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Supplementary material

A Proof of Theorems 4 and 5

A.1 Proof of Theorem 4

Proof. For part (i), let Q? 2 SO(p)n be a minimizer of (2), with corresponding
optimal value f̃?, and suppose for contradiction that S? = ⇧(Q?) is not a min-
imizer of (19). Then there exists some S0 2 St(d, p)n with f(S0) < f(S?) = f̃?.
However, since ⇧ is surjective for p > d, then there exists some Q0 2 ⇧�1(S0),
and by definition of f̃ in (26) we have that f̃(Q0) = f(S0) < f̃?, contradict-
ing the optimality of Q?. We conclude that S? is indeed a minimizer of f over
St(d, p)n, and therefore the optimal values of (19) and (2) coincide.

Part (ii) follows immediately from part (i) since f̃(Q) = f(S) for any Q 2
SO(p)n and S = ⇧(Q) by (26).

A.2 Proof of Theorem 5

In this section we derive Theorem 5 as a consequence of Theorem 3 and the
equivalence of the rank-restricted optimization (19) and the Shonan Averaging
problem (2) (Theorem 4). To do so, we need to understand how the local geome-
try of the lifted objective f̃ relates to that of f near a critical point Q? 2 SO(p)n.
Recall that the tangent spaces of the rotational and Stiefel manifolds can be ex-
pressed as:

TQ(SO(p)) =
n
Q�̇ | �̇ 2 Skew(p)

o
(31)

and

TS(St(d, p)) =

8
>>>><

>>>>:

S⌦̇ + V K̇ |

⌦ 2 Skew(d),

K̇ 2 R(p�d)⇥d,

V 2 Rp⇥(p�d),

STV = 0

9
>>>>=

>>>>;

(32)

respectively (cf. Example 3.5.2 of [1]). If we rewrite the elements of (31) in a
block-partitioned form compatible with the action of the projection (22):

TQ(SO(p)) =

8
>><

>>:
Q


⌦̇ �K̇T

K̇ �̇

�
|
⌦̇ 2 Skew(d),

K̇ 2 R(p�d)⇥d,

�̇ 2 Skew(p� d)

9
>>=

>>;
(33)

then the derivative of the projection ⇡ at Q =
⇥
S V

⇤
2 SO(p) is:

d⇡Q : TQ(SO(p)) ! TS(St(d, p))

d⇡Q

✓
Q


⌦̇ �K̇T

K̇ �̇

�◆
= S⌦̇ + V K̇.

(34)

The next result is a direct consequence of (31)–(34):
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Lemma 1. The projection ⇡ : SO(p) ! St(d, p) is a submersion.6

Proof. Let Q =
⇥
S V

⇤
2 SO(p), S = ⇡(Q), and Ẏ 2 TS(St(d, p)); we must show

that there is some Ẋ 2 TQ(SO(p)) such that Ẏ = d⇡Q(Ẋ). Since STV = 0 (as
the columns of Q are orthonormal), by (32) there exist some ⌦̇ 2 Skew(d) and
K̇ 2 R(p�d)⇥d such that Ẏ = S⌦̇+V K̇. Letting �̇ 2 Skew(p�d), and defining

Ẋ = Q


⌦̇ �K̇T

K̇ �̇

�
2 TQ(SO(p)) (35)

as in (33), it follows from (34) that Ẏ = d⇡Q(Ẋ).

Corollary 1. The projection ⇧ : SO(p)n ! St(d, p)n is a submersion.

Proof of Theorem 5:
Part(i): Applying the Chain Rule to (26) produces:

df̃Q? = dfS? � d⇧Q? . (36)

The left-hand side of (36) is 0 because Q? is a first-order critical point of f̃ by
hypothesis, and Corollary 1 shows that d⇧Q? is full-rank (i.e., its image is all of
TS?(St(d, p))n). It follows that dfS? = 0, and therefore S? is a first-order critical
point of (19).

