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Appendix

In the supplement, we provide details on the thin plate spline (TPS) transforma-
tion, the formulation of attack loss, the setting of algorithmic parameters, and
the additional experiments of the adversarial T-shirt in the physical world.

A How to construct TPS transformation?

frame 1 in Fig.2a frame 2 in Fig.2b

Fig.A1: Four manually annotated corner points (blue) used to generate the bounding
box of cloth region at frame i, namely, Mc,i. And 8 × 16 anchor points (red) on the
checkerboard used to generate TPS transformation tTPS between two video frames.

We first manually annotate four corner points (see blue markers in Figure A1)
to conduct a perspective transformation between two frames at different time
instants. This perspective transformation is used to align the coordinate system
of anchor points used for TPS transformation between two frames.

Ideally, the checkerboard detection tool [16,37] always outputs a grid of cor-
ner points detected. In most cases, it can locate all the 8 × 16 points on the
checkerboard perfectly, so no additional effort is needed to establish the point
correspondences between two images. In the case when there are corner points
missing in the detection, we use the following method to match two images.
We perform a point matching procedure (see Algorithm 1) to align the anchor
points (see red markers in Figure A1) detected by the checkerboard detection
tool. The data matching procedure selects the set of matched anchor points used
for constructing TPS transformation.

B Color transformation

As shown in Figure A2, we generate the training dataset to map a digital color
palette to the same one printed on a T-shirt. With the aid of 960 color cell
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Algorithm 1 Constructing TPS transformation

1: Input: Given original image x1 (frame 1) with r1×c1 anchor points, each of which
has coordinate p(1)[i, j], where i ∈ [r1], j ∈ [c1] and [n] denotes the integer set
{1, 2, . . . , n}, target image x2 (frame 2) with r2 × c2 anchor points, each of which
has coordinate p(2)[i, j], where i ∈ [r2] and j ∈ [c2], distance tolerance ε > 0, and
empty vectors p̃(1) and p̃(2).

2: Output: Matched r × c anchor points p̃(1)[i, j] versus p̃(2)[i, j] for i ∈ [r] and
j ∈ [c], and TPS transformation tTPS from x1 to x2.

3: for (i, j) ∈ [r1]× [c1] do
4: given p(1)[i, j] in x1, find the candidate of matching point p(2)[i′, j′] by nearest

neighbor in x2,
5: if ‖p(1)[i, j]− p(2)[i′, j′]‖2 ≤ ε then
6: matching p(1)[i, j] with p(2)[i′, j′], and adding them into p̃(1) and p̃(2) re-

spectively,
7: end if
8: end for
9: build TPS transformation tTPS by solving Eq. (2) given p̃(1) and p̃(2).

pairs. We learn the weights of the quadratic polynomial regression by minimiz-
ing the mean squared error of the predicted physical color (with the digital color
in Figure A2(a) as input) and the ground-truth physical color provided in Fig-
ure A2(b). Once the color transformer tcolor is learnt, we then incorporate it into
(5).

(a) (b) (c)

Fig.A2: Physical color transformation. (a): The digital color map (b): The printed
color map on a T-shirt (captured by the camera of iPhone X). (c): The predicted
transformation from (a) via the learnt polynomial regression.

C Formulation of attack loss

There are two possible options to formulate the attack loss f to fool person
detectors. First, f is specified as the misclassification loss, commonly-used in
most of previous works. The goal is to misclassify the class ‘person’ to any other
incorrect class. For YOLOv2, we minimize the confidence score of all bound-
ing boxes corresponding to the class ‘person’. For Faster R-CNN, we minimize
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the classification scores of all bounding boxes labeled as ‘person’. Let x′i be a
perturbed video frame, the attack loss in (6) is then given by

f(x′i) = max
j
{max{pj(x′i), ν} · 1|Bj∩Mp,i|>η}, (8)

where pj(x
′
i) denotes the confidence score of the jth bounding box for YOLOv2

or the probability of the ‘person’ class at the jth bounding box for Faster R-CNN,
ν is a confidence threshold, the use of max{pj(x′i), ν} enforces the optimizer to
minimize the bounding boxes of high probability (greater than ν), Bj is the jth
bounding box, Mp,i is the known bounding box encoding the person’s region, the
quantity |Bj ∩Mp,i| represents the intersection between Bj and Mp,i, | · | is the
cardinality function, and 1|Bj∩Mp,i|>η is the indicator function, which returns 1 if
Bj has at least η-overlapping with Mc,i, and 0 otherwise. In Eq.(8), the quantity
max{pj(x′i), ν}·1|Bj∩Mp,i|>η characterizes the bounding box of our interest with
both high probability and large overlapping with Mp,i. And the eventual loss in
Eq.(8) gives the largest probability for detecting a bounding box of the object
‘person’.

