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Abstract. It is known that deep neural networks (DNNs) are vulner-
able to adversarial attacks. The so-called physical adversarial examples
deceive DNN-based decision makers by attaching adversarial patches to
real objects. However, most of the existing works on physical adversarial
attacks focus on static objects such as glass frames, stop signs and images
attached to cardboard. In this work, we propose Adversarial T-shirts, a
robust physical adversarial example for evading person detectors even if
it could undergo non-rigid deformation due to a moving person’s pose
changes. To the best of our knowledge, this is the first work that models
the effect of deformation for designing physical adversarial examples with
respect to non-rigid objects such as T-shirts. We show that the proposed
method achieves 74% and 57% attack success rates in the digital and
physical worlds respectively against YOLOv2. In contrast, the state-of-
the-art physical attack method to fool a person detector only achieves
18% attack success rate. Furthermore, by leveraging min-max optimiza-
tion, we extend our method to the ensemble attack setting against two
object detectors YOLO-v2 and Faster R-CNN simultaneously.

Keywords: Physical adversarial attack; object detection; deep learning

1 Introduction

The vulnerability of deep neural networks (DNNs) against adversarial attacks
(namely, perturbed inputs deceiving DNNs) has been found in applications span-
ning from image classification to speech recognition [33,21,34,37,6,32,2]. Early
works studied adversarial examples only in the digital space. Recently, some
works showed that it is possible to create adversarial perturbations on physical
objects and fool DNN-based decision makers under a variety of real-world condi-
tions [28,14,1,15,25,7,30,5,20]. The design of physical adversarial attacks helps to
evaluate the robustness of DNNs deployed in real-life systems, e.g., autonomous
vehicles and surveillance systems. However, most of the studied physical ad-
versarial attacks encounter two limitations: a) the physical objects are usually
considered being static, and b) the possible deformation of adversarial pattern
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Fig. 1: Evaluation of the effectiveness of adversarial T-shirts to evade person detection
by YOLOv2. Each row corresponds to a specific attack method while each column
except the last one shows an individual frame in a video. The last column shows the
adversarial patterns applied to the T-shirts. At each frame, there are two persons, one
of whom wears the adversarial T-shirt. First row: digital adversarial T-shirt generated
using TPS. Second row: physical adversarial T-shirt generated using TPS. Third row:
physical adversarial T-shirt generated using affine transformation (namely, in the ab-
sence of TPS). Fourth row: T-shirt with physical adversarial patch considered in [30]
to evade person detectors.

attached to a moving object (e.g., due to pose change of a moving person) is
commonly neglected. In this paper, we propose a new type of physical adver-
sarial attack, adversarial T-shirt, to evade DNN-based person detectors when a
person wears the adversarial T-shirt; see the second row of Fig. 1 for illustrative
examples.
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Related work Most of the existing physical adversarial attacks are generated
against image classifiers and object detectors. In [28], a face recognition system
is fooled by a real eyeglass frame designed under a crafted adversarial pattern.
In [14], a stop sign is misclassified by adding black or white stickers on it against
the image classification system. In [20], an image classifier is fooled by placing a
crafted sticker at the lens of a camera. In [1], a so-called Expectation over Trans-
formation (EoT) framework was proposed to synthesize adversarial examples ro-
bust to a set of physical transformations such as rotation, translation, contrast,
brightness, and random noise. Moreover, the crafted adversarial examples on
the rigid objects can be designed in camouflage style [35] or natural style [11]
that appear legitimate to human observers in the real world. Compared to at-
tacking image classifiers, generating physical adversarial attacks against object
detectors is more involved. For example, the adversary is required to mislead the
bounding box detector of an object when attacking YOLOv2 [26] and SSD [24].
A well-known success of such attacks in the physical world is the generation of
adversarial stop sign [15], which deceives state-of-the-art object detectors such
as YOLOv2 and Faster R-CNN [27].