Part (ii): Observe that ⇧(Q+) = S+ as defined in Theorem 3(ii); since S+

is a stationary point for (19), another application of the Chain Rule as in (36)
shows that df̃Q+ = 0, and therefore Q+ is also a first-order critical point of
the lifted optimization (2) in dimension p + 1. Theorem 3(ii) also provides the
second-order descent direction Ṡ+ from S+. The tangent vector Q̇+ defined in
(28) is constructed as a lift of Ṡ+ to TQ+(SO(p + 1)n); that is, so that Q̇+

satisfies d⇧Q+(Q̇+) = Ṡ+. Indeed, using (27), (28), and (34) we can compute

each block of d⇧Q+(Q̇+) as:

d⇧Q+(Q̇+)i = d⇡Q+
i

✓
Q?

i 0
0 1

� 
0 �vi
vTi 0

�◆

=


0
vTi

�
= Ṡ+

i

(37)

for all i 2 [n], verifying that Q̇+ is a lift of Ṡ+.
Our goal now is to show that Q̇+ is likewise a second-order descent direction

from Q+. We do this using a proof technique similar to that of Proposition 5.5.6
in [1]. Let RQ+ : TQ+(SO(p+ 1)n) ! SO(p+ 1)n be any (first-order) retraction
on the tangent space of SO(p + 1)n at Q+, and let ✏ > 0 be su�ciently small
that the curve:

�̃ : (�✏, ✏) ! SO(p+ 1)n

�̃(t) = RQ+(tQ̇+)
(38)

6 A smooth mapping ' : X ! Y between manifolds is called a submersion at a point
x 2 X if its derivative d'x : Tx(X ) ! T'(x)(Y) is surjective. It is called a submersion
(unqualified) if it is a submersion at every x 2 X .
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obtained by moving through the point Q+ 2 SO(p + 1)n along the direction
Q̇+ is well-defined. Our approach simply involves examining the behavior of the
lifted objective f̃ at points along the curve �̃ in a neighborhood of �̃(0) = Q+.
To do so, we define:

f̃ : (�✏, ✏) ! R
f̃(t) = f̃ � �̃(t)

(39)

and then consider its first- and second-order derivatives. Once again using the
Chain Rule (and unwinding the definition of f̃), we compute:

f̃ 0(t) = df̃�̃(t) � �̃0(t)

= df⇧��̃(t) � d⇧�̃(t) � �̃0(t)

=
⌦
grad f (⇧ � �̃(t)) , d⇧�̃(t) � �0(t)

↵
.

(40)

Note that at t = 0, grad f (⇧ � �̃(0)) = grad f(⇧(Q+)) = grad f(S+) = 0
since S+ is a stationary point. It follows from (40) that f 0(0) = 0 (as expected,
since we know that Q+ is a stationary point for the lifted optimization (2)).
Continuing, we compute the second derivative of f̃(t) by applying the Product
and Chain Rules to di↵erentiate the inner product on the final line of (40):

f̃ 00(t) =
d

dt

⇥⌦
grad f (⇧ � �̃(t)) , d⇧�̃(t) � �0(t)

↵⇤

=

⌧
d

dt
[grad f (⇧ � �̃(t))] , d⇧�̃(t) � �0(t)

�

+

⌧
grad f (⇧ � �̃(t)) , d

dt

⇥
d⇧�̃(t) � �0(t)

⇤�
.

(41)

Now, we just saw that grad f (⇧ � �̃(0)) = 0, so the second term of the final line
of (41) is zero for t = 0. Moreover, the derivative in the first term can be further
developed as:

d

dt
[grad f (⇧ � �̃(t))] = Hess f (⇧ � �̃(t))

⇥
d⇧�̃(t) � �̃0(t)

⇤
. (42)

Therefore, at t = 0 (41) simplifies as:

f̃ 00(0) =
⌦
Hess f (⇧ � �̃(0))

⇥
d⇧�̃(0) � �̃0(0)

⇤
, d⇧�̃(0) � �0(0)

↵

=
D
Hess f

�
⇧(Q+)

� h
d⇧Q+(Q̇+)

i
, d⇧Q+(Q̇+)

E

=
D
Hess f

�
S+

� h
Ṡ+

i
, Ṡ+

E

< 0

(43)

where the final line of (43) follows from the fact that Ṡ+ is a second-order
direction of descent from S+. We conclude from (43) that Q̇+ is a second-order
direction of descent from Q+, as desired. ⇤
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B Gauss-Newton for Shonan Averaging

We can implement the local search for (first-order) critical points of (2) required
in line 3 of the Shonan Averaging algorithm using the same Gauss-Newton ap-
proach described in Section 3.

