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In this supplemental document, we present:

1. more details on generating our Temporal GoPro dataset (Sec. 1);
2. simple validations on the conjecture for our proposed multi-temporal (MT)

approach (Sec. 2);
3. toy example of temporal data augmentation (Sec. 3);
4. further analysis on recurrent feature map (RFM) (Sec. 4);
5. detailed ablation studies to design our MT-RNN for different network struc-

tures (Sec. 5);
6. run time of our MT-RNN (Sec. 6);
7. quantitative results on Table 3-4 of our main paper (Sec. 7);
8. and more illustrative figures for qualitative results on Tables 2-4 of our main

paper (Sec. 8).

1 More Details on Generating Temporal GoPro Dataset

Our Temporal GoPro dataset was generated as follows:

Algorithm 1: Generating Temporal GoPro dataset

Input: K consecutive sharp images I1, ..., In
for k = 1 to n do

Îk ← Iγk
end

B̂ ←Mean(Î1, ..., În)
B ← B̂1/γ

Using a set of consecutive sharp images I1, ..., In, a blurred image B is synthe-
sized through the above algorithm where n denotes the temporal level, TLn. The
original GoPro dataste [31] approximated a non-linear CRF (camera response
function) as a gamma curve with γ = 2.2. Our Temporal GoPro dataset was
simply generated by using a linear CRF with γ = 1.
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2 Validation of the Conjecture for MT Approach

We quickly validated our conjecture for MT approach: will it be easier to estimate
TL1 from TL7 than to estimate TL1 from TL5 or TL3? Table S1 shows the
performance of U-Net [37] that was trained only with one TL images. As TL
increases, PSNR clearly decreases. Thus, our conjecture for MT approach seems
reasonable.

Table 1. PSNR (dB) for single image deblurring using U-Net with input images with
TL 3-13.

TL 3 5 7 9 11 13

PSNR (dB) 37.8 34.4 32.3 30.5 29.1 27.8

3 Toy Example of Temporal Data Augmentation

The non-uniform deblurring dataset is well described in Section 3.1 of our main
paper. For better understanding of the generation of blurred images (TLn), we
provide a toy example of our temporal data augmentation in the Fig. S1.

Fig. 1. An illustration for our temporal data augmentation. Blurred images (TLn) are
generated by averaging n frames. Averaging more frames results in more severe blurs.

4 Further Analysis on Recurrent Feature Map

The recurrent feature map (RFM) is well explained and illustrated in Section
4.2 and Fig. 4 (right) of our main paper. For further analyzing our proposed
MT-RNN, we visualized the averaged recurrent feature map for each iteration t
as illustrated in Fig. S2.

Because of global residual skip connection, our MT-RNN is trained to esti-
mate the blur region that should be deblurred. From Fig. S2, we observed that
the network pays attention around edges for estimating blur regions and thus,
the recurrent feature map contains more non-zero values as iteration t increases
for representing more strong effect around edges for deblurring.
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Fig. 2. Visualization of the averaged recurrent feature map (F t1) at different iterations
t in the proposed MT-RNN.

5 Detailed Ablation Studies on Network Structures

We conducted three ablation studies to select the best network structure for our
MT-RNN.

Firstly, we performed ablation studies from the baseline model (Tao [41]) by
adding our proposed components such as residual learning (ResL) and kernel
size (KerS) as shown in Table S2 (a),(b) and (c). Changing kernel size from
5×5 to 3×3 and using residual learning resulted in improved performances and
substantially decreased overall parameter sizes.

Table 2. The ablation study from the base model with recurrent feature map on the
Temporal GoPro dataset. The components of ablation study are kernel size (KerS),
residual learning (ResL), and recurrent feature components (RFC) in 92 × 103 itera-
tions. LSTM and GRU indicate Conv-LSTM and Conv-GRU, respectively, and RFM
indicates our recurrent feature map.

Approach KerS ResL RFC PSNR (dB) SSIM Param (M)

(a)MS (Tao) 5 x x 29.93 0.905 6.88
(b)MS 3 x x 30.10 0.906 2.58
(c)MS 3 o x 30.25 0.908 2.58

(d)MT 3 o LSTM 29.08 0.883 2.99
(e)MT 3 o GRU 30.53 0.912 2.99
(f)MT (Ours) 3 o RFM 30.82 0.917 2.64

Secondly, we studied RNN models with MT approach as shown in Table S2
(d),(e) and (f). Previously, Conv-LSTM and Conv-GRU were utilized to prevent
vanishing gradient in recurrent structures. However, using Conv-LSTM (d) and
Conv-GRU (e) resulted in lower performance than our recurrent feature map (f)
in the case of our temporal training.

