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Abstract. While existing works have explored a variety of techniques
to push the envelop of weakly-supervised semantic segmentation, there
is still a significant gap compared to the supervised methods. In real-
world application, besides massive amount of weakly-supervised data
there are usually a few available pixel-level annotations, based on which
semi-supervised track becomes a promising way for semantic segmenta-
tion. Current methods simply bundle these two different sets of anno-
tations together to train a segmentation network. However, we discover
that such treatment is problematic and achieves even worse results than
just using strong labels, which indicates the misuse of the weak ones.
To fully explore the potential of the weak labels, we propose to impose
separate treatments of strong and weak annotations via a strong-weak
dual-branch network, which discriminates the massive inaccurate weak
supervisions from those strong ones. We design a shared network compo-
nent to exploit the joint discrimination of strong and weak annotations;
meanwhile, the proposed dual branches separately handle full and weak
supervised learning and effectively eliminate their mutual interference.
This simple architecture requires only slight additional computational
costs during training yet brings significant improvements over the pre-
vious methods. Experiments on two standard benchmark datasets show
the effectiveness of the proposed method.
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1 Introduction
Convolutional Neural Networks (CNNs) [17, 30, 11] have proven soaring successes
on the semantic segmentation problem. Despite their superior performance, these
CNN-based methods are data-hungry and rely on huge amount of pixel-level
annotations, whose collections are labor-intensive and time-consuming. Hence
researchers have turned to weakly-supervised learning that could exploit weaker
forms of annotation, thus reducing the labeling costs. Although numerous works
[15, 36, 13, 19] have been done on learning segmentation models from weak su-
pervisions, especially per-image labels, they still trail the accuracy of their fully-
supervised counterparts and thus are not ready for real-world applications.
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Fig. 1. (a) Sample test image; (b) Result using both strong and weak annotations in a
single-branch network; (c) Result using only the strong annotations; (d) Result using
our strong-weak dual-branch network; (e) Single-branch network adopted by previous
methods [26, 35, 19]; Images (a)(b)(c)(d) in the first row visually demonstrate that using
extra weak annotations brings no improvement over only using the strong annotations
when a single-branch network is employed. See Fig.7 for more visual comparisons.

In order to achieve good accuracy while still keeping the labeling budget in
control, we focus on tackling a more practical problem under semi-supervised
setting, where a combination of strongly-labeled (pixel-level masks) and weakly-
labeled (image-level labels) annotations are utilized. However, previous meth-
ods (WSSL [26], MDC [35] and FickleNet[19]) simply scratch the surface of
semi-supervised segmentation by exploring better weakly-supervised strategies
to extract more accurate initial pixel-level supervisions, which are then mixed
together with strong annotations to learn a segmentation network, as in Fig.1(e).
However, we discover that the simple combination of strong and weak annota-
tions with equal treatment may weaken the final performance.
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Fig. 2. Segmentation performance of the conventional single-branch network on val
set using different training data. Here, the DSRG [13] is used to estimate the weak
supervisions. The single-branch network supervised by the 1.4k strong data achieved
much better result than that by the extra 9k weak annotations.
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To further analyze the roles of strong and weak annotations in conventional
single-branch network, we compare the segmentation performance on PASCAl
VOC val set using different training data in Fig.2. When trained on small amount
of strong data (1.4k in our experiments), performance of the segmentation net-
work is not as low as people would expect. On the contrary, our implementation
achieves a peak mIoU of 68.9% using only 1.4k strong annotations and it is al-
ready much better than other methods WSSL [26](64.6%), MDC [35](65.7%),
FickleNet [19](65.8%) exploiting extra 9k weak annotations. Moreover, when
simply bundling the strong and weak annotations to train a single segmentation
network, the performance is not better than that using only the strong ones
(quantatively shown in Fig.2 and visually shown in Fig.1(a)(b)(c)).