B.1 Linearization

As before, we first rewrite (2) more explicitly as the minimization of the sum of
the individual measurement residuals, in a vectorized form:

min
Q2SO(p)n

X

(i,j)2E

ij

��vec(QjP �QiPR̄ij)
��2
2
, (44)

and reparameterize this minimization in terms in terms of the Lie algebra so(p):

min
�2so(p)n

X

(i,j)2E

ij

���vec
⇣
Qje

[�j ]P �Qie
[�i]PRij

⌘���
2

2

. (45)

Once again, we approximate (45) to first order as the linear least-squares objec-
tive:

min
�2so(p)n

X

(i,j)2E

ij kFj�j �Hi�i � bijk22 , (46)

where now the Jacobians Fj and Fi and the right-hand side bij are calculated
as

Fj
.
= (P T ⌦Qj)Ḡp (47)

Hi
.
= ((PR̄ij)

T ⌦Qi)Ḡp (48)

bij
.
= vec(QiPR̄ij �QjP ) (49)

with Ḡp the matrix of vectorized so(p)n generators. Note that the right-hand
side bij in (49) in fact involves only the Stiefel manifold elements Si = ⇡(Qi):

bij = vec(SiR̄ij � Sj). (50)

B.2 The structure of the Lie algebra

In this section we investigate the structure of the Lie algebra so(p) as it pertains
to the linearized objective in (46). Recall that so(p) is identified with the tangent
space TIp(SO(p)) = Skew(p), the space of p⇥ p skew-symmetric matrices. Once
again writing these matrices in a block-partitioned form compatible with the
projection ⇡ in (22) (as in (33)) produces:

so(p) =

8
><

>:


[!] �KT

K [�]

�
|
! 2 so(d),

K 2 R(p�d)⇥d,

� 2 so(p� d)

9
>=

>;
, (51)
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and it follows from (22) the derivative of ⇡ at Ip is:

d⇡Ip

✓
[!] �KT

K [�]

�◆
=


[!]
K

�
. (52)

Note that d⇡Ip does not depend upon the (p � d)-dimensional vector �. In
particular, let us define:

VIp
.
= ker d⇡Ip =

⇢✓
0 0
0 [�]

◆
| � 2 so(p� d)

�
⇢ so(p). (53)

Geometrically, the set VIp defined in (53) consists of those directions of motion

⌦̇ 2 so(p) at Ip along which the projection ⇡ is constant. Equivalently:

VIp = TIp(⇡
�1(P )); (54)

that is, VIp is the set of vectors that are tangent to the preimage ⇡�1(P ) of P =
⇡(Ip) at Ip. If we think of the elements of the preimage ⇡�1(P ) as being vertically
“stacked” above their common projection P 2 St(d, p), then the subspace VIp

of the Lie algebra is precisely the set of tangent vectors at Ip that correspond to
vertical motions. Consequently, VIp is referred to as the vertical space. We may
define a corresponding horizontal space in the natural way, i.e., as the orthogonal
complement of the vertical space:

HIp
.
= V ?

