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1 Global Threshold and its Derivations

This section is, for anyone’s attention, a more detailed illustration about the
global threshold mentioned in Section 3.2 and Section 4.3 of the original paper.

1.1 Detailed derivations and Updating strategy

Let xxx ∈ RC×H×W , xxx′ ∈ RC′×H′×W ′
be the input and output of a particular

DGC layer and the pruning rate is denoted as ξ.
For a dynamic group convolution (DGC) network, the head-wise threshold

makes sure each head in the network exactly selects a certain number of channels
according to the target pruning rate ξ after training, i.e., (1− ξ)C channels are
selected from the input volume xxx (see Eq. 6 in the paper). While the global
threshold T makes DGC structures more flexible allowing an uneven channel
selection among heads within any DGC layer, while at the same time keeping
the average pruning rate of the whole structure meeting the target ξ with tiny
deviation.

To obtain T , firstly, all saliency vectors throughout the network are collected
and concatenated as a single saliency vector GGG:

GGG = [ggg1,1, ggg1,2, ..., ggg1,H, ggg2,1, ..., gggL,H], (1)

where, L and H represents the number of DGC layers and number of heads
in each DGC layer of the network respectively, gggi,j is the saliency vector from
the jth head in the ith DGC layer which is derived from Eq. 5 in the original
paper but remove the ReLU activation to keep the negative saliencies for a
further exploration. After that, similar to Eq. 6 in the paper, we find the global
threshold by meeting:

ξ =
|{g | abs(g) < T , g ∈GGG}|

|{g | g ∈GGG}| , (2)

where |S| is the length of set S, abs(z) returns the absolute value of z.
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Table 1. Comparison of Top-1 classification error (%) with state-of-the-art filter-level
weight pruning methods.

Model MACs CIFAR-10 CIFAR-100

VGG-16-pruned [4] 206M 6.60 25.28
VGG-19-pruned [6] 195M 6.20 -
VGG-19-pruned [6] 250M - 26.52
ResNet-56-pruned [2] 62M 8.20 -
ResNet-56-pruned [4] 90M 6.94 -
ResNet-110-pruned [4] 213M 6.45 -
ResNet-110-pruned [1] 121M 6.15 -
ResNet-164-B-pruned [6] 124M 5.27 23.91
DenseNet-40-pruned [6] 190M 5.19 25.28
DenseNet-40-pruned [5] 183M 5.39 -
DenseNet-40-pruned [5] 81M 6.77 -
CondenseNet-86 [3] 65M 5.00 23.64

CondenseNet-86-DGC 71M 4.77 23.41
CondenseNet-86-DGC-G 71M 4.42 23.36

Since saliency vectors are dynamically changing during the training process,
we update the global vector every three epochs based on the last N iterations
at the third epoch. Therefore, assuming the batch size for each iteration is B,
NB different GGGs are obtained, which is regarded as the “saliency library” by
further concatenating these GGGs as a new GGG and put it to Eq. 2 to get T . In our
experiments for ImageNet, N and B is set as 5 and 256 respectively. This naive
strategy works since the training set is randomly shuffled for each epoch, while
other methods can also be tried such as introducing a running mean for T like
the parameter updating process in batch normalization (BN) layers. Finally, like
the BN layer, we adopt the finally updated T for inference. The experiments
show that the actual pruning rate during testing is almost the same as ξ (see
Table 1 and 2 in the paper).

1.2 Training with Angle Enlargements

We further reduce the inner product among saliency vectors from different
heads within a DGC layer by introducing a third loss, in order to encourage
learning saliency vectors in orthogonal directions to forcefully diversify feature
representations. Our experiments show that it is automatically achieved during
training if head-wise threshold is adopted, adding such loss hardly gives any
improvement on the performance. However, this is slightly not the case if global
threshold is applied (25.2% vs. 25.8% of Top-1 error of the CondenseNet-DGC
structure used in Section 4.3 on ImageNet dataset with and without this angle
enlargements). Specifically, the angle enlargement loss is defined as:

La = λ
2

LH(H− 1)

L∑
l=1

H∑
i=1

H∑
j=i+1

abs

(
gggl,i

‖gggl,i‖2
� gggl,j

‖gggl,j‖2

)
, (3)
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where � represents the inner product between two vectors, ‖zzz‖2 is the `2 norm
of vector zzz. We set λ to 10−4 in our experiments when using global threshold.

2 More results on CIFAR datasets

We further evaluate our method on the CondenseNet-86 structure used in [3] by
replacing the learnt group convolution (LGC) of CondenseNet with DGC, and
compare it with the original CondenseNet and other state-of-the-art filter-level
pruning methods. The parameter settings are the same as the CondenseNet.
Results are shown in Table 1. In this table, the model with a suffix “G” means
we adopt the global threshold.

3 Further Visualization

Please see Fig. 1 and Fig. 2.

channel index

p
ru

in
g

 p
ro

b
ab

ili
ty

Fig. 1. Extension for Fig. 8 in the original paper, with the other two heads visualized.
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Fig. 2. Actual pruning rate of each DGC layer for CondenseNet (left) and ResNet
(right) structure on the validation set of ImageNet dataset using the global threshold.
CondenseNet-DGC corresponds to the model in Table 2 from the original paper with
the same name. ResNet18-DGC-G corresponds to the model DGC-G in Table 1 from
the original paper. The red line represents the overall pruning rate for the model. It
can be seen that by using global threshold, the network is given more flexibility that
allows each layer adapting to a particular pruning rate, leading to a slightly better
performance than the one with head-wise thresholds, but at the same time bringing
extra irregularity to the model structure (e.g., even within a single layer, different input
smaples may also lead to different numbers of channels selected). A balance between
such irregularity and performance need to be considered during network design.
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