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Abstract. Optimization-based image smoothing is routinely formulated
as the game between a smoothing energy and an appearance preser-
vation energy. Achieving adequate smoothing is a fundamental goal of
these image smoothing algorithms. We show that partially “erasing” the
appearance preservation facilitate adequate image smoothing. In this
paper, we call this manipulation as Erasing Appearance Preservation
(EAP). We conduct an user study, allowing users to indicate the “erasing”
positions by drawing scribbles interactively, to verify the correctness and
effectiveness of EAP. We observe the characteristics of human-indicated
“erasing” positions, and then formulate a simple and effective 0-1 knap-
sack to automatically synthesize the “erasing” positions. We test our
synthesized erasing positions in a majority of image smoothing methods.
Experimental results and large-scale perceptual human judgments show
that the EAP solution tends to encourage the pattern separation or elim-
ination capabilities of image smoothing algorithms. We further study the
performance of the EAP solution in many image decomposition problems
to decompose textures, shadows, and the challenging specular reflections.
We also present examinations of diversiform image manipulation appli-
cations like texture removal, retexturing, intrinsic decomposition, layer
extraction, recoloring, material manipulation, etc. Due to the widespread
applicability of image smoothing, the EAP is also likely to be used in
more image editing applications.

Keywords: image smoothing

1 Introduction

Image smoothing is one important foundation of image processing. Denoting the
input image as X ∈ RH×W×C and the output image as Y ∈ RH×W×C (with
{H,W,C} being the height, width, and channel), one typical formulation for
optimization-based image smoothing could be

f(X) = arg min
Y

(
∑
p

ρ(Y )p︸ ︷︷ ︸
smoothing energy

+
∑
p

L(X,Y )p︸ ︷︷ ︸
appearance preservation

) (1)
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where p is pixel position. Herein, the smoothing energy ρ(·) depends on different
tasks, which could be total variance [28], L0 gradient counting (L0) [33], L1
piece-wise constraint (L1) [5], Relative Total Variance (RTV) [34], Weighted
Least Squares (WLS) [32], etc. And, the appearance preservation energy L(·, ·)
depends on different data likelihoods, which could be L2 distance (||X − Y ||22)
[28, 33, 5, 34], Euclidean (or L1) distance (||X −Y ||) [35], other special Laplacian
or Poisson distances [7], and so on.

This paper starts with a key assumption: partially “erasing” the appearance
preservation energy facilitate adequate image smoothing. The mathematical form
is as follows. We denote all pixel positions as the set ~. Given an user-indicated
set E of pixel positions to be erased, the remaining pixel positions can be written
as the set ~− E . We formulate the smoothing problem

F (X, E) = arg min
Y

(
∑
p

ρ(Y )p +
∑

i∈~−E
L(X,Y )i) (2)

where our assumption is that users can tune the erasing set E to achieve adequate
and satisfying image smoothing. We conduct an user study, allowing users to
draw scribbles to indicate the erasing set E . As shown in Fig. 1, we present the
smoothed results from L0, RTV, and L1 algorithms with or without interactive
user erasing. Based on this user study, we present discussions as below.

Firstly, such erasing can facilitate more satisfying and adequate smoothing in
many practical cases, supported by several evidences: (1) Users can erase their
undesired pixels to achieve satisfying smoothing, e.g ., in Fig. 1-(a), the user draws
scribbles to erase the specular reflections on the car so as to achieve satisfactory
car albedo. Fig. 1-(b,h,f,j) are similar cases. (2) Users can preserve and emphasize
their desired pixels to facilitate adequate smoothing, e.g ., in Fig. 1-(d), the user
only traces the leaf texture whereas the tree branches remain untouched and
emphasized, so as to only preserve the desired tree branch structure and smooth
the leave texture adequately. Fig. 1-(c,e,g,i,k) are similar cases. (3) Given the
typicality of these evidences, we are likely to find more practical cases in other
color, texture, object, and illumination manipulation scenarios.