Ip =

(✓
[!] �KT

K 0

◆
|
! 2 so(d),

K 2 R(p�d)⇥d

)
⇢ so(p). (55)

The significance of (51)–(55) is that, to first order, the exponential map (or
any retraction) can be written as I + [�] for � 2 so(p). In conjunction with the
projection map ⇡ (equivalently, with P ), this implies:

Qie
[�]P ⇡ Qi(I+ [�])P = Si +Qi


[!]
K

�
. (56)

From this we see that the derivative of the cost function (45) will not depend on
the (p�d)-dimensional vector �, i.e., on the component of [�] lying in the vertical
space VIp . This makes intuitive sense, since the Shonan Averaging objective f̃(Q)
in (2) is defined in terms of the projection ⇧(Q) (recall (26)), and moving along
vertical directions leaves this projection unchanged.

This in turn enables us to characterize the Jacobians in more detail. If we
split Qi =

⇥
Si Vi

⇤
, the Jacobians Fj and Hi can be shown to be:

Fj
.
=

⇥
(Id ⌦ Sj)Ḡd (Id ⌦ Vj) 0

⇤
(57)

Hi
.
=

⇥
(R̄T

ij ⌦ Si)Ḡd (R̄T
ij ⌦ Vi) 0

⇤
(58)

where Ḡd is the matrix of vectorized generators for the Lie algebra so(d) (as
in Section 3). Again we see that the last columns, corresponding to the vertical
directions, are zero.
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The astute reader may now wonder whether the rank-deficiency of these Jaco-
bians poses any numerical di�culties when solving the linear systems needed to
compute the update step �. In fact there are several straightforward ways to ad-
dress this. One approach is simply to employ the Levenberg-Marquardt method
directly in conjunction with the Jacobians (58); in this case, the Tikhonov reg-
ularization applied by the LM algorithm itself will ensure that all of the linear
systems to be solved are nonsingular. Moreover, this regularization will addition-
ally encourage update steps to lie in the horizontal subspace, since any update
with a nonzero vertical component will have to “pay” for the length of that com-
ponent (via regularization), while “gaining” nothing for it (in terms of reducing
the local model of the objective).

Alternatively, one can remove the final (p � d) all-0’s columns from the Ja-
cobians in (58), and solve the resulting reduced linear system in the variables
(!,K). Geometrically, this corresponds to minimizing the local quadratic model
of the objective (46) over the horizontal subspace; a horizontal full-space update
[�] can then be obtained by simply taking � = 0. It is straightforward to see
that this procedure corresponds to computing a pseudoinverse (minimum-norm)
minimizer of the quadratic model (46).

Finally, a third approach is to regularize the original Shonan Averaging prob-
lem (2) by adding a prior term on the Karcher mean of the rotations Qi in Q;
this has the e↵ect of fixing the gauge for the underlying estimation problem,
similarly to the use of “inner constraints” in photogrammetry [34].
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C More Experimental Results on the YFCC Datasets

In this section we present more extensive results on the datasets derived by
Heinly et al. [21] from the large-scale YFCC-100M dataset [33,21]. As in the main
paper, the relative measurements for these were derived from the SFM solution
provided with the data, and corrupted with noise as before, using � = 0.2. For
all results below, minimum, average, and maximum running times (in seconds)
are computed over 10 random initializations for each dataset. Also shown is
the fraction of cases in which the method converges to a global minimizer. All
Shonan Averaging variants examined below use the same Levenberg-Marquardt
non-linear optimizer, with a Jacobi-preconditioned conjugate gradient method
as the linear system solver.

C.1 Small Datasets (n < 50)

Table 4 shows additional experimental results on the small YFCC datasets (with
n < 50) with a more systematic exploration of the Shonan parameters. The intent
is to provide more quantitative results for Shonan Averaging and its convergence
properties at di↵erent levels of p, as well as explore parameter settings for optimal
performance in practical settings.

In particular, we compared

– SA: Shonan Averaging with pmin = 5 and pmax = 30.
– BD: the block coordinate descent method from [13,14].
– SL: Same as SA, but starting (L)ow, from SO(3): pmin = 3 and pmax = 30.
– S3: Only run with p = 3, which corresponds to LM in the main paper:

we only optimize at the base SO(3) level. Note that this approach has no
guarantee of converging to a global minimizer.

– S4: Similar to S3, but with P = 4: assesses in what percentage of cases we
converge to global minima for p = 4.

