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Abstract. Style transfer has attracted much interest owing to its var-
ious applications. Compared with English character or general artistic
style transfer, Chinese character style transfer remains a challenge ow-
ing to the large size of the vocabulary(70224 characters in GB18010-
2005) and the complexity of the structure. Recently some GAN-based
methods were proposed for style transfer; however, they treated Chi-
nese characters as a whole, ignoring the structures and radicals that
compose characters. In this paper, a novel radical decomposition-and-
rendering-based GAN(RD-GAN) is proposed to utilize the radical-level
compositions of Chinese characters and achieves few-shot/zero-shot Chi-
nese character style transfer. The RD-GAN consists of three components:
a radical extraction module (REM), radical rendering module (RRM),
and multi-level discriminator (MLD). Experiments demonstrate that our
method has a powerful few-shot/zero-shot generalization ability by using
the radical-level compositions of Chinese characters.

Keywords: GAN, Style Transfer, Radical Decomposition, Few-Shot/Zero-
Shot Learning

1 Introduction

With the development of deep learning, character recognition has reached an un-
precedented stage of development; however, it is very data-dependent. In many
cases, such as in historical documents, character samples are expensive/difficult
to obtain. One of the most efficient ways to obtain character samples is to gener-
ate character data via style transfer. Unfortunately, character generation remains
a relatively under-explored problem compared with the automatic recognition of
characters [24, 34]. This unbalanced progress is detrimental to the development
of optical character recognition.

Recently, there have been many attempts to generate simple characters such
as English and Latin characters [13, 21]; however, Chinese character generation
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has not been explored extensively. Compared with English or Latin character
generation, Chinese character generation is much more challenging owing to the
following characteristics. First, Chinese characters share an extremely large vo-
cabulary. To address this issue, [61] generated Chinese characters by introducing
a Recurrent Neural Network (RNN)-based model and learned a low-dimensional
character label embedding. However, this method can only generate characters
that the model has seen. Unfortunately, it is almost impossible to obtain all of
the categories’ samples from a fixed style. Generating unseen Chinese characters
remains an urgent problem.

Moreover, Chinese characters contain a large number of glyphs with compli-
cated content and characteristic style that vary from the shapes of the compo-
nent and the stroke styles. Recent works such as “Rewrite” [2] and its advanced
version “zi2zi” [3] generated Chinese characters by learning to map the source
style to a target style with thousands of character pairs for strong supervision.
However, these methods still cannot generate unseen Chinese characters.

Finally, unlike the photo-to-artwork task, Chinese characters have a complex
and flexible structure. Subtle errors in the skeleton and stroke are obvious and u-
nacceptable. Some attempts have been made in Chinese character generation by
assembling components of radicals and strokes [52, 48, 55]. However, these per-
formed poorly for two reasons: 1) they are largely dependent on the performance
of radical/stroke extraction while perfect automatic radical/stroke extraction is
almost impossible in real applications; and 2) they pay more attention to the
rendering of the radical/stroke while ignoring their internal relationship.

Although Chinese characters comprise an extremely large vocabulary, more
than 10,000 characters can be composed by approximately 1000 radicals [46].
Meanwhile, all Chinese characters can be decomposed into a unique radical
string. When people learn Chinese characters, they first learn the radicals and
structures that form characters. By learning radicals and structures, the diffi-
culty of learning to read and write Chinese characters decreases significantly.

Compelled by the above observations, we propose a novel radical decomposition-
and-rendering-based GAN(RD-GAN) for Chinese character style transfer that
can efficiently generate unseen Chinese characters with a few samples. The RD-
GAN consists of three components: a radical extraction module (REM) to extract
the radical roughly, radical rendering module (RRM) that learns how to render
the radical with stroke details in the target style, and multi-level discriminator
(MLD) that guarantees the global structure and local details of the generated
character images. The advantages of the proposed RD-GAN can be summarized
as follows:

– Owing to the specificity of the relationship between characters and radicals,
we can use only a few samples to generate unseen Chinese characters effi-
ciently. This can largely reduce the difficulty and labor of collecting training
data.