The most relevant approach to ours is the work of [30], which demonstrates
that a person can evade a detector by holding a cardboard with an adversarial
patch. However, such a physical attack restricts the adversarial patch to be
attached to a rigid carrier (namely, cardboard), and is different from our setting
here where the generated adversarial pattern is directly printed on a T-shirt. We
show that the attack proposed by [30] becomes ineffective when the adversarial
patch is attached to a T-shirt (rather than a cardboard) and worn by a moving
person (see the fourth row of Fig. 1). At the technical side, different from [30]
we propose a thin plate spline (TPS) based transformer to model deformation
of non-rigid objects, and develop an ensemble physical attack that fools object
detectors YOLOv2 and Faster R-CNN simultaneously. We highlight that our
proposed adversarial T-shirt is not just a T-shirt with printed adversarial patch
for clothing fashion, it is a physical adversarial wearable designed for evading
person detectors in the real world.

Our work is also motivated by the importance of person detection on intel-
ligent surveillance. DNN-based surveillance systems have significantly advanced
the field of object detection [18,17]. Efficient object detectors such as Faster
R-CNN [27], SSD [24], and YOLOv2 [26] have been deployed for human de-
tection. Thus, one may wonder whether or not there exists a security risk for
intelligent surveillance systems caused by adversarial human wearables, e.g., ad-
versarial T-shirts. However, paralyzing a person detector in the physical world
requires substantially more challenges such as low resolution, pose changes and
occlusions. The success of our adversarial T-shirt against real-time person detec-
tors offers new insights for designing practical physical-world adversarial human
wearables.

Contributions We summarize our contributions as follows:

— We develop a TPS-based transformer to model the temporal deformation
of an adversarial T-shirt caused by pose changes of a moving person. We
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also show the importance of such non-rigid transformation to ensuring the
effectiveness of adversarial T-shirts in the physical world.

— We propose a general optimization framework for design of adversarial T-
shirts in both single-detector and multiple-detector settings.

— We conduct experiments in both digital and physical worlds and show that
the proposed adversarial T-shirt achieves 74% and 57% attack success rates
respectively when attacking YOLOv2. By contrast, the physical adversarial
patch [30] printed on a T-shirt only achieves 18% attack success rate. Some
of our results are highlighted in Fig. 1.

2 Modeling Deformation of A Moving Object by Thin
Plate Spline Mapping

In this section, we begin by reviewing some existing transformations required in
the design of physical adversarial examples. We then elaborate on the Thin Plate
Spline (TPS) mapping we adopt in this work to model the possible deformation
encountered by a moving and non-rigid object.

Let x be an original image (or a video frame), and ¢(-) be the physical trans-
former. The transformed image z under ¢ is given by

z = t(x). (1)

Ezisting transformations. In [1], the parametric transformers include scaling,
translation, rotation, brightness and additive Gaussian noise; see details in [1,
Appendix D]. In [23], the geometry and lighting transformations are studied via
parametric models. Other transformations including perspective transformation,
brightness adjustment, resampling (or image resizing), smoothing and saturation
are considered in [29,9]. All the existing transformations are included in our
library of physical transformations. However, they are not sufficient to model the
cloth deformation caused by pose change of a moving person. For example, the
second and third rows of Fig. 1 show that adversarial T-shirts designed against
only existing physical transformations yield low attack success rates.

Fig. 2: Generation of TPS. (a) and (b): Two frames with checkerboard detection re-
sults. (c): Anchor point matching process between two frames (d): Real-world close
deformation in (b) versus the synthesized TPS transformation (right plot).
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TPS transformation for cloth deformation. A person’s movement can result in
significantly and constantly changing wrinkles (aka deformations) in her clothes.
This makes it challenging to develop an adversarial T-shirt effectively in the real
world. To circumvent this challenge, we employ TPS mapping [4] to model the
cloth deformation caused by human body movement. TPS has been widely used
as the non-rigid transformation model in image alignment and shape match-
ing [19]. It consists of an affine component and a non-affine warping component.
We will show that the non-linear warping part in TPS can provide an effec-
tive means of modeling cloth deformation for learning adversarial patterns of
non-rigid objects.

TPS learns a parametric deformation mapping from an original image x
to a target image z through a set of control points with given positions. Let
p := (¢, 1) denote the 2D location of an image pixel. The deformation from x to
z is then characterized by the displacement of every pixel, namely, how a pixel at
p® on image x changes to the pixel on image z at p(*), where ¢(*) = ¢(*) 4+ Ay
and 1®) = @) 4 Ay, and Ay and Ay denote the pixel displacement on image
x along ¢ direction and 1) direction, respectively.