Based on the above observations, it can be concluded that such treatment
underuses the weakly-supervised data and thus introduces limited improvement,
or even worse, downgrading the performance achieved by using only the strong
annotations. We further point out two key issues that are previously unnoticed
concerning the semi-supervised setting:
1. sample imbalance: there are usually much more weak data than the strong

ones, which could easily result in overfitting to the weak supervisions.
2. supervision inconsistency: the weak annotations Yw are of relatively poor

quality compared to the strong ones Ys and thus lead to poor performance.
To better jointly use the strong and weak annotations, we propose a novel

method of strong-weak dual-branch network, which is a single unified architec-
ture with parallel strong and weak branches to handle one type of annotation
data (Fig.3). To fully exploit the joint discrimination of strong and weak an-
notations, the parallel branches share a common convolution backbone in ex-
change for supervision information of different level without competing with
each other. The shared backbone enables the free flow of the gradient and the
parallel branches can discriminate between the accurate and noisy annotations.
Moreover, the dual branches are explicitly learned from strong and weak anno-
tations separately, which can effectively avoid the affect of sample imbalance
and supervision inconsistency. This simple architecture boosts the segmentation
performance by a large margin while introducing negligible overheads. State-of-
art performance has been achieved by the proposed strong-weak network un-
der semi-supervised setting on both PASCAL VOC and COCO segmentation
benchmarks. Remarkably, it even boosts the fully-supervised models when both
branches are trained with strong annotations on PASCAL VOC.

The main contributions of our paper are three-folds:
1. We for the first time show that segmentation network trained under mixed

strong and weak annotations achieves even worse results than using only the
strong ones.

2. We reveal that sample imbalance and supervision inconsistency are two key
obstacles in improving the performance of semi-supervised semantic segmen-
tation.

3. We propose a simple unified network architecture to address the inconsis-
tency problem of annotation data in the semi-supervised setting.
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2 Related works

In this section, we briefly review weakly-supervised and semi-supervised visual
learning, which are most related to our work. Although the idea of multiple
branches to capture various context has already been explored in many computer
vision tasks, we here highlight the primary difference between previous methods
and this work.

Weakly-supervised semantic segmentation To relieve the labeling bur-
den on manual annotation, many algorithms have been proposed to tackle se-
mantic segmentation under weaker supervisions, including points [2], scribbles
[21, 32], and bounding boxes [7, 31]. Among them, per-image class labels are most
frequently explored to perform pixel-labeling task since their collections require
the least efforts, only twenty seconds per image [2]. Class Activation Map (CAM)
[39], is a common method to extract from classification network a sparse set of
object seeds, which are known to concentrate on small discriminative regions. To
mine more foreground pixels, a series of methods have been proposed to apply
the erasing strategy, either on the original image [36] or high-level class activa-
tions [12]. Erasing strategy is a form of strong attention [37] which suppresses
selective responsive regions and forces the network to find extra evidence to
support the corresponding task. Some other works [25, 4, 34] also proposed to
incorporate saliency prior to ease the localization of foreground objects.

Recently, Huang et al.[13] proposed Deep Seeded Region Growing (DSRG) to
dynamically expand the discriminative regions along with the network training,
thus mining more integral objects for segmentation networks. And Lee et al.[19]
further improved the segmentation accuracy of DSRG by replacing the original
CAM with stochastic feature selection for seed generation.

Despite the progress on weakly-supervised methods, there is still a large per-
formance gap (over 10%) from their full-supervised versions [5, 6], which indicates
that they are unsuitable for the real-world applications.

Semi-supervised learning In general, semi-supervised learning [40] ad-
dresses the classification problem by incorporating large amount of extra unla-
beled data besides the labeled samples to construct better classifiers. Besides ear-
lier methods, like semi-supervised Support Vector Machine [3], many techniques
have been proposed to integrate into deep-learning models, such as Temporal
Ensembling [18], Virtual Adversarial Training [24] and Mean Teacher [33].