– By decomposing Chinese characters into radicals, the rendering difficulty
decreases significantly.
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– Owing to the multi-level discriminator, we can generate stylized Chinese
characters that not only have good details but also have more realistically
combined components.

– RD-GAN can generate realistic character samples for training character clas-
sifiers with few real data. Experiments show that our method can effectively
transfer unseen Chinese characters and obtain better performance than re-
cent state-of-the-art methods.

2 Related Work

2.1 Image-to-Image Translation

Image-to-image translation learns the mapping from the input image to the
output image and covers many tasks such as edge/contour extraction [38, 50],
semantic segmentation [28, 36], artistic style transfer [19, 9], and image coloriza-
tion [31, 59]. Pix2pix [16] used a conditional GAN based network that needs a
significant amount of paired data for training. To alleviate the problem of ob-
taining data pairs, unpaired image-to-image translation frameworks [26, 27, 63]
have been proposed. Liu et al. [26] made a shared-latent space assumption that
a pair of corresponding images in different domains can be mapped to the same
latent representation in a shared-latent space. After that, authors [27] extended
[26] to an unsupervised image-to-image translation problem. Then, authors [63]
proposed the cycle-consistent adversarial network (CycleGAN), which perform-
s well for many vision and graphics tasks. Meanwhile, supervised GAN-based
methods require numerous image pairs, while unsupervised methods often cause
blurred and incorrect construction. In this paper, we propose a novel radical
decomposition-and-rendering GAN that focuses on training a generative model
with as few samples as possible.

2.2 Character Style Transfer

Recent studies considered character style transfer as an image translation task.
A popular project named “Rewrite” [2] implemented a simple traditional flavor
top-down Convolutional Neural Network (CNN) to transfer a standard font to
another stylized font. After that, its advanced version, named “zi2zi” [3], im-
plemented the font style transfer of Chinese characters by learning to map the
source style to a target style with thousands of character pairs. Upchurch et al.
[43] adopted a supervised method and assigned each character a one-hot label. In
addition, Lyu et al. [32] proposed an auto-encoder-guided GAN network (AEG-
N) to synthesize calligraphy images with specified styles from standard Chinese
font images. Easyfont [23] extracted strokes from given Chinese characters and
learned to generate corresponding strokes for other characters in the same style.
Jiang et al. [18] integrated the domain knowledge of Chinese characters with deep
generative networks to ensure that high-quality glyphs with correct structures
can be synthesized. MC-GAN [4] synthesizs ornamented glyphs from images of
a few example glyphs in the same style by predicting the coarse glyph shapes
and texture of the final glyphs.
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Fig. 1. Overview of the proposed method for Chinese character style transfer. Standard
font Chinese character images are firstly fed into the radical rendering module to obtain
the output stylized images. The output stylized images and the corresponding target
images are then transmitted to the radical extraction module to obtain a 2D-attention
map. With the 2D-attention map, we crop the corresponding radical regions from the
output images. Finally, output images and cropped images are fed to the multi-level
discriminator to improve the distributional similarity between the output images and
the corresponding target images.

2.3 Attention Mechanism

The attention mechanism was first proposed in machine translation [5, 44] to
enable a model to automatically search for parts of a source sentence for predic-
tion. Then, the method rapidly became popular in applications such as (visual)
question answering [30, 54], image caption generation [54, 51, 29], speech recogni-
tion [6, 20], and scene text recognition [40, 7, 22]. Most important, the attention
mechanism can also be applied to 2D predictions, such as mathematical expres-
sion recognition [56, 57], paragraph recognition [49, 8], and radical recognition
[45]. Thanks to the characteristics of the attention mechanism, we implement a
2D attention mechanism for rough radical extraction.

3 Proposed Methodology

3.1 Overview

Given a standard-font Chinese character image IC with content C, our proposed
system f aims to generate another stylized character image I′

C with the same
content as realistically as possible. The proposed RD-GAN is a network for few-
shot/zero-shot Chinese character image generation. As illustrated in Figure 1,
the proposed RD-GAN consists of three components. The Radical Extraction
Module splits an image into different parts to empower our system with few-
shot/zero-shot learning. The Radical Rendering Module outputs stylized
character images based on stroke/radical details. Finally, a multi-level dis-
criminator is adopted to pay more attention to both local details and global
context.
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3.2 Radical Extraction Module

As presented in Figure 1, the radical extraction module consists of two main
parts: a weight-shared CNN for feature extraction and a 2D-attention based
encoder-decoder model. It takes a character image as input and outputs a varying
length sequence of radicals. Meanwhile, the learned 2D-attention map can be
used for radical decomposition.