– S5: Similar to S3 and S4, but for p = 5.
– SK: Shonan Averaging with pmin = 5 and pmax = 30, i.e., the same as SA,

but with a di↵erent prior to fix the gauge freedom.

The last version, SK, was inspired by [38], who stressed the importance of fix-
ing the gauge symmetry to make the rotation averaging problem better-behaved.
In particular, we fixed the Karcher mean of all rotations (for any level p) to
remain at its initial value, similar to the “inner constraints” often used in pho-
togrammetry [34].

In Table 4, we have indicated the best performing method out of SA, SL, and
SK. The specialized solvers S3, S4, and S5 that only optimize at one level are not
considered in the comparison, as they are not guaranteed to converge to a global
minimum, and are only there to provide insight into the relative performance in
those di↵erent SO(p) spaces.
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dataset method error min avg max success

statue of liberty 1 SA 0.000% 0.038 0.313 1.211 100%
(n=19, m=54) SL 0.000% 0.010 0.219 0.901 100%

S3 nan% nan nan nan 0%
S4 0.001% 0.009 0.016 0.019 30%
S5 0.001% 0.010 0.018 0.022 40%
SK -0.000% 0.008 0.108 0.459 100%

natural history museum london SA 0.000% 0.019 0.036 0.049 100%
(n=30, m=274) SL 0.000% 0.011 0.021 0.068 100%

S3 0.000% 0.010 0.013 0.015 60%
S4 0.000% 0.011 0.016 0.021 100%
S5 0.000% 0.009 0.014 0.018 100%
SK -0.000% 0.021 0.022 0.024 100%

statue of liberty 2 SA 0.000% 0.030 0.063 0.094 100%
(n=39, m=156) SL 0.001% 0.011 0.034 0.060 100%

S3 0.000% 0.010 0.028 0.046 40%
S4 0.000% 0.011 0.024 0.047 100%
S5 0.000% 0.010 0.030 0.057 100%
SK 0.000% 0.019 0.050 0.113 100%

taj mahal entrance SA 0.000% 0.071 0.117 0.165 100%
(n=42, m=1272) SL 0.000% 0.032 0.043 0.062 100%

S3 0.000% 0.037 0.046 0.063 80%
S4 0.000% 0.033 0.042 0.051 100%
S5 0.000% 0.032 0.037 0.039 100%
SK -0.000% 0.070 0.081 0.092 100%

sistine chapel ceiling 1 SA 0.000% 0.102 0.173 0.246 100%
(n=49, m=1754) SL 0.000% 0.064 0.085 0.108 100%

S3 0.000% 0.057 0.073 0.087 60%
S4 0.000% 0.072 0.121 0.293 100%
S5 0.000% 0.064 0.083 0.095 100%
SK -0.000% 0.102 0.116 0.130 100%

Table 4. More results on YFCC datasets with n < 50. In this table, we compare 6
methods (see text for details). For each, we show the relative error with respect to
SA, we give the minimum, average, and maximum running times (in seconds), and the
fraction of cases in which the method converges to a global minimizer.

Conclusions For these small datasets, block-coordinate descent [13,14] performs
very well. Even so, Shonan averaging with Karcher mean is faster in several cases.
One such example in this Table is the Statue of Liberty dataset with n = 39 and
m = 156. Interestingly, SK appears to be the fastest Shonan Averaging variant
for some datasets, despite the fact that it contains an additional dense term in
the objective that involves all of the poses. We conjecture that for these relatively
small datasets, the inclusion of the prior on the Karcher mean helps to promote
faster convergence of the manifold optimization by penalizing components of the
update step that lie in the subspace of (global) gauge symmetry directions for
the rotation averaging problem. Intuitively, it discourages the step from having a
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component that does not “actually change” the solution. This can be important
in the context of a trust-region method like ours, where the total length of the
step is restricted at each iteration. It would also be interesting to investigate
what (if any) e↵ect the inclusion of the Karcher mean has on the presence of
suboptimal critical points at each level of the Riemannian Staircase, although
we leave these questions for future work.