In this paper, we focus on such semi-supervised learning setting on semantic
segmentation problem, where the training data are composed of a small set of
finely-labeled data and large amount of coarse annotations, usually estimated
from a weakly-supervised methods. In this configuration, current models [27, 20,
35, 19] usually resort to the sophistication of weakly-supervised models to provide
more accurate proxy supervisions and then simply bundle both sets of data
altogether to learn a segmentation network. They pay no special attention to
coordinating the usage of weak annotations with the strong ones. Such treatment,
ignoring the annotation inconsistency, overwhelms the handful yet vital minority
and consequently produces even worse results compared to using only the fine
data.
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Multi-branch network Networks with multiple parallel branches have been
around for a long time and proven their effectiveness in a variety of vision-
related tasks. Object detection models [9, 28, 22] usually ended with two parallel
branches, one for the classification and the other for localization. In addition,
segmentation networks, such as Atrous Spatial Pyramid Pooling (ASPP) [5] and
Pyramid Scene Parsing (PSP) [38] network, explored multiple parallel branches
to capture richer context to localize objects of different sizes. Unlike the above
works, we instead utilize parallel branches to handle different types of annotation
data.

3 Methods

As aforementioned, the proxy supervisions estimated by weakly-supervised meth-
ods are of relatively poor quality in contrast to manual annotations. For finely-
labeled and weakly-labeled semantic segmentation task, a natural solution for
different supervision is to separately train two different networks, whose out-
puts are then aggregated by taking the average (or maximum). Although this
simple ensemble strategy is likely to boost the performance, it is undesirable to
maintain two copies of network weights during both training and inference. Be-
sides, separate training prohibits the exchange for supervision information. To
enable information sharing and eliminate the sample imbalance and supervision
inconsistency, we propose a dual-branch architecture to handle different types
of supervision, eliminating the necessity of keeping two network copies. Fig.3
presents an overview of the proposed architecture.

Notation Let the training images X = (xi)i∈[n] be divided into two subsets:
the imagesXs = {(xs

1,m
s
1), ..., (x

s
t ,m

s
t )} with strong annotations provided by the

dataset and images Xw = {(xw
1 ,m

w
1 ), ..., (x

w
k ,m

w
k ))}, the supervisions of which

are estimated from a proxy ground-truth generator G:

mw
i = G(xw

i ) (1)

The proxy generator G may need some extra information, such as class labels,
to support its decision, but we can leave it for general discussion.

The rest of this section is organized as follows. Section 3.1 discusses in depth
why training a single-branch network is problematic. Section 3.2 elaborates on
the technical details of the proposed strong-weak dual-branch network.

3.1 Oversampling Doesn’t Help with Single-branch Network

Previous works [27, 20, 35, 19] focus on developing algorithm to estimate more
accurate initial supervision, but they pay no special attention on how to co-
ordinate the strong and weak annotations. Notably, there are quite a few es-
timated masks of relatively poor quality (as shown Fig.4) when image scenes
become more complex. Equal treatment biases the gradient signal towards the
incorrect weak annotations since they are in majority during the computation
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Fig. 3. Overview of the proposed dual-branch network. The proposed architecture con-
sists of three individual parts: backbone, neck module and two parallel branches that
share an identical structure but differ in the training annotations. The hyper-parameter
n controls the number (i.e.,3-n) of individual convolutional layers existing in the par-
allel branches.

(a) (b) (c) (d) (e) (f)

Fig. 4. Two inaccurate weak annotations estimated by DSRG [13]. (a)(d): sample train-
ing images; (b)(e): masks estimated by DSRG; (c)(f): ground truth. In (b), the train
mask expands to the background due to color similarity. In (e), large portions of the
human body are misclassified.

of the training loss. Consequently, it offsets the correct concept learned from
the strong annotations and therefore leads to performance degradation. In addi-
tion, we also conduct experiments via oversampling the strong annotations. The
results shows that oversampling does improve the final segmentation accuracy
steadily (62.8%→65.9%) as more strong annotations are duplicated, but it still
fails to outperform the result (68.9%) using only the strong annotations. In con-
clusion, oversampling does not help with the single-branch network either. See
the supplementary material for detailed results.