Encoder Inspired by SAR [22], we implement a two-layer Bi-directional LSTM
(BLSTM) as an encoder to handle the 2D feature maps from the weight-shared
CNN. As shown in Figure 2, we compress each column feature along the vertical
direction by average-pooling at each time step, and use the compressed feature
to update the hidden state ht. After T steps, which is the width of the 2D feature
maps, the final hidden state of the encoder fg is output as the global feature of
our input character image, and is fed to the following decoder.

Decoder The decoder is another BLSTM model with two layers. Most tradi-
tional 2D attention models [8, 56] consider only local information and treat each
location independently, neglecting the relationship between pixels in adjacen-
t areas. We follow the concept of [22] to take neighborhood information into
consideration.

Initially, the global feature fg is fed into the decoder BLSTM. The decoder
iteratively updates the attention mechanism and outputs the current predic-
tion(radical) according to the previous output yt−1 and hidden state st−1:

ŝt = BLSTM(yt−1, st−1) (1)

ct = fattn(ŝt,F ) (2)

st = BLSTM(ct, ŝt) (3)

yt = ψ(st) (4)

where ψ(.) is a linear transformation, and fattn is a neighborhood-considered 2D
attention mechanism as follows:

eij = W attn · tanh(W sŝt +W ppij +

i+1∑
x=i−1

j+1∑
y=j−1

Wh
xypxy) (5)

αij =
eij∑
ij eij

(6)

ct =
∑
ij

αijpij (7)

Note that, W attn,W s,W p, and Wh are all learnable parameters; pij is the local
feature vector at position (i, j) in the input 2D feature map F ; and i, j are range
from 0 to the width and height of F , respectively. According to the response
of 2D attention map, we can roughly separate the corresponding radicals for
subsequent processes.
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Fig. 2. Illustration of the BLSTM encoder. T represents the width of 2D feature map.
At each time step, column feature is compressed by a vertical average-pooling and the
final hidden state of the encoder is fed to the following decoder.

3.3 Radical Rendering Module

The overall network architecture of the radical rendering module is shown in
Figure 3. The RRM is composed of a downsampling module and an upsampling
module. Lateral connections are employed to preserve more details. Fed with a
standard-font Chinese character image, the RRM generates a stylized character
image with complete strokes and radicals.

It is typically considered that higher-level features share stronger semantics,
while lower-level features exhibit semantically weak features but include more
detailed information [39] such as texture and position information. Therefore,
we introduce a lateral connection to mix up semantics features with detailed
geometric features. As shown in Figure 4, this lateral connection contains two
pathways, named SE-pathway and up-sample pathway, respectively.

index Layer(Weight-Shared CNN)
output shape

(C H W)

0 input: character image 1 96 96

1
num: 64, kernel: 3 3,

pad: (h:1, w:1), stride: (h:1, w:1)
64 96 96

2 64, 3 3, (1,1), (1,1) 64 96 96

3 kernel: 2 2, stride: 2 2 64 48 48

4 [128, 3 3, (1,1), (1,1)] 2 128 48 48

5 2 1, 2 2 128 24 24

6 [256, 3 3, (1,1), (1,1)] 2 256 24 24

7 2 1, 2 2 256 12 12

8 512, 3 3, (1,1), (1,1) 512 12 12

convolution layer up-sample layermax pooling layer

index Layer(Up-Sample)
output shape

(C H W)

18 output: stylized image 1 96 96

17 1, 1 1, (0,0), (1,1) 1 96 96

16 ratio: 2 2 64 96 96

15 [64, 3 3, (1,1), (1,1)] 2 64 48 48

14 ratio: 2 2 128 48 48

13 [128, 3 3, (1,1), (1,1)] 2 128 24 24

12 ratio: 2 2 256 24 24

11 [256, 3 3, (1,1), (1,1)] 2 256 12 12

10 ratio: 2 2 512 12 12

9 2 1, 2 2 512 6 6

lateral connection

Fig. 3. Illustration of the radical rendering module. It is a convolutional neural network
with an encoder decoder structure and lateral connection. Specially, the encoder part
is shared with radical extraction module as feature extractor.
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Fig. 4. Illustration of the lateral connection.

