Kinetics

From Scratch 65.2 33.4 65.6
Kinetics 89.8 62.1 -
HVU 90.5 65.1 67.8

Table 5: Performance (mAP (%)) comparison of HVU and Kinetics datasets
for transfer learning generalization ability when evaluated on different action
recognition dataset. The trained model for all of the datasets is 3D-ResNet18.

Method Pre-Trained Dataset | CNN Backbone | UCF101 HMDB51 Kinetics-400 Kinetics-600
Two Stream (spatial stream) [46] Imagenet VGG-M 73 40.5 -

RGB-I3D [6] Imagenet Inception v1 84.5 49.8

C3D [50] Sport1M VGGI11 82.3 51.6 -

TSN [59] Imagenet,Kinetics Inception v3 93.2 - 72.5

RGB-I3D [6] Imagenet,Kinetics Inception v1 95.6 74.8 72.1

3D ResNext 101 (16 frames) [24] Kinetics ResNext101 90.7 63.8 65.1

STC-ResNext 101 (64 frames) [10] Kinetics ResNext101 96.5 74.9 68.7

ARTNet [57] Kinetics ResNet18 93.5 67.6 69.2

R(2+1)D [53] Kinetics ResNet50 96.8 74.5 72

ir-CSN-101 [52] Kinetics ResNet101 - - 76.7

DynamoNet [13] Kinetics ResNet101 - - 76.8

SlowFast 4x16 [15] Kinetics ResNet50 - - 75.6 78.8
SlowFast 16x8% [15] Kinetics ResNet101 - - 78.9% 81.1
HATNet (32 frames) Kinetics ResNet50 96.8 74.8 7.2 80.2
HATNet (32 frames) HVU ResNet18 96.9 74.5 74.2 774
HATNet (16 frames) HVU ResNet50 96.5 73.4 76.3 79.4
HATNet (32 frames) HVU ResNet50 97.8 76.5 79.3 81.6

Table 6: State-of-the-art performance comparison on UCF101, HMDB51 test sets
and Kinetics validation set. The results on UCF101 and HMDBS51 are average
mAP over three splits, and for Kinetics(400,600) is Top-1 mAP on validation set.
For a fair comparison, here we report the performance of methods which utilize
only RGB frames as input. *SlowFast uses multiple branches of 3D-ResNet with
bigger backbones.

the implementation details and then show the results of each mentioned method
on multi-label video recognition. Following, we compare the transfer learning
ability of HVU against Kinetics. Next, as an additional experiment, we show
the importance of having more categories of tags such as scenes and objects for
video classification. Finally, we show the generalisation capability of HVU for
video captioning and clustering tasks. For each task, we test and compare our
method with the state-of-the-art on benchmark datasets. For all experiments, we
use RGB frames as input to the ConvNet. For training, we use 16 or 32 frames
long video clips as single input. We use PyTorch framework for implementation
and all the networks are trained on a machine with 8 V100 NVIDIA GPUs.

5.1 HVU Results

In Table 3, we report the overall performance of different simpler or multi-
task learning baselines and HATNet on the HVU validation set. The reported
performance is mean average precision on all of the labels/tags. HATNet that
exploits both appearance and temporal information in the same pipeline achieves
the best performance, since recognizing objects, scenes and attributes need an
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appearance module which other baselines do not have. With HATNet, we show
that combining the 3D (temporal) and 2D (appearance) convolutional blocks
one can learn a more robust reasoning ability.

5.2 Multi-Task Learning on HVU

Since the HVU is a multi-task classification dataset, it is interesting to compare
the performance of different deep neural networks in the multi-task learning
paradigm as well. For this, we have used the same architecture as in the previous
experiment, but with different last layer of convolutions to observe multi-task
learning performance. We have targeted six tasks: scene, object, action, event,
attribute, and concept classification. In Table 4, we have compared standard
training without multi-task learning heads versus multi-task learning networks.

The simple baseline multi-task learning methods achieve higher performance
on individual tasks as expected, in comparison to standard networks learning
for all categories as a single task. Therefore this initial result on a real-world
multi-task video dataset motivates the investigation of more efficient multi-task
learning methods for video classification.

5.3 Transfer Learning: HVU vs Kinetics

Here, we study the ability of transfer learning with the HVU dataset. We com-
pare the results of pre-training 3D-ResNet18 using Kinetics versus using HVU
and then fine-tuning on UCF101, HMDB51 and Kinetics. Obviously, there is a
large benefit from pre-training of deep 3D-ConvNets and then fine-tune them
on smaller datasets (i.e. HVU, Kinetics = UCF101 and HMDB51). As it can be
observed in Table 5, models pre-trained on our HVU dataset performed notably
better than models pre-trained on the Kinetics dataset. Moreover, pre-training
on HVU can improve the results on Kinetics also.

