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In this supplementary material we provide additional details about:

1. Details of the audio simulation—including grid construction, mesh upgrades,
acoustic simulation technique, and connectivity graph (as referenced in Sec. 3
of the main paper).

2. Additional illustrations of pressure fields from the audio simulation and the
sampled grid.

3. Reinforcement learning training utilized in the network description (as ref-
erenced in Sec. 5 of the main paper.)

4. Audio intensity baselines, as referenced in Sec. 6 of the main paper.
5. Heard/unheard sounds, as referenced in Sec. 6, Tab. 2, and Tab. 3.
6. Additional navigation trajectory examples, similar to Fig. 4 in the main

paper.

8 Audio Simulation Details

Grid construction. We use an automatic point placement algorithm to deter-
mine the locations where the simulated sound sources and listeners are placed
in a two-step procedure: adding points on a regular grid and then pruning. For
adding points on a regular grid, first, we compute an axis-aligned 3D bounding
box of a scene. Within this box we sample points from a regular 2D square grid
with resolution 0.5m (Replica) or 1m (Matterport) that slices the bounding box
in the horizontal plane at a distance of 1.5m from the floor (representing the
height of a humanoid robot).

The second step prunes grid points in inaccessible locations. To prune, we
compute how closed the region surrounding a particular point is. This entails
tracing R uniformly-distributed random rays in all directions from the point,
then letting them diffusely reflect through the scene up to B bounces using a
path tracing algorithm. Simultaneously, we compute the total number of “hits”
H: the number of rays that intersect the scene. After all rays are traced, the
closed-ness C ∈ [0, 1] of a point is given by C = H

R·B . A point is declared outside
the scene if C < Cmin. the value of C for a particular point is below a threshold
Cmin. Finally, we remove points that are within a certain distance dmin from
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the nearest geometry, as identified using the shortest length of the initial rays
traced from the point in the previous pruning step.

For all scenes we use R = 1000, B = 10 and dmin = 5cm. This value of dmin
was chosen to avoid placement of points inside walls or in small inaccessible
areas. We find Cmin = 0.5 works for most scenes. The exceptions are scenes
with open patio areas, where we found Cmin = 0.1 works best to provide a
sufficient number of points on the patio.

Materials and transmission model. In addition to its geometry, a room’s
materials affect the RIR, as discussed in the main paper. To capture this aspect,
we use the semantic labels provided in Replica to determine the acoustic mate-
rial properties of the geometry. For each semantic class that was deemed to be
acoustically relevant, we provide a mapping to an equivalent acoustic material
from an existing material database [3]. For the floor, wall, and ceiling classes,
we assume acoustic materials of carpet, gypsum board, and acoustic tile, respec-
tively. This helps simulate more realistic sounds than if a single material were
assumed for all surfaces. In addition, we add a ceiling to those Replica scenes
that lack one, which is necessary to simulate the acoustics accurately.

The simulation also includes a path-tracing simulation through walls accord-
ing to their material properties. Each material has absorption, scattering, and
transmission coefficients. We use a transmission model similar to that used in
graphics rendering. While this is modeled to ensure precision of the simulation,
the impact of transmission is generally small compared to the propagation of
sound through open doors [6].

Acoustic simulation technique. During the simulations, we compute the
room impulse responses between all pairs of points, producing N2 RIRs. The
simulation technique stems from the theory of geometric acoustics (GA), which
supposes sound can be treated as a particle or ray rather than a wave [8]. This
class of simulation methods is capable of accurately predicting the behavior of
sound at high frequencies, but requires special modeling of wave phenomena
(e.g., diffraction) that occur at lower frequencies.Specifically, our acoustic simu-
lation is based on a bidirectional path tracing algorithm [11] modified for room
acoustics applications [1]. Additionally, it uses a recursive formulation of mul-
tiple importance sampling (MIS) to improve the convergence of the simulation
[4].

The simulation begins by tracing rays from each source location in S. These
source rays are propagated through the scene up to a maximum number of
bounces (200). At each ray-scene intersection of a source path, information about
the intersected geometry, incoming and outgoing ray directions, and probabilities
are cached. After all source rays are traced, the simulation traces rays from a
listener location in L. These rays are again propagated through the scene up
to a maximum number of bounces. At each ray-scene intersection of a listener
path, rays are traced to connect the current path vertex to the path vertices
previously generated from all sources. If a connection ray is not blocked by
scene geometry, a path from the source to listener has been found. The energy
throughput along that path is multiplied by a MIS weight and is accumulated
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to the impulse response for that source-listener pair. After all rays have been
traced, the simulation is finished.