Given a set of n control points with locations {f)gw) = ((Z)Z(-w),qﬁgw))}?:l on
image x, TPS provides a parametric model of pixel displacement when mapping
p® to p»® [§]

A(p™;8) =ao + a16™ + azp@ + 3" UL — p@|2), 2)

i=1

where U(r) = r2log(r) and 6 = [c;a] are the TPS parameters, and A(p®);0)
represents the displacement along either ¢ or 1 direction.

Moreover, given the locations of control points on the transformed image
z (namely, {f)l(-z) ™ ), TPS resorts to a regression problem to determine the
parameters 0 in (2). The regression objective is to minimize the distance between
{As(P™:0,)}7, and {Ay,; = ¢\F — $}7_, along the ¢ direction, and the
distance between {Ay(p'™;0,)}7, and {Ay,; == 07 — )" along the ¢
direction, respectively. Thus, TPS (2) is applied to coordinate ¢ and 1) separately
(corresponding to parameters 64 and 6,). The regression problem can be solved
by the following linear system of equations [10]

K P A K P A
0,=|"71, 0,=1"Y1, 3
[PT 03><3] ¢ [03x1:| [PT 03><3] v |:03><1:| ®)

where the (i, 7)th element of K € R™*™ is given by K;; = U(||f)§x) - 15;.‘”>||2),
the ith row of P € R™"*3 is given by P; = [1, égz), z/?l{m)], and the ith elements of
A¢ € R™ and A¢ € R”™ are given by AAW- and AAMZ-, respectively.

Non-trivial application of TPS The difficulty of implementing TPS for design
of adversarial T-shirts exists from two aspects: 1) How to determine the set of
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control points? And 2) how to obtain positions {p\”'} and {p!*'} of control
points aligned between a pair of video frames x and z?

To address the first question, we print a checkerboard on a T-shirt and use
the camera calibration algorithm [16,36] to detect points at the intersection be-
tween every two checkerboard grid regions. These successfully detected points are
considered as the control points of one frame. Fig. 2-(a) shows the checkerboard-
printed T-shirt, together with the detected intersection points. Since TPS re-
quires a set of control points aligned between two frames, the second question
on point matching arises. The challenge lies in the fact that the control points
detected at one video frame are different from those at another video frame (e.g.,
due to missing detection). To address this issue, we adopt a 2-stage procedure,
coordinate system alignment followed by point aliment, where the former refers
to conducting a perspective transformation from one frame to the other, and
the latter finds the matched points at two frames through the nearest-neighbor
method. We provide an illustrative example in Fig.2-(c). We refer readers to
Appendix A for more details about our method.

3 Generation of Adversarial T-shirt: An Optimization
Perspective

In this section, we begin by formalizing the problem of adversarial T-shirt and
introducing notations used in our setup. We then propose to design a universal
perturbation used in our adversarial T-shirt to deceive a single object detector.
We lastly propose a min-max (robust) optimization framework to design the
universal adversarial patch against multiple object detectors.

Let D := {x;}}, denote M video frames extracted from one or multiple
given videos, where x; € R? denotes the ith frame. Let § € R? denote the
universal adversarial perturbation applied to D. The adversarial T-shirt is then
characterized by M. ; o §, where M. ,; € {0, l}d is a bounding box encoding the
position of the cloth region to be perturbed at the ith frame, and o denotes
element-wise product. The goal of adversarial T-shirt is to design & such that
the perturbed frames of D are mis-detected by object detectors.

Fooling a single object detector. We generalize the Expectation over Transfor-
mation (EoT) method in [3] for design of adversarial T-shirts. Note that dif-
ferent from the conventional EoT, a transformers’ composition is required for
generating an adversarial T-shirt. For example, a perspective transformation
on the bounding box of the T-shirt is composited with an TPS transformation
applied to the cloth region. Let us begin by considering two video frames, an
anchor image x¢ (e.g., the first frame in the video) and a target image x; for
i € [M]'. Given the bounding boxes of the person (M, € {0,1}%) and the
T-shirt (M. € {0,1}¢) at xo, we apply the perspective transformation from xg
to x; to obtain the bounding boxes M, ; and M, ; at image x;. In the absence