Also clear is that starting Shonan Averaging with p = 3, shown as SL in
the table, is always either on par or much faster than SA. There is a simple
explanation for this: in many instances, it is possible to recover a global minimizer
from the optimization at the lowest level p = 3. This can be appreciated by
comparing with the results of S3: it rarely finds global minima every time, but
when it does it is obviously the fastest of all methods. In SL, we only move to
the next SO(p) level if that does not happen, and hence we get the best of
both worlds: fast convergence if we happened to pick a lucky initial
estimate, and upgrade to global optimality if not.

The S3, S4, and S5 lines are shown to indicate at what level this occurs, and
for these datasets it is almost always at p = 4. However, the results reveal that
there are indeed no guarantees, so it is not a good idea to run Shonan Averaging
at a single level: the Riemmannian Staircase provides the global guarantee but
at minimal extra cost, as it is only triggered when we converge to a suboptimal
critical point at a lower level p.

C.2 Intermediate-size Datasets (50  n < 150)

In Tables 5 and 6 we show additional results on increasingly larger YFCC
datasets, with exactly the same parameters as in the previous section. How-
ever, here we omit the S3-S5 variants unless they do not converge to global
minima in all tested cases.

Conclusion From these results it is clear that SL starts to emerge as
the best among the global optimization methods in terms of average
running time. Again, we observe that for these larger datasets it is rare not
to converge to a global minimizer at p = 3, which is interesting in its own right.
Of course, there are some exceptions, e.g., the Big Ben dataset in Table 6 with
n = 101 and m = 1880, for which global minimizers were not found using only
local search with p 2 {3, 4, 5}. The BD method is still competitive in cases where
the number of measurements is large, as BD’s running time is dominated by the
number of images n, given that it is optimizing for a 3n⇥ 3n PSD matrix.

Results on these larger datasets suggest that finding global minima is actu-
ally harder in general for small datasets than for larger, well connected datasets.
We can gain some theoretical insight into this empirical finding in light of several
recent works [38,27,5] that have studied the connection between graph-theoretic
properties of the measurement network G = (n, E) that underpins the rotation
averaging problem, and the statistical and geometric/computational properties
of the resulting maximum-likelihood estimation (1). In a nutshell, these investi-
gations indicate that both the statistical properties of the maximum-likelihood
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dataset method error min avg max success

sistine chapel ceiling 2 SA 0.000% 0.101 0.162 0.234 100%
(n=51, m=1670) SL 0.000% 0.065 0.115 0.332 100%

S3 0.000% 0.076 0.081 0.084 50%
SK -0.000% 0.097 0.127 0.211 100%

milan cathedral SA 0.000% 0.175 0.203 0.220 100%
(n=69, m=2782) SL 0.000% 0.078 0.092 0.105 100%

SK -0.000% 0.170 0.190 0.206 100%
reichstag SA 0.000% 0.166 0.291 0.399 100%
(n=71, m=2554) SL 0.000% 0.073 0.084 0.108 100%

SK -0.000% 0.179 0.193 0.215 100%
piazza dei miracoli SA 0.000% 0.261 0.353 0.593 100%
(n=74, m=3456) SL 0.000% 0.092 0.119 0.147 100%

S3 0.000% 0.102 0.119 0.146 90%
SK -0.000% 0.260 0.344 0.413 100%

ruins of st pauls SA 0.000% 0.337 0.426 0.735 100%
(n=82, m=4998) SL 0.000% 0.149 0.173 0.259 100%

SK -0.000% 0.372 0.450 0.544 100%
mount rushmore SA 0.000% 0.264 0.366 0.511 100%
(n=83, m=4012) SL 0.000% 0.105 0.123 0.193 100%

SK -0.000% 0.263 0.306 0.352 100%
london bridge 3 SA 0.000% 0.113 0.141 0.243 100%
(n=88, m=1500) SL 0.000% 0.050 0.070 0.095 100%