Secondly, this erasing is applicable to a variety of applications, supported by
several evidences: (1) This erasing can be used in intrinsic image and illumination
editing applications, e.g ., in Fig. 1-(h), the user draws scribbles to erase the
specularity on the sofa, which can ease further illumination decomposition or
editing. Fig. 1-(b,f,j) are similar cases. (2) This erasing can be used in texture
removal and texture editing applications, e.g ., in Fig. 1-(i), the user outlines and
eliminate the spider web texture, which can aid in further structure extraction
or retexturing. Fig. 1-(c,d,g) are similar cases. (3) Given the typicality of these
applications, this erasing is likely to be applied to more applications.

Thirdly, the appearance preservation erasing also brings new challenges: (1)
It is labor-intensive and time-consuming to indicate the erasing set E manually,
e.g ., in Fig. 1-(g), the user have to draw a large number of scribbles to accurately
erase the strawberry texture. Fig. 1-(c,k) are similar cases. (2) Many real-life
image smoothing applications require fully automatic processing, e.g ., many
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Fig. 1. Evidences for our motivation: partially “erasing” the appearance preservation
energy facilitate adequate image smoothing. The user-given erasing pixel position (the
set E) are marked with green scribbles.
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intrinsic image methods are applicable to video processing, and it is unreasonable
to manually annotate videos frame-by-frame. Similar challenges also exist in
applications like retexturing, materializing, recoloring, relighting, and so on.

Generally, these results verify that partially “erasing” the appearance preser-
vation encourages adequate and satisfying image smoothing, and achieving such
“erasing” can benefit a variety of applications. Nevertheless, the user input is
labor-intensive to obtain and is unacceptable in many automatic applications.
With the motivation of scalability and applicability, we present the Erasing
Appearance Preservation (EAP) problem: solving the erasing set E in absence of
human interaction.

We present a simple and effective solution to the EAP problem. We observe
how human indicate their erasing set E and then use a knapsack model to discover
pixels that are likely to be erased by human. Experiments show that our solution
can be applied to a variety of downstream tasks, and many state-of-the-art image
smoothing applications can benefit from our solution.

Our contributions are: (1) We motivate the Erasing Appearance Preservation
(EAP) problem by verifying the assumption that partially “erasing” the appear-
ance preservation energy facilitate adequate image smoothing. (2) We present a
simple and effective solution to the EAP problem. We observe how human erase
the appearance preservation and formulate a 0-1 knapsack to solve the erasing po-
sitions. (3) We show that our solution can be applied to many optimization-based
image smoothing methods. Extensive qualitative results, quantitative analysis,
and large-scale perceptual human judgments show that this solution facilitates
their structure extraction and pattern decomposition capabilities. Furthermore,
we study the effectiveness of EAP in various image smoothing applications, e.g .,
texture decomposition, intrinsic decomposition, color manipulation, material
manipulation, etc. Additionally, we show results from our EAP solution in several
open problems like adequate texture elimination and the challenging specular
reflection decomposition.

2 Related Works

Image smoothing. Image smoothing is as an essential component of many im-
age manipulation techniques. Early approaches are filtering-based [31, 18, 36]
and recently optimization methods achieve impressive visual effects, e.g ., L0-
smoothing [33], L1-smoothing [5], and other energy-based methods [34, 11, 1, 30,
27], to name a few. A wide variety of visual effects can be achieve with image
smoothing, e.g ., visual enhancement [26], intrinsic decomposition [5], texture
replacement [6], relighting [30], recoloring [29], stylization [14], etc.

Interactive image smoothing and optimization. Many real-world image smoothing
applications and image optimization techniques allow users to interactively control
the optimization, e.g ., matting [10], stylization [9], coloring [22], relighting [30],
and so on. The existence of these application also verifies the correctness of EAP.
The difference is that these approaches are routinely focused on making use of
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user inputs (like scribbles), whereas we are focused on finding where to “erase”
in absence of human interaction for image smoothing algorithms.

Image inpainting and point-based imaging. Image inpainting methods [20, 25, 12]
also “erase” pixels to edit image contents. The difference is that we are aimed
at solving the unknown erasing positions, whereas image inpainting is aimed at
solving the erased content with known erasing positions. Furthermore, point-
based imaging literatures [15, 19] compute pixel points to process images. The
different is that these methods are aimed at representing images with detected
key points (e.g ., sparse control points [15]), whereas we are aimed at finding
pixels that need to be “erased”.