3.2 Strong-weak dual-branch network

Network architecture The strong-weak dual-branch network consists of three
individual parts: convolutional backbone, neck module and two parallel branches
with identical structure. Since our main experiments centre around the VGG16
network [30], we here give a detailed discussion of the architecture based on
VGG16.

Backbone The backbone is simply the components after removing the fully-
connected layers. As in [5], the last two pooling layers are dropped and the
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dilation rates of the subsequent convolution layers are raised accordingly to
obtain features of output stride 8.

Neck module The neck module is a series of convolution layers added for
better adaptation of the specific task. It could be shared between or added
separately into subsequent parallel branches. Let n be the number of convolution
layers in the neck module shared by different supervision. Although the design of
common components is simple, the backbone and the first n-layer neck module
can effectively learn the joint discrimination from the full supervision and weak
supervision. The total number of convolution layers in the neck and subsequent
branch is fixed, but the hyper-parameter n ∈ [0, 3] offers greater flexibility to
control the information sharing. When n is 0, each downstream branch has its
own neck module. We denote the network and its output up until the neck
module as Z = h(X) ∈ RH×W×K .

Strong-weak branches These two parallel branches have the same struc-
ture while differ in the training annotations they receive. The strong branch is
supervised by the fine annotation Xs, while the weak branch is trained by the
coarse supervisions Xw. The way of separately processing different supervision
is quite new because existing semi-supervised semantic segmentation methods
adopt a single-branch network and current multi-branch network has never dealt
with different types of annotation. The branches f(Z; θs) and f(Z; θw) are gov-
erned by independent sets of parameters. For brevity, we will omit the parame-
ters in our notation and simply write fs(Z) and fw(Z). The normal cross entropy
loss has the following form:

Lce(s,m) = − 1

|m|
∑
c

∑
u∈mc

log su,c (2)

where tensor s is the network outputs, m is the annotation mask and mc denotes
the set of pixels assigned to category c. Then the data loss of our method is:

ss = fs(h(x
s))

sw = fw(h(x
w))

Ldata = Lce (s
s,ms) + Lce (s

w,mw)

(3)

We emphasize that all the loss terms are equally weighted so no hyper-parameter
is involved.

3.3 How does the dual-branch network help?

During training, we need to construct a training batch with the same amount
of strong and weak images. As in semi-supervised semantic segmentation, there
are usually much more weak annotations than the strong ones. Consequently,
the strong data have been looped through several times before the weak data
are exhausted for the first pass, which essentially performs oversampling of the
strong data. In this way, the strong data make a difference during training and
thus mitigate the effect of sample imbalance.
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Our dual-branch network imposes separate treatments on the strong and
weak annotations and therefore prevents direct interference of different supervi-
sion information, so the supervision inconsistency can be well eliminated. Mean-
while, the coarse ones leave no direct influence on the strong branch, which
determines the final prediction. Nevertheless, the extra weak annotations pro-
vide approximate location of objects and training them on a separate branch
introduces regularization into the underlying backbone to some extent, hence
improving the network’s generalization capability.

3.4 Implementation detail

Training Here we introduce an efficient way to train the strong-weak dual-
branch network. A presentation of the processing details can be found in Fig.5.
During training, a batch of 2n imagesX = [(xs

1,m
s
1), ..., (x

w
1 ,m

w
1 )...] are sampled,

with the first half from Xs and the second from Xw. Since the number of weak
annotations is usually much bigger than that of strong ones, we are essentially
performing an oversampling of the strong annotations Xs. For the image batch
X ∈ R2n×h×w, we make no distinction of the images and simply obtain the
network logits in each branch, namely Ss, Sw ∈ R2n×h×w, but half of them
(in color gray Fig.5) have no associated annotations and are thus discarded.
The remaining halves are concatenated to yield the final network output S =
[Ss[1 : n], Sw[n + 1 : 2n]], which are then used to calculate the cross entropy
loss irrespective of the annotations employed. We find that this implementation
eases the training and inference processes.