S3 0.000% 0.052 0.066 0.084 90%
SK -0.000% 0.115 0.128 0.143 100%

palace of versailles chapel SA 0.000% 0.296 0.319 0.379 100%
(n=91, m=3964) SL 0.000% 0.102 0.118 0.138 100%

SK -0.000% 0.291 0.313 0.348 100%
pieta michelangelo SA 0.000% 0.540 0.709 1.051 100%
(n=93, m=7728) SL 0.000% 0.194 0.220 0.228 100%

SK -0.000% 0.538 0.559 0.614 100%
blue mosque interior 2 SA 0.000% 0.169 0.220 0.348 100%
(n=95, m=2288) SL 0.000% 0.075 0.149 0.510 100%

S3 0.000% 0.087 0.106 0.140 90%
SK -0.000% 0.172 0.200 0.222 100%

st vitus cathedral SA 0.000% 0.592 0.909 1.306 100%
(n=97, m=8334) SL 0.000% 0.250 0.291 0.326 100%

S3 0.000% 0.252 0.298 0.387 90%
SK -0.000% 0.571 0.650 0.805 100%

Table 5. YFCC results for 50  n  100. Same format as Table 4 but only showing
S3-S5 results if they do not converge to global minima in all tested cases.

estimation (1) and its computational hardness are controlled by the algebraic
connectivity �2(L(G)), i.e., the second -smallest eigenvalue of the weighted graph
Laplacian L(G) associated with the graph G. Larger values imply both a better
(lower-uncertainty) estimate and that the resulting relaxation (16) is stronger.
For densely-connected measurement networks (of the kind that frequently appear
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dataset method error min avg max success

big ben 1 SA 0.000% 0.196 4.084 30.563 100%
(n=101, m=1880) SL 0.000% 0.080 0.348 1.285 100%

S3 0.000% 0.105 0.127 0.199 70%
S4 0.000% 0.090 0.118 0.172 60%
S5 0.000% 0.077 0.140 0.197 80%
SK 0.000% 0.185 1.001 5.572 100%

london bridge 2 SA 0.000% 0.220 0.351 1.218 100%
(n=106, m=2742) SL 0.000% 0.091 0.114 0.136 100%

SK -0.000% 0.222 0.243 0.264 100%
palazzo pubblico SA 0.000% 0.331 0.373 0.427 100%
(n=112, m=4420) SL 0.000% 0.155 0.262 0.926 100%

SK -0.000% 0.340 0.382 0.442 100%
london bridge 1 SA 0.000% 0.416 0.472 0.543 100%
(n=118, m=5690) SL 0.000% 0.168 0.203 0.285 100%

SK -0.000% 0.423 0.469 0.536 100%
national gallery london SA 0.000% 0.186 0.233 0.351 100%
(n=124, m=2160) SL 0.000% 0.089 0.107 0.131 100%

SK -0.000% 0.179 0.210 0.246 100%
lincoln memorial SA 0.000% 0.324 0.374 0.548 100%
(n=127, m=3516) SL 0.000% 0.119 0.135 0.185 100%

SK -0.000% 0.259 0.301 0.329 100%
grand central terminal new york SA 0.000% 0.414 0.584 1.043 100%
(n=132, m=5880) SL 0.000% 0.187 0.220 0.291 100%

SK -0.000% 0.528 0.586 0.661 100%
paris opera 2 SA 0.000% 0.809 0.888 0.982 100%
(n=133, m=10778) SL 0.000% 0.341 0.395 0.478 100%

SK -0.000% 0.837 0.906 1.058 100%
Table 6. YFCC results for 100  n  150. Same layout as Table 5.

in structure-from-motion applications), it is an elementary result from algebraic
graph theory that this quantity can grow at a rate of up to O(n). This provides
insight into the observation that problems with larger measurement networks
appear easier to solve, assuming a reasonably dense set of measurements.