SE-Pathway Unlike [15], our operation is performed in the channel dimension.
First, the squeeze layer reduces the feature dimensions by using a 1× 1 convolu-
tion for information fusion from different channels and less computation. Then,
we implement a non-linear layer including two deformable convolutions and Re-
LU activation function to achieve large receptive fields. Last, an expand layer is
used to enlarge the feature map channels by a 1 × 1 convolution as the reverse
of the squeeze layer.

Up-sample Pathway To enlarge the feature map, we utilize a bilinear sampling
operation followed by two same-size (3× 3) convolutional layers. This can avoid
checkerboard artifacts more effectively than deconvolution. The up-sampled fea-
ture maps are then element-wise summed with the corresponding ones from the
SE-Pathway. Inspired by [10], we use ELU as non-linear activation function be-
cause it can handle large negative responses and thereby stabilize the training
process.

3.4 Multi-Level Discriminator

To differentiate fake images from real ones, the original GANs [12] discrimi-
nate the results based on the entire image level. However, as mentioned before,
Chinese characters have complex and flexible structures, which make the dis-
criminator difficult to focus on. To determine whether the images we generate
are realistic enough to lead the RRM to generate more realistic images, we pro-
posed a multi-level discriminator. Here, “multi-level” includes both the geometry
level and structure level.

Geometry Level As noted in [41], any local patch sampled from the generated
image should have statistics similar to those of a real image patch. Specifically,
following the PatchGAN [16], we execute our discriminator to classify whether
each N × N patch in an image is real or fake. We run this discriminator con-
volutationally across the image, averaging all responses to provide the ultimate
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output of the discriminator. We define the loss as follows:

Lg
D = − 1

N2

N2∑
n=1

(1− y)log(ξn) (8)

where y and ξ are the label of the image and the discriminator prediction, re-
spectively. In our experiments, N is set to 6.

Structure Level All Chinese characters can be decomposed into a unique rad-
ical set. A perfectly generated Chinese character image should have well refined
strokes and more realistically combined components. Therefore, we penalize both
the entire image and the radical patches. Given the 2D-attention map Mt at
timestep t and input image I, we define the structure level loss as follows:

Ls
D = −(1− y)[log(Ds(I)) +

T∑
t=1

log(Ds(I ⊗ I{Mt > θ}))] (9)

where I{·} = 1 when the condition is true and zero otherwise. Besides, Ds

represents a convolutional network with binary classification outputs, θ denotes
the threshold set to 0.5 and ⊗ is element-wise multiplication.

By combining the above two loss terms, we come to the overall adversarial
training objective:

La = Lg
D + Ls

D (10)

3.5 Additional Loss Function

We aim to generate stylized Chinese character images as realistically as possible.
This includes both per-pixel reconstructed accuracy as well as radical composi-
tion, i.e. how smoothly the radical regions can harmonize with their surrounding
context. Inspired by recent image processing tasks (neural style transfers [11] and
text eraser [60]), three additional losses are applied to our system as follows:

L2 Loss(L2) To obtain an output image that is both invariant to content
and complete in describing a Chinese character, we can simply minimize the
difference between the output image I′

C and target image ÎC in an explicit
fashion:

L2 = ‖I′
C − ÎC‖2 (11)

Total Variation Loss(Ltv) For image generation, a common problem is that
model tends to generate noisy images. To solve this problem, we adopt Ltv [19]
for global denoising, as defined below:

Ltv =
∑
ij

‖I′
C [i, j]− I′

C [i + 1, j]‖1 + ‖I′
C [i, j]− I′

C [i, j + 1]‖1 (12)

Here, i, j indicates the position of the pixel.
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Content Loss(Lc) As noted in [19], the loss function measured for different
high-level features is effective for feature reconstruction. To better generate im-
ages from different levels, we introduce content loss to penalize the discrepancy
between the features of the output images and the corresponding ground truth
images on certain layers in the CNN. We feed the output images and ground
truth images to a pre-trained model and force the response in the corresponding
layer to be matched. The content loss can be formulated as follows:

Lc =

N−1∑
n=1

‖φn(I′
C)− φn(ÎC)‖1 (13)

where N and φn(.) are the layer index we choose and the feature responding in
layer n, respectively. Following [60], we compute the content loss at layers pool1,
pool2, and pool3 of a pretrained VGG16 [42].