𝑥1
𝑠, … 𝑥1

𝑤 , … 𝒉

𝑠1
𝑠, …

𝑠1
𝑤 , …

𝑠1
𝑠, … 𝑠1

𝑤 , …

𝑚1
𝑠, … 𝑚1

𝑤 , …

ℒ

𝒇𝒔

𝒇𝒘

Fig. 5. The images are first forwarded through the network and half of the outputs (in
color gray) are dropped before they are concatenated to compute the final loss (only
the batch dimension is shown).

Inference When the network is trained, the weak branch is no longer needed
since the information from weak annotations has been embedded into the con-
volution backbone and the shared neck module. So at inference stage, only the
strong branch is utilized to generate final predictions.
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4 Experiments

4.1 Experimental setup

Dataset and evaluation metric The proposed method is evaluated on two seg-
mentation benchmarks, PASCAL VOC [8] and COCO dataset [23]. PASCAL
VOC: There are 20 foreground classes plus 1 background category in PASCAL
VOC dataset. It contains three subsets for semantic segmentation task, train set
(1464 images), val set (1449 images) and test set (1456 images). As a common
practice, we also include the additional annotations from [10] and end up with
a trainaug set of 10582 images. For semi-supervised learning, we use the train
set as the strong annotations and the remaining 9k images as weak annotations.
We report segmentation results on both val and test set. COCO: We use the
train-val split in the 2016 competition, where 118k images are used for training
and the remaining 5k for testing. We report the segmentation performance on
the 5k testing images.

The standard interaction-over-union (IoU) averaged across all categories is
adopted as evaluation metric for all the experiments.

Proxy supervision generator G To verify the effectiveness of the proposed
architecture, we choose the recently popular weakly-supervised method, Deep
Seeded Region Growing (DSRG) [13], as the proxy supervision generator G. We
use the DSRG model before the retraining stage to generate proxy ground truth
for our experiments. Further details could be found in the original paper.

Training and testing settings We use the parameters pretrained on the
1000-way ImageNet classification task to initialize our backbones (either VGG16
or ResNet101). We use Adam optimizer [14] with an initial learning rate of 1e-4
for the newly-added branches and 5e-6 for the backbone. The learning rate is
decayed by a factor of 10 after 12 epochs. The network is trained under a batch
size of 16 and a weight decay of 1e-4 for 20 epochs. We use random scaling and
horizontal flipping as data augmentation and the image batches are cropped into
a fixed dimension of 328× 328.

In test phase, we use the strong branch to generate final segmentation for the
testing images. Since fully-connected CRF [16] brings negligible improvements
when the network predictions are accurate enough, we do not apply CRF as post
refinement in our experiments.

4.2 Ablation study

To provide more insight into the proposed architecture, we conduct a series of
experiments on PASCAL VOC using different experimental settings concerning
different network architecture and training data. We use VGG16 as backbone
unless stated otherwise.

Using only 1.4k strong data To obtain decent results with only 1.4k
strong annotations, it is important to perform the same number of iterations
(instead of epochs) to let the network converge. When trained enough amount
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of iterations, we could achieve a mIoU of 68.9%, which is much better than the
62.5% reported in FickleNet [19].