3 A Solution to the EAP Problem

Our goal is to solve the “erasing” positions for image smoothing algorithms.
Observing Fig. 1, we have two discoveries: (1) Human is erasing their “undesired”
pixels. For example, if the user wants to remove textures, that user will draw
scribbles on the undesired texture, e.g ., the tree leaf (Fig. 1-(d)) and the spider
web (Fig. 1-(i)). (2) Human is preserving their “desired” pixels. For example,
if the user wants to preserve salient object structures, that user will prevent
drawing scribbles on the objects’ structural constitutes, e.g ., the nail surface
(Fig. 1-(f)) and the strawberry structural outline (Fig. 1-(g)). Motivated by these
two discoveries, we can determine where to erase by estimating desired and
undesired pixels.

Estimating how each pixel is “undesired”. Image smoothing routinely penalizes
task-specific patterns. These patterns can be textures, shadows, specular reflec-
tions, noises, and so on. In many specific applications, these penalized patterns
can be viewed as the user undesired patterns. For example, in texture removal
applications, the smoothing energy is penalizing textures, and simultaneously,
those textures are also undesired by the users. Therefore, we estimate how each
pixel is penalized, to reflect how each pixel is undesired. During image smoothing
(Eq. (2)), the more a pixel is penalized, the more its color changes. We can
compute the input-output color change to estimate the penalty:

Vp = ||Xp − Yp||22 (3)

where p is pixel position and Vp is the estimated penalty. To aid in the robustness
of this estimation, we apply some routinely used image processing strategies to
ameliorate the formulation: we compute the CIE RGB-to-Lab transform τ(·),
multiply the Gaussian term wij = exp(||τ(Xi)− τ(Yj)||22/2σ2), and focus on the
local window lp at p. The final equation becomes

vp =
∑
i∈lp

∑
j∈lp

wij ||τ(Xi)− τ(Yj)||22 (4)
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In this way, this equation represents how each pixel is penalized and undesired
in our problem. We provide a detailed verification of this equation using Xu’s
tests [34] in the supplemental material.

Estimating how each pixel is “desired”. Image smoothing routinely protects and
preserves important image constitutes. For example, texture removal smoothing
preserves salient structure, and intrinsic image smoothing preserves object re-
flectance or albedo. In many specific applications, these preserved patterns can
be viewed as user desired patterns. In most cases, after the image smoothing
process, those preserved patterns tend to show more salient contours than those
penalized patterns. For example, after texture removal, the original textured
location tend to be flat, and thus have less salient contours than the preserved
structure, which may have many color transitions. Therefore, we compute the
salient contours for each pixel in the smoothed image Y to estimate how each
pixel is preserved, so as to reflect how each pixel is desired:

wp = ε+
∑
i∈lp

∑
j∈lp

||τ(Yi)− τ(Yj)||22 (5)

where ε prevents zero output. When local window lp is located at salient contours
like edges, wp becomes numerically large. On the contrary, when the colors in lp
are nearly uniform, wp will decrease to ε as no important pattern can be found.
In this way, this equation represents how each pixel is preserved and desired in
our problem. We provide a detailed verification in the supplemental material.

0-1 Knapsack. Now that we have two estimations for each pixel: the vp estimates
how each pixel is “undesired” whereas the wp estimates how each pixel is “desired”.
Naturally, we formulate our problem as a 0-1 knapsack: each pixel is a knapsack
item, and each item is then chosen whether to put in the knapsack to achieve
the largest possible value, while preserving limited total weights. The item value
is vp and the item weight is wp. Then, the knapsack solves as much undesired
pixels as possible, while preserving an amount of desired ones. In this way, we
achieve a game between erasing undesired pixels and preserving desired pixels.

The 0-1 knapsack is significant and indispensable in our solution, and it is a
must to use both estimations of vp and wp, supported by three evidences: (1) The
determination between erasing undesired pixels and preserving desired pixels can
only be formulated as a trade-off. In real-world images, the patterns over pixels
are complicated and there is no fixed threshold on vp or wp to determine what
pixel must be erased or preserved. (2) It is hardly possible for users to accurately
determine the pixel quantity that should be erased or preserved. Nevertheless,
the game of 0-1 knapsack enables a “smart” erasing: given a coarsely indicated
knapsack capability, it can adaptively solve how many pixels should be erased. (3)
Our later ablative experiments show that, if either one of vp or wp is discarded,
the performance of our solution will decrease significantly.