C.3 Larger Datasets (n � 150)

Finally, in Table 7 we show additional results on the largest YFCC datasets with
n � 150. The block-coordinate descent method from [14] did not converge in
reasonable time for many of the larger datasets, which is because we use the min-
imum eigenvalue optimality certificate threshold �min to establish convergence.
The threshold we used in all experiments was 10�5, and for these datasets it
takes a long time for BD to reach that level, in contrast to Shonan Averaging.

Conclusion For these large datasets convergence to the global minimizer occurs
almost always at p = 3 and hence the SL and S3 methods are basically identical in
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terms of operation and performance. However, SL comes with a global guarantee:
in the rare case that S3 does not converge to the global minimizer at the SO(3)
level, SL will simply move up to SO(4) and up, and thereby still recover the true
maximum likelihood estimate.
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dataset method error min avg max success

st peters basilica interior 2 SA 0.000% 0.948 1.165 1.738 100%
(n=173, m=11688) SL 0.000% 0.557 0.713 0.897 100%

S3 0.000% 0.531 0.587 0.715 80%
pantheon interior SA 0.000% 0.852 1.001 1.570 100%
(n=186, m=10000) SL 0.000% 0.449 0.509 0.623 100%

S3 0.000% 0.455 0.530 0.642 100%
florence cathedral dome interior 1 SA 0.000% 2.435 2.848 3.226 100%
(n=213, m=31040) SL 0.000% 1.869 2.170 2.499 100%

S3 0.000% 1.856 2.209 2.814 100%
paris opera 1 SA 0.000% 3.673 4.145 4.467 100%
(n=254, m=45754) SL 0.000% 1.686 2.024 2.677 100%

S3 0.000% 1.683 2.104 2.510 100%
pike place market SA 0.000% 4.437 5.255 7.285 100%
(n=265, m=53242) SL 0.000% 2.019 2.322 3.400 100%

S3 0.000% 2.122 2.246 2.384 100%
blue mosque interior 1 SA 0.000% 3.581 4.153 4.964 100%
(n=272, m=40292) SL 0.000% 2.268 2.708 2.991 100%

S3 0.000% 2.511 2.997 3.645 100%
notre dame rosary window SA 0.000% 8.102 8.652 10.515 100%
(n=326, m=93104) SL 0.000% 3.478 4.074 4.690 100%

S3 0.000% 3.885 4.326 5.012 100%
british museum SA 0.000% 4.297 4.851 7.846 100%
(n=344, m=45450) SL 0.000% 1.927 2.558 3.400 100%

S3 0.000% 2.009 2.558 3.911 100%
palace of westminster SA 0.000% 1.334 1.480 1.692 100%
(n=345, m=11522) SL 0.000% 0.598 0.837 1.242 100%

S3 0.000% 0.731 1.038 2.397 100%
louvre SA 0.000% 2.872 3.141 3.709 100%
(n=367, m=26656) SL 0.000% 1.606 2.284 3.265 100%

S3 0.000% 1.648 2.058 2.495 100%
st peters basilica interior 1 SA 0.000% 5.283 5.654 6.295 100%
(n=365, m=55024) SL 0.000% 3.255 4.030 4.995 100%

S3 0.000% 3.662 4.169 4.728 100%
st pauls cathedral SA 0.000% 7.385 7.861 8.384 100%
(n=370, m=83060) SL 0.000% 3.385 3.792 4.373 100%

S3 0.000% 3.420 4.176 6.689 100%
westminster abbey 1 SA 0.000% 4.238 4.582 4.957 100%
(n=501, m=38863) SL 0.000% 2.059 2.396 2.710 100%

S3 0.000% 2.209 2.693 3.385 100%
pantheon exterior SA 0.000% 6.922 7.876 11.202 100%
(n=720, m=49256) SL 0.000% 3.798 5.247 6.765 100%

S3 0.000% 4.091 4.945 6.156 100%
Table 7. Comparing SA, SL and S3 (see text) on YFCC Datasets with n � 150. In
many cases S3 has a lower average computation time than SL, since it performs only
local optimization at the lowest level p = 3 of the Riemannian Staircase. However, in
contrast to SL, S3 has no guarantees regarding convergence to global minima.