Two separate networks As aforementioned, the single-branch network
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Fig. 6. The segmentation mIoU (%) with respect to different λ’s.

trained under the mixture of strong and weak annotations achieves no better
performance than using only the strong ones. Therefore, it is natural to train
two different networks on two sets of data since there exists an obvious anno-
tation inconsistency. Specifically, we train two networks, the first supervised by
the strong annotations and the second by extra weak annotations. Then their
outputs are aggregated through the following equation:

F (x) = λ ∗ Fw(x) + (1− λ) ∗ Fs(x) (4)

where Fw and Fs denote the weak and strong network respectively. Fig.6 shows
the segmentation accuracy under different λ values. Simply training on the strong
annotations yields an accuracy of 68.9%, 6.1% higher than the weak one. The
result could be improved up to 70.8% with λ equal to 0.4, a 1.9% boost over the
strong network. However, separate networks double the computation overhead
during both training and inference.

Single branch vs. dual branch Our VGG16-based implementation of the
DSRG method achieves mIoU of 57.0% and 60.1% after retraining, presented
in Table 1. With a combination of 1.4k strong annotations and 9k weak an-
notations estimated from DSRG, the single-branch network only improves the
segmentation accuracy by 2.7%. However, it already achieves much higher ac-
curacy of 68.9% under only 1.4k strong annotations, which means the extra 9k
weak annotations bring no benefits but actually downgrade the performance dra-
matically, nearly 6% drop. This phenomenon verifies our hypothesis that equal
treatment of strong and weak annotations are problematic as large amount in-
accurate weak annotations mislead the network training.

We then train the proposed architecture with the strong branch supervised
by the 1.4k strong annotations and the weak one by extra 9k weak annotations.
This time the accuracy successfully goes up to 72.2%, a 3.3% improvement over
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Table 1. Ablation experiments concerning network architectures and training data.
Rows marked with ”*” are results from the proposed dual-branch network and others
are from the single-branch network.

Backbone Strong branch Weak branch mIoU
VGG16 10k weak - 57.0
VGG16 10k weak (retrain) - 60.1
VGG16 1.4k strong + 9k weak - 62.8
VGG16 1.4k strong - 68.9
VGG16 10k strong - 71.4
VGG16*(w/o oversampling) 1.4k strong 1.4k strong + 9k weak 66.4
VGG16*(w oversampling) 1.4k strong 1.4k strong + 9k weak 72.2
VGG16*(w oversampling) 1.4k strong 10k strong 73.9

the 1.4k single-branch model. Remarkably, this result is even better than training
a single-branch model with 10k strong annotations, which implies that there is
an inconsistency between the official 1.4k annotations and the additional 9k
annotations provided by [10]. Based on this observation, we conduct another
experiment on our dual-branch network with 1.4k strong annotations for the
strong branch and 10k strong annotations for the weak branch. As expected, the
accuracy is further increased by 1.7%. To see the impact of sample imbalance,
we also conduct a experiment with our network without oversampling. And it
achieves accuracy of 66.4%, up from mixed training result 62.8% but still worse
than that of using only strong annotations. So we conclude that it’s more effective
to combine dual-branch model with oversampling training strategy.

4.3 Comparison with the state-of-arts

Table 2 compares the proposed method with current state-of-art weakly-and-
semi supervised methods: SEC [15], DSRG [13], FickleNet [19], WSSL [26], Box-
Sup [7], etc. For fair comparison, the result reported in the original paper is
listed along with the backbone adopted.

The weakly-supervised methods are provided in the upper part of Table 2 as
reference since many of them used relatively weak supervision, with FickleNet
(61.9%) achieving the best performance among other baselines using only class
labels. However, the elimination of the demand for pixel-level annotations results
in significant performance drop, around 11% compared to their fully-supervised
counterparts. There are some recent works exploring other weak supervisions,
such as Normalized cut loss [32] and Box-driven method [31]. They improved the
segmentation performance significantly with slightly increasing labeling efforts.
Our method actually serves as an alternative direction by using a combination
of strong and weak annotations to achieve excellent results.