To be specific, our maximum knapsack capability is denoted by a manageable
scaler U ∈ R. Considering images vary in scale, for flexibility, we denote U =



Erasing Appearance Preservation 7

Algorithm 1: Solver of EAP.

Input: Source Image X ∈ RH×W×3, u,ρ(·),t;
Output: Smoothed Image Y ∈ RH×W×3;

1 Randomly assign 50% pixel positions to E ;
2 for (i = 0; i < t; i+ +) do
3 Y ← F (X, E);
4 Solve E using 0-1 knapsack;

5 end
6 Output Y ;

{1, 51.37%} {3, 43.81%} {5, 28.63%} {7, 18.42%} smoothed Y {1, 53.50%} {3, 45.98%} {5, 30.45%} {7, 39.01%} smoothed Y(a) input X (b) input X

{1, 51.35%} {2, 42.52%} {4, 25.78%} {8, 19.61%} smoothed Y {1, 50.60%} {2, 41.29%} {4, 34.02%} {8, 19.06%} smoothed Y(c) input X (d) input X

Fig. 2. Visualization of erasing set E (marked in green) during optimization. Each {·, ·}
indicates iteration step and percentage of E in all positions ~.

HWu where H and W are image height and width with u ∈ R being an user-given
scaler. Finally, this 0-1 knapsack problem of {v,w, U} is solved via knapsack
dynamic programming. The overall procedures are provided in Algorithm 1. In the
supplemental materials, we also include related technical backgrounds of knapsack
algorithms and codes of our solver implementations to aid in reproducibility.

Analysis of the EAP solution. Our solution succeeds in solving “undesired”
pattern positions. Fig. 2-(a,b) shows experiments for texture removal using
relative total variance energy [34]. We can find that EAP is capable of discovering
textural positions progressively, i.e., pixels of the tree rings and rope twists
are gradually recognized. Fig. 2-(c,d) are for reflectance extraction using L1
intrinsic energy [5], where specular reflections and shadows are efficiently detected.
Furthermore, these experiments convert another important message that the EAP
framework is adaptive. Given fixed u = 0.25 for all examples in Fig. 2, the final
percentage of E varies significantly over different sources and tasks. This result
reflects the fact that EAP can achieve adaptive soft constraints for diversified
source images and various frontend smoothing energy designed for different tasks.
Finally, we also compare our estimated erasing positions to human-indicated
erasing points as shown in Fig. 3. We conduct this experiment using both L0
and L1 smoothing. We can see that our solved erasing positions are visually
similar to human indication, and our smoothing results are comparable to human
performance.
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Input image
Ours (L0) Ours (L1) Human erasing Our erasing Human erasing Our erasing

Erasing mask L0 smooting L1 smoothing

Human (professional)

Fig. 3. Comparison of algorithmically solved and manually indicated erasing positions.
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Meaningless 
wight
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value Full method

Extreme 
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L1 smoothing L1 smoothing + our EAP solution

Input image

Fig. 4. Ablative study with different alternative configurations for L1 smoothing.

Ablative Study. We perform an ablative study as shown in Fig. 4. More ablative
results and implementation details are attached in the supplemental material.
We mainly focus on L1 smoothing. We first present the L1 smoothing results
from the (1) official implementation, and then try some existing strategies to
facilitate more throughout smoothing without using EAP: (2) extreme parameter:
using extreme lambda (10.0) in original L1 smoothing, but without using EAP.
We can see that this causes the failure cases where the image constitutes are
destroyed. (3) iterative smoothing: repeating original L1 smoothing multiple
times (10 times, same as the later EAP configuration), but without using EAP.
We can see that this causes desaturated and low-contrast artifacts. Then, we
try different configurations in our EAP solution: (4) without weight: not using
knapsack weights wp. Instead, we set a fixed threshold (0.1) to the knapsack
values, and all pixels above this threshold are viewed as erasing positions. We



Erasing Appearance Preservation 9

Source TV(14.07) ETV(22.60) RTV(16.32) ERTV(25.20) WLS(15.77) EWLS(24.07) TREE(15.69) ETREE(24.38) L0(13.45) EL0(27.34) L1(18.49) EL1(28.58)