'[M] denotes the integer set {1,2,..., M}.
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Fig. 3: Overview of the pipeline to generate adversarial T-shirts. First, the video frames
containing a person whom wears the T-shirt with printed checkerboard pattern are used
as training data. Second, the universal adversarial perturbation (to be designed) applies
to the cloth region by taking into account different kinds of transformations. Third, the
adversarial perturbation is optimized through problem (6) by minimizing the largest
bounding-box probability belonging to the ‘person’ class. The optimization procedure
is performed as a closed loop through back-propagation.

of physical transformations, the perturbed image x; with respect to (w.r.t.) x;
is given by

X; = (1 — Mp,i) o X; +Mp71‘ o X; 7Mc,i o X; +Mc,i [¢] 5, (4)
—_——————— e N—— T

where the term A denotes the background region outside the bouding box of
the person, the term B is the person-bounded region, the term C' erases the
pixel values within the bounding box of the T-shirt, and the term D is the
newly introduced additive perturbation. In (4), the prior knowledge on M, ;
and M. ; is acquired by person detector and manual annotation, respectively.
Without taking into account physical transformations, Eq. (4) simply reduces to
the conventional formulation of adversarial example (1 — M. ;) ox; + M. ;0 d.

Next, we consider three main types of physical transformations: a) TPS trans-
formation trps € Trps applying to the adversarial perturbation é for modeling
the effect of cloth deformation, b) physical color transformation ¢l Which con-
verts digital colors to those printed and visualized in the physical world, and c)
conventional physical transformation ¢ € 7 applying to the region within the
person’s bounding box, namely, (M, ; ox; — M. ; ox; + M. ;048). Here Trpg de-
notes the set of possible non-rigid transformations, t..1or is given by a regression
model learnt from the color spectrum in the digital space to its printed coun-
terpart, and 7 denotes the set of commonly-used physical transformations, e.g.,
scaling, translation, rotation, brightness, blurring and contrast. A modification
of (4) under different sources of transformations is then given by

X; :tenv (A +1 (B -C + tcolor(MC,i o tTPS (6 + H/V)))) (5)
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for t € T, ttps € Trps, and v ~ AN(0,1). In (5), the terms A, B and C have
been defined in (4), and t.,, denotes a brightness transformation to model the
environmental brightness condition. In (5), pv is an additive Gaussian noise that
allows the variation of pixel values, where p is a given smoothing parameter and
we set it as 0.03 in our experiments such that the noise realization falls into
the range [—0.1,0.1]. The randomized noise injection is also known as Gaussian
smoothing [12], which makes the final objective function smoother and benefits
the gradient computation during optimization.

Different with the prior works, e.g. [28,13], established a non-printability
score (NPS) to measure the distance between the designed perturbation vector
and a library of printable colors, we propose to model the color transformer ¢.o)or
using a quadratic polynomial regression. The detailed color mapping is showed
in Appendix B.

With the aid of (5), the EoT formulation to fool a single object detector is
cast as

mini(smize ﬁ Zf\il Et trps,v [f(X7)] + Ag(d) (6)

where f denotes an attack loss for misdetection, g is the total-variation norm
that enhances perturbations’ smoothness [15], and A > 0 is a regularization
parameter. We further elaborate on our attack loss f in problem (6). In YOLOv?2,
a probability score associated with a bounding box indicates whether or not an
object is present within this box. Thus, we specify the attack loss as the largest
bounding-box probability over all bounding boxes belonging to the ‘person’ class.
For Faster R-CNN, we attack all bounding boxes towards the class ‘background’.
The more detailed derivation on the attack loss is provided in Appendix C. Fig. 3
presents an overview of our approach to generate adversarial T-shirts.