The lower part of Table 2 presents results of the semi-supervised methods.
DSRG and FickleNet used the same region growing mechanism to expand the
original object seeds. As shown in the table, all previous methods achieved
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Table 2. Segmentation results of different methods on PASCAL VOC 2012 val and
test set. * - Result copied from the FickleNet paper

Methods Backbone Val Test
Supervision: 10k scribbles
Scribblesup [21] VGG16 63.1 -
Normalized cut [32] ResNet101 74.5 -
Supervision: 10k boxes
WSSL [26] VGG16 60.6 62.2
BoxSup [7] VGG16 62.0 64.2
Supervision: 10k class
SEC [15] VGG16 50.7 51.7
AF-SS [36] VGG16 52.6 52.7
Multi-Cues [29] VGG16 52.8 53.7
DCSP [4] VGG16 58.6 59.2
DSRG [13] VGG16 59.0 60.4
AffinityNet [1] VGG16 58.4 60.5
MDC [35] VGG16 60.4 60.8
FickleNet [19] VGG16 61.2 61.9
Supervision: 1.4k pixel + 9k class
DSRG [13]* VGG16 64.3 -
FickleNet [19] VGG16 65.8 -
WSSL [26] VGG16 64.6 66.2
MDC [35] VGG16 65.7 67.6
Ours VGG16 72.2 72.3
Ours ResNet101 76.6 77.1

roughly the same and poor performance when learned under 1.4k pixel annota-
tions and 9k class annotations, with the best accuracy 67.6% by MDC approach.

Our method significantly outperforms all the weakly-and-semi supervised
method by a large margin, with state-of-art 77.1% mIoU on the test set when
ResNet101 backbone is adopted.

4.4 Visualization result

Fig.7 shows segmentation results of sample images from PASCAL VOC val set.
As can be seen in the third column, weakly-supervised method (DSRG) generates
segmentation maps of relatively poor quality and no improvement is visually
significant if combined with 1.4k strong annotations. Our approach manages
to remove some of the false positives in the foreground categories, as in the
second and third examples. The last line demonstrates a failure case when neither
approach is effective to generate correct prediction.

4.5 Results on COCO

To verify the generality of the proposed architecture, we conduct further ex-
periments on the Microsoft COCO dataset, which contains a lot more images
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Table 3. Per-class IoU on COCO val set. (a) Single-branch network using 20k strong
annotations; (b) Single-branch network using 98k extra weak annotations; (c) Dual-
branch network using 98k extra weak annotations.

Cat. Class (a) (b) (c)
BG background 86.2 78.4 86.7
P person 74.4 60.7 75.2

Ve
hi
cl
e

bicycle 54.2 48.4 55.3
car 47.4 38.2 49.5
motorcycle 70.4 63.7 70.6
airplane 63.3 30.5 66.0
bus 69.7 64.1 71.5
train 67.2 46.7 69.8
truck 43.3 36.4 45.2
boat 42.5 26.1 41.9

O
ut
do

or

traffic light 42.9 27.6 47.1
fire hydrant 74.2 47.3 75.5
stop sign 82.3 53.6 87.3
parking meter 48.4 42.7 53.8
bench 32.6 25.3 34.9

A
ni
m
al

bird 56.6 33.9 62.0
cat 76.7 65.1 77.5
dog 68.7 60.6 69.0
horse 64.4 50.0 66.2
sheep 70.5 55.5 73.3
cow 61.7 49.7 65.3
elephant 79.9 67.6 81.2
bear 79.7 60.4 81.7
zebra 81.7 61.2 82.9
giraffe 74.3 47.0 75.0

A
cc
es
so
ry

backpack 11.4 2.5 12.6
umbrella 57.9 44.3 59.1
handbag 6.8 0.0 8.2
tie 34.5 20.6 35.4
suitcase 53.1 48.4 57.6

Sp
or
t

frisbee 48.2 39.4 50.8
skis 14.6 5.3 11.8
snowboard 37.8 15.6 39.1
sports ball 27.0 13.3 29.7
kite 32.1 23.7 36.2
baseball bat 10.4 0.0 11.1
baseball glove 28.4 0.0 37.6
skateboard 32.0 20.4 31.6
surfboard 43.7 32.2 44.5
tennis racket 55.7 47.3 58.1
bottle 39.7 33.0 39.4