Fig. 5. Texture decomposition. Leftmost is the source (ground truth). We show extracted
structures and error maps against the ground truth for each method and report PSNR
for each instance. Better scores are marked in blue against red baselines.

can see that this causes the image collapsing to a few colors. (5) meaningless
weight: replacing all knapsack weights wp with a constant (1.0). We can see that
this causes all undesired patterns being preserved in the final result. (6) without
value: not using knapsack values vp. Instead, we set a fixed threshold (0.1) to
the knapsack weights, and all pixels below this threshold are viewed as erasing
positions. We can see that this causes all salient counters being eliminated. (7)
meaningless value: replacing all knapsack value vp with a constant (1.0). We
can see that this can preserve salient constitutes, but the original structure is
corrupted. (8) full method: our proposed solution, able to facilitate more adequate
smoothing without causing other artifacts.

4 Image Smoothing Energy under EAP

Via changing the ρ(·) and L(·, ·) term, various smoothing energies can be flexibly
implemented in EAP framework. We denote such strategy by prefix E, i.e., total
variation (TV) will be named as ETV when EAP is applied. Here, we address
several widely-used smoothing energies: WLS (1977 [32]) weighted least square;
TV (1992 [28]) total variation; L0 (2011 [33]) L0 smoothing; RTV (2012 [34])
relative total variation; TREE (2014 [2]) optimization-based spanning tree; L1
(2015 [5]) L1 smoothing; DL1 (2015 [5]) DPGMM (Dirichlet Process Gaussian
Mixture Model) L1 reflectance extraction; When applying EAP approaches to
these methods, we obtain: EWLS; ETV; EL0; ERTV; ETREE; EL1; EDL1.
Unless noticed, we set u = 0.50, 3× 3 window lp, ε = 1.00, σ = 0.10, and t = 10.

5 Applications

Texture decomposition and retexturing. EAP significantly improves the texture
separation capability of optimization-based smoothing methods. Qualitatively,
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Sources TV ETV RTV ERTV WLS EWLS TREE ETREE L0 EL0 L1 EL1

Fig. 6. Texture replacement. Leftmost is the source image and the target texture.
Results are presented in following cols.

Source Baseline( 60.50) RetinexC( 42.70) RetinG( 42.70) Shen( 25.41) Garces( 12.60) Zhao( 46.90) Bell( 51.50) EBell( 45.71) DL1( 45.20) EDL1( 39.01)

Fig. 7. Intrinsic images. IIW-WHDR(%) (lower is better) is reported. Blue EAP scores
are compared against red baselines.

as in the first row of Fig. 5, we compare six appearance-preserving smoothing
methods and the respective EAP versions. All EAP-based methods succeed
in the complete removal of the challenging dense candy texture, whereas all
remaining methods suffer from incomplete texture removal. Quantitatively, as
in the second row of Fig. 5, we blend several challenging regular or irregular
textures to the Cornell Box to obtain ground truth image pairs with/without
textures and evaluate these methods using the PSNR metric. Among all methods,
the EAP-based method reports significantly higher PSNR values than others,
thus enabling more thorough texture decomposition. More examples are provided
in the supplemental material. Fig. 6 shows texture replacement examples. The
objective is to remove the brick texture on the wall completely (top-left of Fig. 6)
and replace it with the new texture of the uncovered wall (bottom-left of Fig. 6)
via removing and then swapping texture. All EAP-based methods managed to
remove original bricks and swap texture. In contrast, the remaining methods more
or less fail in eliminating the original brick texture and cause maroon-spotted
artifacts due to incomplete removal of the original red bricks. This phenomenon
further validates that EAP improves pattern separation capability of current
image smoothing algorithms.
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Source Baseline( 62.20) RetinexC( 15.70) RetinG( 15.70) Shen( 25.41) Garces( 16.02) Zhao( 14.14) Bell(25.10) EBell( 16.10) DL1( 20.60) EDL1( 15.21)

Fig. 8. Specular reflection removal. IIW-WHDR(%) are reported and blue EAP scores
are compared to the red baselines.