We perform the simulation in parallel for four logarithmically-distributed fre-
quency bands.∗ These bands cover the human hearing range and are uniform in
their distribution from a perceptual standpoint. For each band, the simulation
output is a histogram of sound energy with respect to propagation delay time
at audio sample rate (44.1kHz for Replica and 16kHz for Matterport). Spatial
information is also accumulated in the form of low-order spherical harmonics for
each histogram bin. After ray tracing, these energy histograms are converted to
pressure IR envelopes by applying the square root, and the envelopes are mul-
tiplied by bandpass-filtered white noise and summed to generate the frequency-
dependent reverberant part of the monaural room impulse response [5].

Ambisonic signals (roughly speaking, the audio equivalent of a 360◦ image)
are generated by decomposing a sound field into a set of spherical harmonic
basis. We generate ambisonics by multiplying the monaural RIR by the spherical
harmonic coefficients for each time sample. Early reflections (ER, paths of order
≤ 2) are handled specially to ensure they are properly reproduced. ER are not
accumulated to the main energy histogram, but are instead clustered together
based on the plane equation of the geometry involved in the reflection(s). Then,
each ER cluster is added to the final pressure IR with frequency-dependent
filtering corresponding to the ER energy and its spherical harmonic coefficients.

The result of this process is 2nd-order ambisonic pressure impulse responses
that can be convolved with arbitrary new monaural source audios to generate the
ambisonic audio heard at a particular listener location. We convert the ambison-
ics to binaural audio [12] in order to represent an agent with two human-like
ears, for whom perceived sound depends on the body’s relative orientation in
the scene.

9 Visualizing Audio Simulations

Next we illustrate the pressure field visualization of two other scenes in the
Replica dataset. In Fig. 7, we display another big scene (apartment 2) with four
rooms, with the audio source inside one of the rooms. Notice how the pressure
decreases from the source along geodesic paths, which leads to doors serving as
secondary sources or intermediate goals that lead the agent in the right direction.

Fig. 8 displays a second-order ambisonics representation showing the direc-
tion and intensity of the incoming direct sound. Particularly, it demonstrates
the spatial properties of the audio simulation at two receiver locations. Recall
that we render impulse responses for source and receiver positions sampled from
a grid in each scene. These impulse responses are stored in ambisonics and con-
verted to binaural to mimic the signals received by a human at the entrance of
the ear canal. We create Fig. 8 by evaluating the incoming energy of the direct

∗[0Hz,176Hz], [176Hz,775Hz], [775Hz,3409Hz], [3409Hz,20kHz]
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Fig. 7: Pressure field of audio simulation overlaid on the top-down map of apart-
ment 2 from Replica [10]. Our audio-enabled agent gets rich directional information
about the goal, since the pressure field variation is correlated with the shortest dis-
tance. Notice the discontinuities across walls and the gradient of the field along the
geodesic path an agent must use to reach the goal (different from shortest Euclidean
path). As a result, to an agent standing in the top right or bottom rooms, the audio
reveals the door as a good intermediate goal. In other words, the audio stream signals
to the agent that it must leave the current room to get to the target. In contrast, the
GPS displacement vector would point through the wall and to the goal, which is a path
the agent would discover it cannot traverse. Note that the visual stream is essential to
couple with the audio stream in order to navigate around obstacles.

sound (excluding reflections and reverberation) at the horizontal plane.† The
greater the energy the bigger the size, and the orientation depicts the angular
distribution of energy. In Location 1 energy comes predominantly from its right.
Since it is closer to the audio source, the directional sound field has more energy
than Location 2.

10 Reinforcement Learning Training Details

In the following, we provide details of our reinforcement learning (RL) formula-
tion for navigation tasks. This notation links to Sec. 4 and Fig. 3 in the main
paper.