5.4 Benefit of Multiple Semantic Categories

Here, we study the effect of training models with multiple semantic categories,
in comparison to using only a single semantic category, such as Kinetics which
covers only action category. In particular, we designed an experiment by having
the model trained in multiple steps by adding different categories of tags one by
one. Specifically, we first train 3D-ResNet18 with action tags of HVU, following
in second step we add tags from object category and in the last step we add tags
from the scene category. For performance evaluation, we consider action category
of HVU. In the first step the gained performance was 43.6% accuracy and after
second step it was improved to 44.5% and finally in the last step it raised to
45.6%. The results show that adding high-level categories to the training, boosts
the performance for action recognition in each step. As it was also shown in
Table 4, training all the categories together yields 47.5% for the action category
which is ~4% gain over action as single category for training. Thus we can
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Model ‘ Pre-Training Dataset ‘ BLEU@4

SA(VGG+C3D) [62] ImageNet-+SportsIM | 36.6
M3(VGG+C3D) [56] ImageNet-+SportsIM |  38.1

SibNet(GoogleNet) [31] ImageNet 40.9
MGSA (Inception+C3D) [7] | ImageNet+SportsIM | 42.4
I3D+M [54] Kinetics 41.7
3D-ResNet50+M Kinetics 41.8
3D-ResNet50+M HVU 42.7

Table 7: Captioning performance comparisons of [54] with different models and
pre-training datasets. M denotes the motion features from optical flow extracted
as in the original paper.

infer from this that an effective feature representation can be learned by adding
additional categories, and also acquire knowledge for an in-depth understanding
of the video in holistic sense.

5.5 Comparison on UCF, HMDB, Kinetics

In Table 6, we compare the HATNet performance with the state-of-the-art on
UCF101, HMDB51 and Kinetics. For our baselines and HATNet, we employ
pre-training in two separate setups: one with HVU and another with Kinetics,
and then fine-tune on the target datasets. For UCF101 and HMDB51, we re-
port the average accuracy over all three splits. We have used ResNet18/50 as
backbone model for all of our networks with 16 and 32 input-frames. HATNet
pre-trained on HVU with 32 frames input achieved superior performance on all
three datasets with standard network backbones. Note that on Kinetics, HAT-
Net even with ResNet18 as a backbone ConvNet performs almost comparable
to SlowFast which is trained by dual 3D-ResNet50. In Table 6, however while
SlowFast has better performance using dual 3D-ResNet101 architecture, HAT-
Net obtains comparable results with much smaller backbone.

5.6 Video Captioning

We present a second task that showcases the effectiveness of our HVU dataset,
we evaluate the effectiveness of HVU for video captioning task. We conduct
experiments on a large-scale video captioning dataset, namely MSR-VTT [62].
We follow the standard training/testing splits and protocols provided originally
in [62]. For video captioning, the performance is measured using the BLEU
metric.

Method and Results: Most of the state-of-the-art video captioning meth-
ods use models pre-trained on Kinetics or other video recognition datasets. With
this experiment, we intend to show another generalisation capability of HVU
dataset where we evaluate the performance of pre-trained models trained on
HVU against Kinetics. For our experiment, we use the Controllable Gated Net-
work [54] method, which is to the best of our knowledge the state-of-the-art for
captioning task.
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Model ‘ Pre-Training Dataset ‘ Clustering Accuracy (%)

3D-ResNet50 Kinetics 50.3
3D-ResNet50 HVU 53.5
HATNet HVU 54.8

Table 8: Video clustering performance: evaluation based on extracted features
from networks pre-trained on Kinetics and HVU datasets.

For comparison, we considered two models of 3D-ResNet50, pre-trained on (i)
Kinetics and (ii) HVU. Table 7 shows that the model trained on HVU obtained
better gains in comparison to Kinetics. This shows HVU helps to learn more
generic video representation to achieve better performance in other tasks.

5.7 Video Clustering

With this experiment, we evaluate the effectiveness of generic features learned
using HVU when compared to Kinetics.

Dataset: We conduct experiments on ActivityNet-100 [5] dataset. For this
experiment we provide results when considering 20 action categories with 1500
test videos. We have selected ActivityNet dataset to make sure there are no
same videos in HVU and Kinetics training set. For clustering, the performance
is measured using clustering accuracy [41].

Method and Results: We extract features using 3D-ResNet50 and HATNet
pre-trained on Kinetics-600 and HVU for the test videos and then cluster them
with KMeans clustering algorithm with the given number of action categories.
Table 8 clearly shows that the features learned using HVU is far more effective
compared to features learned using Kinetics.

6 Conclusion

This work presents the “Holistic Video Understanding Dataset” (HVU), a large-
scale multi-task, multi-label video benchmark dataset with comprehensive tasks
and annotations. It contains 572k videos in total with 9M annotations, which
is richly labeled over 3142 labels encompassing scenes, objects, actions, events,
attributes and concepts categories. Through our experiments, we show that the
HVU can play a key role in learning a generic video representation via demon-
stration on three real-world tasks: video classification, video captioning and video
clustering. Furthermore, we present a novel network architecture, HATNet, that
combines 2D and 3D ConvNets in order to learn a robust spatio-temporal feature
representation via multi-task and multi-label learning in an end-to-end manner.
We believe that our work will inspire new research ideas for holistic video under-
standing. For the future plan, we are going to expand the dataset to 1 million
videos with similar rich semantic labels and also provide annotations for other
important tasks like activity and object detection and video captioning.
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