Intrinsic images and illumination editing. Intrinsic decomposition [3] aims at
extracting reflectance and illumination (shading) maps from single image. Inter-
estingly, many optimization-based intrinsic methods are closely related to image
smoothing, and their objectives can also be viewed as the appearance preservation
terms and smoothing (or penalization) terms. To evaluate the performance of
EAP in the intrinsic decomposition task, we use typical Bell [4] and DL1 methods
as examples as well as their EAP versions EBell and EDL1 in the experiments.
More details of involved algorithms and their EAP implementations are provided
in the supplemental materials.

Qualitatively, the EAP framework significantly improves structure abstraction
and color separation capability of the involved candidates. We provide a challeng-
ing example in Fig. 7 with transparent objects and intensive specular reflections.
We can see that EBell and EDL1 succeed in separating specular reflection colors
and object colors, whereas other methods fail in telling them apart.

Quantitatively, we test on several routine intrinsic metrics: Intrinsic Image
in the Wild [4] (IIW) and Shadow Annotation in the Wild [21] (enhanced SAW
in [23]). In IIW/SAW tests, humans are invited to annotate pixels based on
whether reflectance/shadow colors are similar or not (having offsets), and the
human judgments are then compared with the estimations of tested methods. We
report scores of optimization-based methods [21, 37, 16, 17, 30, 4, 5] in Table. 1.
We can see that the EAP framework can significantly improve the quantitative
performance of Bell and DL1 with the controllable parameter u (the 0-1 Knapsack
capability). Given the typicality of Bell and DL1, the EAP framework is likely
to improve more optimization-based intrinsic decomposition methods.

On the other hand, although recent IIW/SAW benchmarks are dominated
by deep learning methods [13, 24, 38, 23] (CGIntrinsics [23] 99.11% AP and
GloSH [38] 15.2% WHDR), optimization methods are still widely used methods.
IIW/SAW only evaluates the quantitative accuracy of the reflectance and shadows
but ignores the real-life usability of decomposed layers in image editing tasks like
relighting, retexturing, rematerializing, etc. In Fig. 7, it is obvious that Garces [16]
is not suitable for image editing despite its best IIW-WHDR score. Another
example of specular reflection removal in Fig. 8 shows that only EAP-based
methods manage to eliminate specular reflections, but in the meanwhile, the
unusable Zhao [37] reports the best IIW score.

To evaluate image editing performance of intrinsic methods, we introduce
real humans to help with the evaluation. We apply state of the art deep learn-
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Fig. 9. Qualitative results on image decomposition. We visualize decomposed layers
using our EAP-based method EDL1.

Bell DL1 EDL1

Fig. 10. Comparisons of specular reflections extracted for image decomposition task
using different smoothing algorithms.

ing methods [38, 23], optimization methods [4, 5], and their EAP versions to
decompose 100 scenes into layers, and then apply their layers to two typical
illumination editing tasks: shadow enhancement and specular reflection removal.
In this way, we obtain 600 results with enhanced shadows and 600 results with
specular reflections eliminated. We employ Amazon Mechanical Turk (AMT)
to rank the visual quality of these results and report the obtained ranking in
Table. 2. Interestingly, traditional optimization algorithms outperform learning-
based models in both tasks, and EAP-based optimization outperforms standard
optimizations. We provide 1200 raw results and 1200 raw AMT ranks in the
supplement. This strong evidence shows that EAP achieves beyond state of the
art performance in intrinsic decomposition based image manipulation.

Advanced illumination decomposition. Both natural images and artistic illus-
trations may contain complex lighting conditions, and the lighting in digital
paintings could be arbitrarily drawn for aesthetic purposes. Advanced decom-
position method [8] supports extracting multiple illumination layers and assign
specular reflections into separated layers when reflectance maps are given. No-
tably, this technique alone is not functional for image decomposition, and it
requires users to input the smoothed image structure. In this task, we use im-
age smoothing methods to provide such smoothed image structures for layer
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Inverting Reflectance Color Recoloring Reflectance + Layer Removal Masked Texture Removal Inverting Reflectance + Recoloring Illumination

Inverting Reflectance + Recoloring Illumination Recoloring Reflectance Color Recoloring Reflectance Color Inverting Reflectance + Curves

Reflectance Recoloring + Texture Removal Recoloring Reflectance + Curves Inverting Reflectance + Recoloring Illumination Recoloring Reflectance + Curves

Fig. 11. EAP-based image manipulation. We show various image editing use cases with
EDL1 layer decomposition method.