An agent embedded in an environment must take actions from an action
space A to accomplish an end goal. For our tasks, the actions are navigation mo-
tions: A = {MoveForward, TurnLeft, TurnRight, Stop}. At every time step

†The minor side lobes pointing in directions other than the source are a result of representing
the sound field as a 2nd order ambisonics signal, thus using only 9 spherical harmonics. We refer the
reader to [2, 7, 13] for more details on ambisonics sound field representation.
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Fig. 8: Visualizing ambisonics. We visualize the ambisonics components (blue lobes)
of the impulse response. Notice that the ambisonics sound fields characterize direction
and intensity of the incoming energy.

t = {0, 1, 2, . . . , T − 1} the environment is in some state st ∈ S, but the agent
obtains only a partial observation of it in the form of ot. Here T is a maximal
time horizon, which corresponds to 500 actions for our task. The observation ot
is a combination of the audio, visual, and displacement vector inputs.

Using information about the previous time steps ht−1 and current observation
ot, the agent develops a policy πt,θ : A → [0, 1], where πt,θ(a|ot, ht−1) is the
probability that the agent chooses to take action a ∈ A at time t. We use the
shorthand of πt,θ(ot, ht−1) to show the feed-forward nature of the actor head.
After the agent acts, the environment goes into a new state st+1 and the agent
receives individual rewards rt ∈ R.

The agent optimizes its return, i.e. the expected discounted, cumulative re-
wards

Gγ,t =

T−1∑
t=0

γtrt, (1)

where γ ∈ [0, 1] is the discount factor to modulate the emphasis on recent or
long term rewards. The value function Vt,θ(ot, ht−1) is the expected return. The
particular reinforcement learning objective we optimize directly follows from
Proximal Policy Optimization. We refer the readers to [9] for additional details
on optimization.

11 Audio Intensity Baseline

In the main paper, we presented an audio intensity baseline in Sec ??. It is an
ablation of our model where the policy is learned directly from the intensity of
the left and right waveforms together with the depth-based visual stream. We
compute the intensity of audio using the Root-Mean-Square (RMS) of channel’s
waveform, which produces two real numbers as the audio feature. We showed
that it is inferior to our approach, meaning that our model is able to learn
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Table 4: Intensity only versus spectrograms as audio input for our model and with
different visual inputs for AudioGoal agents (blind / RGB / depth).

Audio Features Replica MP3D

Intensity only 0.276 / 0.177 / 0.291 0.173 / 0.003 / 0.014

Spectrograms 0.673 / 0.626 / 0.756 0.438 / 0.479 / 0.552

additional environment information from the full spectrograms. Here we provide
the parallel results for the blind and RGB visual streams (Tab. 4).

We see a significant drop in performance when using audio intensity only
compared to spectrograms. This demonstrates that our model extracts useful
acoustic features for navigation (e.g . relative angle to goal, major obstacles)
that go beyond just intensity.

12 Heard/Unheard Dataset Splits

In the following we provide details about the sounds used in Sec. 6. We utilize
102 copy-free natural sounds across a wide variety of categories: air conditioner,
bell, door opening, music, computer beeps, fan, people speaking, telephone, and
etc. We divide these 102 sounds in to non-overlapping 73/11/18 splits for train,
validation and test.

For Tab. 2 and the same sound experiment in Tab. 3 of the main paper,
we use the sound source of ’telephone’. In Tab. 3, for the varied heard sounds
experiment we train using the 78 sounds and test on unseen scenes with the same
sounds. Recall that the audio observations vary not only according to the audio
file but also the 3D environment. For the varied unheard sounds experiment, we
use the 78 sounds for training scenes, and generalize to unseen scenes as well as
unheard sounds. Particularly, we utilize the 11 sounds for validation scenes, and
the rest 18 sounds for test scenes.

13 Additional Navigation Trajectory Examples

Fig. 9 shows four additional trajectory examples of three agents in different
test environments of Replica and Matterport3D. These trajectories show the
AudioGoal agent and AudioPointGoal agent navigate to goals more efficiently
compared to PointGoal.
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PointGoal AudioGoal AudioPointGoal

Agent Start Goal Shortest path Agent path Seen/Unseen Occupied

Fig. 9: Navigation trajectories on top-down maps. The top two and bottom two
rows are environments in Replica and Matterport3D, respectively. Agent path color
fades from dark blue to light blue as time goes by. Green path indicates the shortest
geodesic path. In this figure, we show navigation trajectories of three agents in varied
test environments. The AudioGoal agent and AudioPointGoal agent navigate more
efficiently compared to PointGoal agent. Best viewed in color.
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