Min-maz optimization for fooling multiple object detectors. Unlike digital space,
the transferability of adversarial attacks largely drops in the physical environ-
ment, thus we consider a physical ensemble attack against multiple object de-
tectors. It was recently shown in [31] that the ensemble attack can be designed
from the perspective of min-max optimization, and yields much higher worst-
case attack success rate than the averaging strategy over multiple models. Given
N object detectors associated with attack loss functions {f;}¥, the physical
ensemble attack is cast as
mi%iergize ma‘i,(iE%ize sz\; w; i (8) — 3[|lw — 1/N||3 + Ag(d), (7)
where w are known as domain weights that adjust the importance of each
object detector during the attack generation, P is a probabilistic simplex given
by P = {w|1Tw = 1,w > 0}, v > 0 is a regularization parameter, and ¢;(§) :=
e Zf\il EieT trpseTres Lf (X5)] following (6). In (7), if v = 0, then the adversarial
perturbation § is designed over the mazimum attack loss (worst-case attack
scenario) since maximizeyep Zf\;l w;$;(8) = ¢« (8), where i* = argmax; ¢;(9)
at a fixed 8. Moreover, if v — oo, then the inner maximization of problem (7)
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implies w — 1/N, namely, an averaging scheme over M attack losses. Thus, the
regularization parameter v in (7) strikes a balance between the max-strategy
and the average-strategy.

4 Experiments

In this section, we demonstrate the effectiveness of our approach (we call advT-
TPS) for design of the adversarial T-shirt by comparing it with 2 attack baseline
methods, a) adversarial patch to fool YOLOv2 proposed in [30] and its printed
version on a T-shirt (we call advPatch?), and b) the variant of our approach
in the absence of TPS transformation, namely, Trps = 0 in (5) (we call advT-
Affine). We examine the convergence behavior of proposed algorithms as well as
its Attack Success Rate® (ASR) in both digital and physical worlds. We clarify
our algorithmic parameter setting in Appendix D.

Prior to detailed illustration, we briefly summarize the attack performance of
our proposed adversarial T-shirt. When attacking YOLOv2, our method achieves
74% ASR in the digital world and 57% ASR in the physical world, where the
latter is computed by averaging successfully attacked video frames over all dif-
ferent scenarios (i.e., indoor, outdoor and unforeseen scenarios) listed in Table 2.
When attacking Faster R-CNN, our method achieves 61% and 47% ASR in the
digital and the physical world, respectively. By contrast, the baseline advPatch
only achieves around 25% ASR in the best case among all digital and physical
scenarios against either YOLOv2 or Faster R-CNN (e.g., 18% against YOLOv2
in the physical case).

4.1 Experimental Setup

Data collection. We collect two datasets for learning and testing our proposed
attack algorithm in digital and physical worlds. The training dataset contains
40 videos (2003 video frames) from 4 different scenes: one outdoor and three
indoor scenes. each video takes 5-10 seconds and was captured by a moving
person wearing a T-shirt with printed checkerboard. The desired adversarial
pattern is then learnt from the training dataset. The test dataset in the digital
space contains 10 videos captured under the same scenes as the training dataset.
This dataset is used to evaluate the attack performance of the learnt adversarial
pattern in the digital world. In the physical world, we customize a T-shirt with
the printed adversarial pattern learnt from our algorithm. Another 24 test videos
(Section 4.3) are then collected at a different time capturing two or three persons
(one of them wearing the adversarial T-shirt) walking a) side by side or b) at
different distances. An additional control experiment in which actors wearing
adversarial T-shirts walk in an exaggerated way is conducted to introduce large

2For fair comparison, we modify the perturbation size same as ours and execute
the code provided in [30] under our training dataset.

3ASR is given by the ratio of successfully attacked testing frames over the total
number of testing frames.
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pose changes in the test data. In addition, we also test our adversarial T-shirt
by unforeseen scenarios, where the test videos involve different locations and
different persons which are never covered in the training dataset. All videos
were taken using an iPhone X and resized to 416 x 416. In Table A2 of the
Appendix F, we summarize the collected dataset under all circumstances.

Object detectors. We use two state-of-the-art object detectors: Faster R-CNN [27]
and YOLOv2 [26] to evaluate our method. These two object detectors are both
pre-trained on COCO dataset [22] which contains 80 classes including ‘person’.
The minimum detection threshold are set as 0.7 for both Faster R-CNN and
YOLOv2 by default. The sensitivity analysis of this threshold is performed in
Fig. A4 Appendix D.