Source Inverted Luminance Bell L1 EDL1DL1

Fig. 12. Comparison of black-to-white rematerialization via inverting reflectance colors
extracted with or without EAP.

decomposition. We compare DL1, Bell, and our revamped EDL1. We provide
qualitative results in Fig. 9. These results show that our method is capable of
decomposing challenging hard shadows and specular reflections simultaneously.
On the contrary, as in Fig. 10, previous methods are almost not likely to achieve
visually satisfactory decomposition because appearance preservation prevents
them from completely separating desired patterns.

Decomposition-based image manipulation. A wide variety of intrinsic decompo-
sition based image manipulation applications can be greatly benefited from
the EAP framework. Fig. 11 shows qualitative results of use cases like re-
flectance/illumination recoloring, retexturing, curve tuning, etc. Related technical
backgrounds are provided in the supplementary materials.

We discuss the significance of EAP using recoloring examples. One of the
most difficult case in recoloring is to invert the scene reflectance while preserving
the original illumination. Specular materials and complicated lighting conditions
can make this case even more challenging. Fig. 12 shows an example to turn the
black coat into white while preserving the specular latex material, by inverting
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Table 1. IIW/SAW test for optimization-based intrinsic decomposition methods.
WHDR scores are reported for IIW test evaluating reflectance quality whereas AP
scores are reported for SAW test evaluating shadow quality. Arrows indicate that lower
(↓) or higher (↑) is better. Top 1 (or 2) score is marked in blue (or red).

Method C-R [21] Zhao [37] Garces [16] RetinexC [17] Shen [30] Bell [4] DL1 [5]

WHDR% ↓ 36.6 23.8 24.8 26.9 31.8 20.6 17.7

AP% ↑ 75.5 89.72 92.39 85.26 91.4 92.18 93.57

Method EAP + Bell [4] EAP + DL1 [5]

u 0.01 0.05 0.10 0.25 0.50 0.01 0.05 0.10 0.25 0.50

WHDR% ↓ 20.4 20.9 19.9 25.3 44.7 17.9 16.2 16.9 20.4 52.5

AP% ↑ 92.97 92.17 94.43 86.25 77.52 93.69 94.17 95.21 88.41 65.47

Table 2. Amazon Mechanical Turk (AMT) average human ranking on image manip-
ulation tasks of Shadow Enhancement (SE) and Specular Reflection Removal (SRR)
over intrinsic decomposition methods. Arrows indicate that lower (↓) is better. Top 1
(or 2) score is marked in blue (or red).

Method CGIntrinsics [23] GLoSH [38] Bell [4] EAP + Bell [4] DL1 [5] EAP + DL1 [5]

SE ↓ 5.70 ± 0.46 5.30 ± 0.46 3.55 ± 0.50 1.71 ± 0.45 3.45 ± 0.50 1.29 ± 0.45

SRR ↓ 5.22 ± 0.41 5.77 ± 0.44 3.54 ± 0.52 1.66 ± 0.47 3.47 ± 0.50 1.34 ± 0.47

the reflectance colors extracted using Bell, L1, DL1, and EAP-based EDL1
method. We also include a naive luminance inverting method. Because the
appearance preservation terms of previous methods tend to prevent thorough
specular decomposition, their results suffer from visible hole-like artifacts and non-
saturated artifacts. On the contrary, EDL1 succeeded in producing satisfactory
results because the EAP technique greatly enhances the pattern separation
capability, resulting in more reliable decomposition.

6 Conclusion

This paper presents the Erasing Appearance Preservation (EAP) problem that
partially “erase” the appearance preservation energy to facilitate adequate image
smoothing. We conduct an user study to verify the effectiveness and correctness of
EAP. We also presents a method to synthesize the erasing positions automatically.
Qualitative, quantitative, and perceptual evidences show that EAP can facilitate
the pattern separation and structure extraction capabilities of a majority of
optimization-based image smoothing algorithms. We extensively study the perfor-
mance of the EAP framework in smoothing-based image decomposition problems
for textures, shadows, and the challenging specular reflections. Diversiform image
manipulation applications like texture decomposition, intrinsic decomposition,
color/material manipulation, and many others are also studied with the EAP
solution. Due to the widespread applicability of image smoothing in visual editing,
the EAP method is likely to benefit more applications.
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