Combining all of the above loss terms, we come to the overall training objec-
tive for our Chinese character style transfer model:

L = La + α1L2 + α2Ltv + α3Lc (14)

where α1, α2, and α3 are weighting coefficients that are empirically set to 0.5,
0.5, and 0.1 in our experiments, respectively.

4 Experiments

4.1 Dataset

In the following experiments, a historical document dataset named TKH Dataset
[53] is used to quantitatively and qualitatively evaluate the performance of Chi-
nese character style transfer. TKH has 1000 manually annotated Tripitaka para-
graph images composed of approximately 320,000 character instances. There are
two benefits to using this dataset: 1) The Chinese characters in historical docu-
ments are much closer to handwritten characters, which vary in the shapes of the
components and the stroke styles. This is more useful in verifying the robustness
and effectiveness of our method for difficult styles. 2) There are many strange
and unusual characters in historical documents and they are an ideal testbed for
few-shot/zero-shot learning.

To meet the requirements of different experiments and metrics, the entire
dataset is partitioned into three subsets: D1, where both the training set and
test set have the same category (1473 classes in the same style) with 50 samples
for each category; D2, a subset of D1 with only 5 samples for each category in
the training set; and D3, where images in the test set (213 classes) are never
seen in the training set (1260 classes) but share the same radical sets. The three
datasets represent different levels of challenges, e.g., supervised learning, few-
shot learning, and zero-shot learning.
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4.2 Experiment Setup

We use TrueType fonts to render the corresponding characters in black with font
style Song as standard font character images. Both the standard font character
images and target character images are resized to 96×96 before being fed to the
model. We set the initial learning rate as 0.0001 and train the model end-to-end
with the Adam optimization method until the output is stable.

Radicals are viewed as a part of the semantics and are shared by different
characters [35]. Many studies have examined the reasonable splitting of Chi-
nese characters into radical sets. [33] extracted 1118 substructures from 4284
characters to build a radical lexicon, and [46] extended this lexicon to 9820
characters. In our experiments, we adopt the radical lexicon in project [1] and
filter out the symbols and single-structure characters in the dataset that cannot
be decomposed into smaller parts. There are 1473 characters with 576 radicals
for experiments. In our experiments, we train an REM with 150,000 samples
generated by [17] and achieve an accuracy of 98.7% as tested on synthetic data.

Although the most commonly used metric for determining the quality of gen-
erative models is the inception score [37], it is not suitable for Chinese character
style transfer [25]. To impartially compare the proposed method with other re-
cent works, we calculate the L1 loss, Root Mean Square Error (RMSE) and the
structual similarity (SSIM) [47] between the generated images and target im-
ages. In addition, one of the most important purposes of Chinese character style
transfer is to improve the classifier performance. Therefore, we compare the per-
formance among classifiers trained with different generation methods. We adopt
a character recognizer with 1473 classes as follows:

76 × 76Input − 32C3 −MP2 − 64C3 −MP2 − 128C3 − 128C3 −MP2 −
256C3− 256C3−MP2− 384C3− 384C3− FC1024− FC1473−Output
where xCy represents a convolutional layer with kernel number of x and kernel
size of y × y, MPx denotes a max-pooling layer with kernel size of x, and FCx
is a fully connected layer of kernel number of x.