4.2 Adversarial T-shirt in the digital world

Convergence performance of our proposed attack algorithm. In Fig. 4, we show
ASR against the epoch number used by our proposed algorithm to solve problem
(6). Here the success of our attack at one testing frame is required to meet two
conditions, a) misdetection of the person who wears the adversarial T-shirt, and
b) successful detection of the person whom dresses a normal cloth. As we can
see, the proposed attack method covnerges well for attacking both YOLOv2 and
Faster R-CNN. We also note that attacking Faster R-CNN is more difficult than
attacking YOLOv2. Furthermore, if TPS is not applied during training, then
ASR drops around 30% compared to our approach by leveraging TPS.
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Fig.4: ASR v.s. epoch numbers against YOLOv2 (left) and Faster R-CNN (right).

ASR of adversarial T-shirts in various attack settings. We perform a more com-
prehensive evaluation on our methods by digital simulation. Table 1 compares
the ASR of adversarial T-shirts generated w/ or w/o TPS transformation in 4 at-
tack settings: a) single-detector attack referring to adversarial T-shirts designed
and evaluated using the same object detector, b) transfer single-detector attack
referring to adversarial T-shirts designed and evaluated using different object
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detectors, ¢) ensemble attack (average) given by (7) but using the average of
attack losses of individual models, and d) ensemble attack (min-maz) given by
(7). As we can see, it is crucial to incorporate TPS transformation in the design
of adversarial T-shirts: without TPS, the ASR drops from 61% to 34% when
attacking Faster R-CNN and drops from 74% to 48% when attacking YOLOv2
in the single-detector attack setting. We also note that the transferability of
single-detector attack is weak in all settings. And Faster R-CNN is consistently
more robust than YOLOv2, similar to the results in Fig.4. Compared to our
approach and advT-Affine, the baseline method advPatch yields the worst ASR
when attacking a single detector. Furthermore, we evaluate the effectiveness
of the proposed min-max ensemble attack (7). As we can see, when attacking
Faster R-CNN, the min-max ensemble attack significantly outperforms its coun-
terpart using the averaging strategy, leading to 15% improvement in ASR. This
improvement is at the cost of 7% degradation when attacking YOLOv2.

Table 1: The ASR (%) of adversarial T-shirts generated from our approach, advT-
Affine and the baseline advPatch in digital-world against Faster R-CNN and YOLOv2.

method ‘ model ‘ target ‘transfer ‘ ensemble(average) ‘ensemble(min-max)
advPatch[30] 22% | 10% N/A N/A
advT-Affine |Faster R-CNN| 34% | 11% 16% 32%
advT-TPS(ours) 61% | 10% 32% 47%
advPatch[30] 24% | 10% N/A N/A
advT-Affine YOLOv2 48% | 13% 31% 27%
advT-TPS(ours) 74% | 13% 60% 53%

4.3 Adversarial T-shirt in the physical world

We next evaluate our method in the physical world. First, we generate an ad-
versarial pattern by solving problem (6) against YOLOv2 and Faster R-CNN,
following Section 4.2. We then print the adversarial pattern on a white T-shirt,
leading to the adversarial T-shirt. For fair comparison, we also print adversarial
patterns generated by the advPatch [30] and advT-Affine in Section 4.2 on white
T-shirts of the same style. It is worth noting that different from evaluation by
taking static photos of physical adversarial examples, our evaluation is conducted
at a more practical and challenging setting. That is because we record videos
to track a moving person wearing adversarial T-shirts, which could encounter
multiple environment effects such as distance, deformation of the T-shirt, poses
and angles of the moving person.

In Table 2, we compare our method with advPatch and advT-Affine under 3
specified scenarios, including the indoor, outdoor, and unforeseen scenarios?, to-

4Unforeseen scenarios refer to test videos that involve different locations and actors
that never seen in the training dataset.
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gether with the overall case of all scenarios. We observe that our method achieves
64% ASR (against YOLOv2), which is much higher than advT-Affine (39%) and
advPatch (19%) in the indoor scenario. Compared to the indoor scenario, evad-
ing person detectors in the outdoor scenario becomes more challenging. The
ASR of our approach reduces to 47% but outperforms advT-Affine (36%) and
advPatch (17%). This is not surprising since the outdoor scenario suffers more
environmental variations such as lighting change. Even considering the unfore-
seen scenario, we find that our adversarial T-shirt is robust to the change of
person and location, leading to 48% ASR against Faster R-CNN and 59% ASR
against YOLOv2. Compared to the digital results, the ASR of our adversarial T-
shirt drops around 10% in all tested physical-world scenarios; see specific video
frames in Fig. A5 in Appendix.