D Hyperparameter setting

When solving Eq. (6), we use Adam optimizer [20] to train 5,000 epochs with
the initial learning rate, 1 × 10−2. The rate is decayed when the loss ceases to
decrease. The regularization parameter λ for total-variation norm is set as 3. In
Eq. (7), we set γ as 1, and solve the min-max problem by 6000 epochs with the
initial learning rate 1 × 10−2. In Eq. (5), the details of transformations t are
shown in Table A1.

Transformation Minimum Maximum

Scale 0.5 2
Brightness -0.1 0.1
Contrast 0.8 1.2

Random uniform noise -0.1 0.1
Blurring average pooling/filter size = 5

Table A1: The conventional transformations t in Eq. (5).

In experiments, we find that the hyperparameter λ strikes a balance between
the fine-gained perturbation pattern and its smoothness. As we can see in Fig-
ure A3, when λ is smallest (namely, λ = 1), the perturbation can achieve the
best ASR (82% ) against YOLOv2 in the digital space, however when we test
the digital pattern in the physical world, the attacking performance drops to
51% (worse than the case of λ = 3) as the non-smooth (sharp) perturbation
pattern might not be well captured by a real-world camera. In our experiments,
we choose λ = 3 for the best tradeoff between digital and physical results.
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λ 1 3 5

digital 82% 74% 69%

physical 51% 57% 55%

Fig.A3: ASR v.s. λ against YOLOv2.

For a real-world deployment of a person detector, the minimum detection
threshold needs to be empirically determined to obtain a good tradeoff between
detection accuracy and false alarm rates. In our physical-word testing, we set the
threshold to 0.7 for Faster R-CNN and YOLOv2, at which both of them achieve
detection accuracy over 97% on person wearing normal clothing. The sensitivity
analysis of this threshold is provided in Figure A4.
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Fig.A4: The detection accuracy of YOLOV2 and Faster R-CNN under different de-
tection thresholds . ‘Normal’ means the case of persons wearing normal clothing, and
‘adv. T-shirt’ means the case of persons wearing the adversarial T-shirt.

E Dataset details

In Table A2, we summarize dataset we used in Section 4.2 and 4.3.
In Section 4.4 for ablation study on parameter sensitivity and generalization

to more complex testing scenarios, we further collected some new test data.
Specifically, we considered the scenario of five people (two females and three
males) for ablation study and none of them appeared in the original training
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Table A2: Summary of our collected dataset in each scenes. The values in the table
are presented by number of videos (total number of frames) in each scene, ie, 4 (177)
means 4 videos and 177 frames in total.

videos (frames)
indoor outdoor overall

office elevator hallway street1 street2

single-person 4 (177) 4 (135) 4 (230) 4 (225) 4 (240) 20 (1007)
multi-persons 4 (162) 4 (132) 4 (245) 4 (230) 4 (227) 20 (996)

train 6 (245) 6 (180) 6 (335) 6 (344) 6 (365) 30 (1469)
test (digital) 2 (94) 2 (87) 2 (140) 2 (111) 2 (102) 10 (534)

unseen elevator hallway street3

test (physical) 6 (236) 6 (184) 6 (220) 6 (288) 24 (928)

and testing datasets. We recorded multiple videos by using two cameras (one
iPhone X and one iPhone XI) and reported the resulting ASR in average.

F More experimental results

In Figure A5, we demonstrate our physical-world attack results in two scenarios:
a) adversarial T-shirts generated by advT-TPS , advT-Affine and advPatch in
an outdoor scenario (the first three rows), b) adversarial T-shirts generated by
advT-TPS and advT-Affine in an unseen scenario (at a location never seen in the
training dataset). As we can see, our method outperforms affine and baseline. In
the absence of TPS, adversarial T-shirts generated by affine and baseline fail in
most of cases, implying the importance of TPS to model the T-shirt deformation.
When a person whom wears the adversarial T-shirt walks towards the camera,
as expected, the detector also becomes easier to be attacked.

Moreover, it is worth noting that some postures remain challenging as the
larger occlusion is the worse ASR is. To delve into this problem, Fig. A6 presents
how well our adversarial T-shirt can handle occlusion by partially covering the T-
shirt by hand. Not surprisingly, both advT-Affine and advT-TPS may fail when
occlusion becomes quite large. Thus, occlusion is still an interesting problem for
physical adversaries.
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Fig.A5: Some testing frames in the physical world using adversarial T-shirt against
YOLOv2. All frames are performed by two persons with one wearing the proposed
adversarial T-shirt, generated by our method (advT-TPS), advT-Affine and advPatch.
The first three rows: an unseen outdoor scenes. The last two rows: an unseen indoor
scenes.
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advT-Affine advT-TPS

Fig.A6: When advT-Affine and advT-TPS happen occlusion by hand.