Lastly, we investigated the effect of parameter size for performances as illus-
trated in Table S3. The number of parameters is proportional to performance
with the cost of increased computation. While two times larger parameters in
(h) did not seem to improve performance much over (i), its computation time
and memory were substantially increased. Using half the parameter size in (g)
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did degrade performance substantially while computation speed of (g) is similar
to (i). Thus, we selected (i) as a proper number of parameters for our proposed
MT-RNN.

Table 3. Investigation on the performances for different network parameters with our
Temporal GoPro dataset in 92× 103 iterations.

Approach Param (M) PSNR (dB) SSIM Time (sec)

(g)MT 1.46 30.21 0.908 0.060
(h)MT 5.35 30.84 0.918 0.290
(i)MT 2.63 30.82 0.917 0.073

6 Run Time of MT-RNN

As illustrated in Fig. S3, we observed that the run time of MT-RNN dramati-
cally increases after the 6th iteration. While the first 6 iterations took only 0.07
seconds, the run time exponentially increases from the 7th iteration by about
0.2 seconds or more. This phenomenon seems to be related to GPU issues poten-
tially and further investigation seems necessary. We selected 6 as the maximum
iteration for reasonable performances and for fast computations.

Fig. 3. Iteration vs. Run time (sec) for our proposed MT-RNN. The experiments are
performed on the GoPro datasets [31].

7 Quantitative results of multi-temporal approach

To provide more solid information of Multi-Temporal (MT) approach on Table
3-4 of our main paper, we measured PSNR and SSIM on the GoPro test dataset
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(1,111 images) [31] with respect to iterations and the evaluation results are
shown in Tables S4 and S5. We investigated MT approach versions of Kupyn
[24], Zhang [47] and Gao [12] on Table 3 of our main paper. Furthermore, “Ours”
on the Table 4 of our main paper was also evaluated.

Table 4. Iteration vs. PSNR (dB) for MT version of Kupyn [24], Zhang [47], Gao [12]
and Ours on the Table 3-4 of our main paper.

Test dataset Iteration

Method 1 2 3 4 5 6 7

Kupyn* 26.15 26.83 27.39 27.63 27.67 27.70 27.68
Zhang* 26.46 27.58 28.8 29.8 30.11 30.21 30.17
Gao* 26.35 27.46 28.74 29.83 30.18 30.32 30.29
Ours 26.38 27.48 28.80 30.18 31.03 31.15 31.14

Table 5. Iteration vs. SSIM for MT version of Kupyn [24], Zhang [47], Gao [12] and
Ours on the Table 3-4 of our main paper.

Test dataset Iteration

Method 1 2 3 4 5 6 7

Kupyn* 0.813 0.840 0.853 0.859 0.860 0.860 0.860
Zhang* 0.831 0.856 0.881 0.901 0.909 0.910 0.910
Gao* 0.829 0.854 0.881 0.902 0.912 0.915 0.915
Ours 0.828 0.861 0.894 0.923 0.938 0.945 0.945

8 More Figures for Qualitative Results

More figures for qualitative results are presented in this Section. Fig. S4 il-
lustrates our progressive deblurring results when using our MT approach with
incremental temporal training with more examples.

Fig. S5 shows visual comparisons among One-Stage (OS), Stacking-Version
(SV), Multi-Scale (MS) and our proposed Multi-Temporal (MT) approach with
training 92 × 103 iterations on the GoPro dataset [31]. Our proposed method
yielded deblurred images that are visually better than the results of others ap-
proaches for fine details.

Fig. S6 illustrates some powerful examples of our proposed MT approach
over conventional approaches such as OS or MS that have been used in state-
of-the-art methods: Kupyn [24], Zhang [47] and Gao [12]. Their corresponding
modified methods using our MT approach yielded better visual performances
than the original state-of-the-art methods on both GoPro dataset [31] for (a)
and Su dataset [39] for (b) after training 92 × 103 iterations.
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Fig. 4. Progressively deblurred images over iterations using our proposed MT-RNN
after incremental temporal training.

Fig. S7 presents the visual comparisons among state-of-the-art methods (Zhang
[47], Tao [41]) and our proposed MT-RNN on the GoPro benchmark dataset [31].
Our proposed method yielded deblurred images that are visually better than the
results of other approaches for fine details.
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Fig. 5. Visual comparisons among OS, SV, MS and our MT approaches on GoPro
dataset [31]. Our MT method yielded better fine details than others.
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Fig. 6. Visual comparisons between original state-of-the-art methods and their corre-
sponding modified methods using our MT approach, yielding better performances than
the original approaches such as OS or MS.
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Fig. 7. Visual comparisons among state-of-the-art methods (Zhang [47], Tao [41]) and
our proposed MT-RNN on GoPro dataset [31]. Our proposed method yielded visually
better images than others for fine details.