Table 2: The ASR (%) of adversarial T-shirts generated from our approach, advT-
Affine and advPatch under different physical-world scenes.

method ‘ model ‘indoor‘outdoor‘new scenes‘average ASR
advPatch[30] 15% | 16% | 12% 14%
advT-Affine |Faster R-CNN| 27% | 25% 25% 26%
advT-TPS(ours) 50% | 42% 48% 47%
advPatch[30] 19% | 17% 17% 18%
advT-Affine YOLOv2 39% 36% 34% 37%
advT-TPS(ours) 64% | 47% 59% 57%

4.4 Ablation Study

In this section, we conduct more experiments for better understanding the ro-
bustness of our adversarial T-shirt against various conditions including angles
and distances to camera, camera view, person’s pose, and complex scenes that
include crowd and occlusion. Since the baseline method (advPatch) performs
poorly in most of these scenarios, we focus on evaluating our method (advT-
TPS) against advT-Affine using YOLOv2. We refer readers to Appendix E for
details on the setup of our ablation study.

Angles and distances to camera. In Fig.5, we present ASRs of advT-TPS and
advT-Affine when the actor whom wears the adversarial T-shit at different angles
and distances to the camera. As we can see, advT-TPS works well within the
angle 20° and the distance 4m. And advT-TPS consistently outperforms advT-
Affine. We also note that ASR drops significantly at the angle 30° since it induces
occlusion of the adversarial pattern. Further, if the distance is greater than 7m,
the pattern cannot clearly be seen from the camera.
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Fig. 5: Average ASR v.s. different angles (left) and distance (right).

Human Pose. In Table3 (left), we evaluate the effect of pose change on advT-
TPS, where videos are taken for an actor with some distinct postures including
crouching, siting and running in place; see Fig. 6 for specific examples. To alle-
viate other latent effects, the camera was made to look straight at the person at
a fixed distance of about 1 ~ 2m away from the person. As we can see, advT-
TPS consistently outperforms advT-Affine. In additional, we study the effect of
occlusion on advT-Affine and advT-TPS in Appendix F.

Complex scenes. In Table3 (right), we test our adversarial T-shirt in several
complex scenes with cluttered backgrounds, including a) an office with multiple
objects and people moving around; b) a parking lot with vehicles and pedestri-
ans; and ¢) a crossroad with busy traffic and crowd. We observe that compared
to advT-Affine, advT-TPS is reasonably effective in complex scenes without
suffering a significant loss of ASR. Compared to the other factors such as cam-
era angle and occlusion, cluttered background and even crowd are probably the
least of a concern for our approach. This is explainable, as our approach works
on object proposals directly to suppress the classifier.

Table 3: The ASR (%) of adversarial T-shirts generated from our approach, advT-
Affine and advPatch under different physical-world scenarios.

Pose crouchin Scenario office
Method uchung Method

advT-Affine 27% | 26% advT-Affine | 69%
advT-TPS 53% |32% advT-TPS 73%

siting|running parking lot |crossroad

52%
63%

53% 51%
65% 54%

5 Conclusion

In this paper, we propose Adversarial T-shirt, the first successful adversarial
wearable to evade detection of moving persons. Since T-shirt is a non-rigid ob-



14 K. Xu et al.

crouching sitting

. A

running

advT-Affine

advT-TPS

Fig. 6: Some video frames of person who wears adversarial T-shirt generated by advT-
Affine (first row) and advT-TPS (second row) with different poses.

Fig. 7: The person who wear our adversarial T-shirt generate by TPS in three complex
scenes: office, parking lot and crossroad.

ject, its deformation induced by a person’s pose change is taken into account
when generating adversarial perturbations. We also propose a min-max ensem-
ble attack algorithm to fool multiple object detectors simultaneously. We show
that our attack against YOLOv2 can achieve 74% and 57% attack success rate in
the digital and physical world, respectively. By contrast, the advPatch method
can only achieve 24% and 18% ASR. Based on our studies, we hope to provide
some implications on how the adversarial perturbations can be implemented in
physical worlds.
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