4.3 Experimental Results

Comparison with State-of-the-Art Methods In this subsection, we com-
pare our model with the following methods for Chinese character style transfer
from the perspective of supervised learning, few-shot learning, and zero-shot
learning:
1) Pix2pix [16]: Pix2pix is a conditional GAN based image translation network
and is optimized by L1 distance loss and adversarial loss.
2) Cycle-GAN [63]: Cycle-GAN not only learns the mapping from the input im-
age to the output image, but also learns a loss function to reverse this mapping.
It is noted that Cycle-gan only requires unpaired data.
3) MC-GAN [4]: MC-GAN is the first end-to-end solution to synthesizing orna-
mented glyphs from images of a few example glyphs in the same style.
4) Zi2zi [3]: Zi2zi is an application and extension of the pix2pix model to Chinese
characters with the addition of category embedding.
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5) EMD [62]: EMD is a generalized style transfer network that attempts to
separate the representations for style and content.

Supervised Learning: In this part, all methods are trained with paired im-
ages in D1. The results are displayed in Figure 5 (a). We observe that for super-
vised learning, our proposed method outperforms Pix2pix and Cycle-GAN and
is slightly better than the results of Zi2zi and EMD. It is noted that Cycle-GAN
has the worst performance, as it can only generate parts of characters or some-
times unreasonable structures. This may be because it only learns the domain
mappings without the domain knowledge [62]. Zi2zi and EMD can learn how
to map standard fonts to stylized fonts through an abundant number of paired
images, as in our method. For quantitative analysis, we conducted experiments
three times with different initializations. The average results are displayed in the
last three columns in Figure 5 (a). We can observe that our method performs
best and achieves the lowest L1 loss, RMSE and the highest SSIM.

(a) Supervised Learning

Source:

Target:

RD-GAN:

Cycle-GAN:

Zi2zi:

Pix2pix:

EMD:

L1 loss RMSE SSIM

0.0107

0.0115

0.0097

0.0092

0.0088

0.8671

0.0212

0.0207

0.0198

0.0188

0.0182

0.8527

0.9244

0.9415

0.9647

(b) Few-shot Learning

Source:

Target:

RD-GAN:

Cycle-GAN:

Zi2zi:

Pix2pix:

EMD:

L1 loss RMSE SSIM

0.0109

0.0121

0.0105

0.0098

0.0089

0.8669

0.0225

0.0213

0.0217

0.0200

0.0182

0.8518

0.9021

0.9399

0.9642

(c) Zero-shot Learning

Source:

Target:

RD-GAN:

Cycle-GAN:

Zi2zi:

Pix2pix:

EMD:

L1 loss RMSE SSIM

0.0192

0.0142

0.0181

0.0187

0.0103

0.6327

0.0237

0.0271

0.0255

0.0262

0.0208

0.8022

0.7414

0.7287

0.9112

MC-GAN 0.0103 0.0196 0.9132

MC-GAN 0.0105 0.0206 0.9043

MC-GAN 0.0139 0.0227 0.8633

Fig. 5. Comparison among previous methods and proposed method.
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Table 1. Character recognition accuracy trained with different generation methods

Generation Methods Accuracy(%)

D1(Real data only) 82.45
D1+synthtext2014 [17] 83.25
D1+pix2pix [16] 84.74
D1+zi2zi [3] 85.63
D1+EMD [62] 87.21
D1+RD-GAN 88.11

Few-Shot Learning: We train our model and other methods with D2, in
which there are only five samples for each category. The results are presented in
Figure 5 (b). As shown in the figure, our method and EMD still exhibit good
performance, while the performance of Zi2zi drops sharply. It is unrealistic for
Zi2zi to transfer font style for 1473 categories trained with only 5 samples for each
category. However, by decomposing Chinese characters into radicals, the number
of categories we need to learn is reduced from 1473 to 576. This significantly
reduces the difficulty of our task. In addition, all Chinese characters share the
same radical lexicon, which means a radical will appear in both character A and
character B. Therefore, a sufficient number of radical samples can be used for
our training. The quantitative comparison results including the L1 loss, RMSE,
and SSIM are also shown in the last three columns of Figure 5 (b). Note that
our model achieves the best performance among all of the methods and there is
almost no degradation in performance even when training with only five samples,
which demonstrates the effectiveness of our method.

Zero-Shot Learning: As an extreme case, all methods are trained with D3.
The categories in the test set were never seen during training. Both qualitative
and quantitative analyses are presented in Figure 5 (c). As shown in Figure 5
(c), our model can still deal with unseen categories in the training set. However,
images generated by other methods are messy, and their content may not be
recognized. This is because these methods treat Chinese characters as a whole
and cannot generate unseen Chinese characters. Differently, we cannot see the
entire characters but all radicals in the test set can be explored during training,
giving our method the ability of zero-shot learning.