Cat. Class (a) (b) (c)

K
itc

he
nw

ar
e wine glass 42.5 36.0 45.2

cup 38.8 30.9 38.9
fork 16.6 0.0 17.2
knife 3.4 0.1 6.9
spoon 5.9 0.0 5.4
bowl 33.0 22.4 34.7

Fo
od

banana 62.4 53.1 63.3
apple 36.6 29.8 37.3
sandwich 44.3 35.1 46.0
orange 55.3 50.3 57.9
broccoli 49.9 37.3 53.3
carrot 34.4 31.8 37.0
hot dog 38.8 36.0 39.8
pizza 74.8 68.6 76.6
donut 49.4 48.6 53.9
cake 45.6 40.6 45.3

Fu
rn
itu

re
chair 24.4 12.3 25.2
couch 41.0 20.5 42.6
potted plant 23.4 15.5 24.5
bed 46.9 38.2 50.4
dining table 34.8 9.2 35.0
toilet 61.5 45.3 62.7

El
ec
tr
on

ic
s

tv 49.9 22.5 52.5
laptop 56.2 40.6 57.4
mouse 38.5 0.7 35.5
remote 37.8 25.7 30.9
keyboard 44.3 35.9 47.1
cell phone 44.1 36.8 42.3

A
pp

lia
nc

e microwave 47.2 32.8 44.6
oven 42.9 29.7 47.9
toaster 0.0 0.0 0.0
sink 40.0 30.5 42.4
refrigerator 55.5 34.8 57.3

In
do

or

book 29.9 16.4 29.0
clock 57.5 16.4 59.5
vase 45.8 30.1 43.9
scissors 57.1 34.1 56.4
teddy bear 64.4 57.9 66.1
hair drier 0.0 0.0 0.0
toothbrush 13.2 8.5 17.6
mean IoU 46.1 33.4 47.6

(118k) and semantic categories (81 classes), thus posing a challenge even for
fully-supervised segmentation approaches. We randomly select 20k images as
our strong set and the remaining 98k images as the weak set, whose annota-
tions are estimated from the DSRG method. This splitting ratio is roughly the
same compared to PASCAL VOC experiments. We report per-class IoU over
all 81 semantic categories on the 5k validation images. As shown in Table 3,
with 20k strong annotations, the single branch network achieves an accuracy of
46.1%. When we bring in extra 98k weak annotations estimated by DSRG, the
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(a) Image (b) GT (c) DSRG (e) 1.4k s + 9k w (f) 1.4k s (g) Ours

Fig. 7. Demonstration of sample images. (a) Original images; (b) Ground truth; (c)
DSRG; (e) Mixing 1.4k s + 9k w for training; (f) 1.4k strong annotations; (g) Ours
under 1.4k s + 9k w.

performance downgrades by 12.7%, down to only 33.4%, which again verifies
our hypothesis. Using our dual-branch network, the performance successfully
goes up to 47.6%, which means our approach manages to make use of the weak
annotations.

5 Conclusion

We have addressed the problem of semi-supervised semantic segmentation where
a combination of finely-labeled masks and coarsely-estimated data are available
for training. Weak annotations are cheap to obtain yet not enough to train
a segmentation model of high quality. We propose a strong-weak dual-branch
network that has fully utilized the limited strong annotations without being
overwhelmed by the bulk of weak ones. It manages to eliminate the learning
obstacles of sample imbalance and supervision inconsistency. Our method sig-
nificantly outperforms the weakly-supervised and almost reaches the accuracy
of fully-supervised models. We think semi-supervised approaches could serve
as an alternative to weakly-supervised methods by retaining the segmentation
accuracy while still keeping labeling budget in control.
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