In conclusion, most of the state-of-the-art methods require many paired im-
ages to train, which may difficult to collect images for some special fonts or cate-
gories such as historical documents. In addition, these methods can only transfer
character font styles for categories appearing in the training set, and with no
ability to generate unseen categories. However, our method can generalize styl-
ized characters given only a few reference images. In addition, the experiments
indicated the strong few-shot/zero-shot learning ability of our method owing to
the relationship between characters and radicals.



Few/Zero-Shot Chinese Character Style Transfer 13

Source baseline +LC +MLD +AL

L1 loss

RMSE

SSIM

Target

0.0118 0.0088

0.0182

0.9647

0.0102 0.0092

0.01890.02010.0210

0.96350.91440.8591

Fig. 6. Effect of different components in our method. LC, MLD and AL represent
lateral connection, multi-level discriminator and additional loss, respectively.

Classifier Performance In this part, we train a character classifier using
50,000 synthetic character images generated by different methods and test the
classifier on D1. Table 1 lists the classification accuracy using different genera-
tion methods. We can observe that the character classifier trained with samples
generated by our method performs much better than others. This is also con-
sistent with the results of the quantitative and qualitative analyses mentioned
above. It further reflects the outstanding ability of our method to generate data
to promote the classifier performance.

4.4 Ablation Studies

In this section, we analyze the influence of the factors influencing the mod-
el performance, including the lateral connection, multi-level discriminator, and
additional loss.

Lateral Connection: To evaluate the effectiveness of the lateral connec-
tion during image generation, we compare the results with and without lateral
connections in Figure 6. As shown in the figure, images generated with lateral
connections exhibit much better details and obtain a lower L1 loss. This indi-
cates that the lateral connections can effectively learn more detailed information
to reconstruct stylized images.

Multi-level Discriminator: Radical decomposition and reconstruction are
the key features of the proposed RD-GAN model. The multi-level discriminator
is one of the indispensable components. To evaluate the influence of the discrim-
inator, we conduct experiments using the multi-level discriminator and single-
level discriminator, which treat images as a whole. The results are displayed in
Figure 6. We can observe that images generated with a multi-level discriminator
have a better stroke/radical rendering. Besides, they obtain higher SSIM, which
indicates that the character structure is better reconstructed.

Additional Loss: In addition, we conduct experiments with additional loss.
Figure 6 displays the image generation results with and without additional loss.
It it noted that the generated images have more local details, less noise, and
better reconstruction with lower L1 Loss, RMSE and higher SSIM.
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Fig. 7. Experimental results on face transfer. Images from top to buttom: input images
and output results.

4.5 Generalization to Face Transfer

As Chinese characters are composed of multiple radicals, the face is also com-
posed of multiple parts including the eyes, nose, and mouth. In this section, an
experiment on face transfer is conducted to test the generalization ability of RD-
GAN. We evaluate our method on a well-known face dataset named Ms-celeb-1m
[14]. In the experiment, we choose pairs of photos taken for the same person but
from different perspectives for training. Besides, we implement MTCNN [58] in-
stead of REM to extract the components of the face. The qualitative results are
shown in Figure 7. We can observe that the generated images effectively retain
the face information and details, which further reflects the generalization and
effectiveness of our method.

5 Conclusion

In this paper, we proposed a novel Chinese character style transfer model named
RD-GAN that shows powerful few-shot/zero-shot generalization ability. The
main idea is that all Chinese characters share the same radical lexicon, and
that the REM decomposes Chinese characters into radical parts. Then, accord-
ing to the radical parts, the RRM renders the radicals with stroke details in the
target style. Finally, an MLD was proposed to guarantee the global structure and
local details of the generated characters. To the best of our knowledge, RD-GAN
is the first method that can generate Chinese character images of unseen cate-
gories with roughly radical decomposition. We evaluated the proposed method
on Chinese character style transfer task, and extensive experiment demonstrated
its effectiveness.
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